
In-memory processing of big data via succinct
data structures

Rajeev Raman

University of Leicester

SDP Workshop, University of Cambridge

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Overview

Introduction

Succinct Data Structuring

Succinct Tries

Applications & Libraries

End

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Big Data vs. big data

• Big Data: 10s of TB+.
• Must be processed in streaming / parallel manner.

• Data mining is often done on big data: 10s-100s of GBs.
• Graphs with 100s of millions of nodes, protein databases 100s

of millions of compounds, 100s of genomes etc.

• Often, we use Big Data techniques to mine big data.
• Parallelization is hard to do well [Canny, Zhao, KDD’13].
• Streaming is inherently limiting.

• Instead of changing the way we process the data, why not
change the way we represent the data?

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Processing big data

• Essential that data fits in main memory.
• Complex memory access patterns: out-of-core ⇒ thrashing.

• Data accessed in a complex way is usually represented in a
data structure that supports these access patterns.
• Often data structure is MUCH LARGER than data!
• Cannot process big data if this is the case.

• Examples:
• Suffix Tree (text pattern search).
• Range Tree (geometric search).
• FP-Tree (frequent pattern matching).
• Multi-bit Tree (similarity search).
• DOM Tree (XML processing).

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Succinct/Compressed Data Structures

Store data in memory in succinct or compressed format and
operate directly on it.

• (Usually) no need to decompress before operating.

• Better use of memory levels close to processor,
processor-memory bandwidth.

• Usually compensates for some overhead in CPU operations.

• Programs = Algorithms + Data Structures
• If compressed data structure implements same/similar ADT to

uncompressed data structure, can reuse existing code.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Compression vs. Data Structuring

Answering queries requires an index in in addition to the data.

Space usage = “space for data” + “space for index”.

Index may be larger than the data:

• Suffix tree: data structure for indexing a text of n bytes.

• Supports many indexing and search operations.
• Careful implementation: 20n bytes of index data in worst case

[Kurtz, SPrEx ’99]

• Range Trees: data structures for answering 2-D orthogonal
range queries on n points.

• Good worst-case performance but Θ(n log n) space.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

“Space for Data”

Information-Theoretic Lower Bound
If the object x that you want to represent is drawn from a set S , x
must take at least log2 |S | bits to represent.

• Example: object x is a binary tree with n nodes.
• x is from the set S of all binary trees on n nodes.
• There are ∼ 4n different binary trees on n nodes.
• Need ∼ log2 4n = 2n bits, or 2 bits per node.
• A normal representation: 2 pointers, or 2 log2 n bits, per node.

Succinct Data Structuring

Space usage for x = “space for data”︸ ︷︷ ︸
ITLB for x

+ “space for index”︸ ︷︷ ︸
lower-order term

,

and support fast operations on x .

• Not really compression: ITLB applies even to random x .
• Probably over 1000 papers on SDS in algorithms venues.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

The “trie” ADT

• Object is a rooted tree with n nodes.

• Each node from a parent to a child is labelled with a distinct
letter c from an alphabet Σ, where Σ = {0, . . . , σ − 1}.

• All possible children may not be present.

• Represents a collection of strings over Σ.

Σ = {0, 1, 2, 3}, n = 50

Operations

• parent(x);

• child(x , c);

• desc(x), nextsib(x), prevsib(x),

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Normal Trie Representations

r sob

• Ternary search tree [Bentley/Sedgewick, SODA’97]. Siblings
arranged in a binary tree.
• Space: 4 pointers (256 bits) per node.
• child: O(lg σ) time.

• ITLB =
⌈

log2

(
1

σn+1

(
σn+1

n

))⌉
∼ n log2 σ + O(n) bits.

B One character per node.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Normal Trie Representations

r sob

• Each node points to parent, first-child and next-sibling.
• Space: 3 pointers (192 bits) per node.
• child: O(σ) time.

• Ternary search tree [Bentley/Sedgewick, SODA’97]. Siblings
arranged in a binary tree.
• Space: 4 pointers (256 bits) per node.
• child: O(lg σ) time.

• ITLB =
⌈

log2

(
1

σn+1

(
σn+1

n

))⌉
∼ n log2 σ + O(n) bits.

B One character per node.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Normal Trie Representations

b o r s

• Each node has array of σ pointers, one to each possible child.
• Space: σ + 1 pointers per internal node.
• child: O(1) time.

• Ternary search tree [Bentley/Sedgewick, SODA’97]. Siblings
arranged in a binary tree.
• Space: 4 pointers (256 bits) per node.
• child: O(lg σ) time.

• ITLB =
⌈

log2

(
1

σn+1

(
σn+1

n

))⌉
∼ n log2 σ + O(n) bits.

B One character per node.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Normal Trie Representations

o

b
s

r

• Ternary search tree [Bentley/Sedgewick, SODA’97]. Siblings
arranged in a binary tree.
• Space: 4 pointers (256 bits) per node.
• child: O(lg σ) time.

• ITLB =
⌈

log2

(
1

σn+1

(
σn+1

n

))⌉
∼ n log2 σ + O(n) bits.

B One character per node.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Normal Trie Representations

o

b
s

r

• Ternary search tree [Bentley/Sedgewick, SODA’97]. Siblings
arranged in a binary tree.
• Space: 4 pointers (256 bits) per node.
• child: O(lg σ) time.

• ITLB =
⌈

log2

(
1

σn+1

(
σn+1

n

))⌉
∼ n log2 σ + O(n) bits.

B One character per node.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Succinct Tries

• Output a 1. Then visit each node in level-order and output σ
bits that indicate which labels are present. [Jacobson,
FOCS’89]

1 1111 1111 1111 1011 1110 1101 1001 0000 0011 0000 1111 0010 1111 1001 1101 1100 0011

1101 1011 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

• Bit-string is of length σn + 1 bits. It has n 1s.

• Its ITLB is
⌈

log2
(
σn+1

n

)⌉
∼ n log2 σ + O(n) bits.

• Representation is static, but a lot of operations in O(1) time.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Dynamic Tries

• ADT:
• parent(x);
• child(x , c);
• add(x , c);

• Bonsai tree [Darragh et al., Soft. Prac. Exp’93],[PR,
SPIRE’15].

• Data structure: open hash table of (1 + ε)n entries.
• Nodes of trie reside in hash table.
• ID of a node: location where it resides.
• ID of child labelled c of x :

• Create key 〈x , c〉 and insert.

• Hash table entries only store “quotients”, require only
log2 σ + O(1) bits.

• Space usage (1 + ε)n log2 σ + O(n) bits, O(1) time.

• Fast in practice (2-3 times slower than TST).

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Applications

SDS have been applied in a number of domains:

• Information retrieval.

• NGS: Bowtie read aligner.

• Representing XML data:
• “SiXML” project, XML DOM with order of magnitude less

space.
• Data store for Zorba XQuery processor.

• Many data mining tasks (papers in KDD’14, KDD’16).

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Library sdsl-lite

• Comprehensive (but low-level) library. [Gog et al., SEA ’14]
• Structured to facilitate flexible prototyping of new high-level

structures (building upon bases such as bit vectors).
• Robust in terms of scale, handling input sequences of arbitrary

length over arbitrary alphabets.
• Serialization to disk and loading, memory usage visualization.

Introduction Succinct Data Structuring Succinct Tries Applications & Libraries End

Conclusions

• Use of succinct data structures can allow scalable processing
of big data using existing algorithms.

• With machines with 100s of GB RAM, maybe even Big Data
can be processed using compressed data structures.

• Many of the basic theoretical foundations have been laid, and
succinct data structures have never been easier to use.

• Succinct data structures need to be chosen and used
appropriately. Optimized to ADT.

• Even “simple” operations can’t necessarily be added later.
• E.g. in Bonsai tree, all of a node’s descendants’ IDs are

derived from its ID; can’t delete internal nodes cheaply.
• Single-threaded dynamic SDS much less developed, let alone

concurrent SDS.

• Many individual applications, but no complex systems built
around SDS.

	Introduction
	Succinct Data Structuring
	Succinct Tries
	

	Applications & Libraries
	

	End
	

