
LSDS Large-Scale Distributed Systems Group

Window-Based Hybrid Stream Processing 
for Heterogeneous Architectures

Alexandros Koliousis
a.koliousis@imperial.ac.uk

Joint work with Matthias Weidlich, Raul Castro Fernandez, 
Alexander L. Wolf, Paolo Costa & Peter Pietzuch

Large-Scale Distributed Systems Group
Department of Computing, Imperial College London
http://lsds.doc.ic.ac.uk

github.com/lsds/saber



LSDS Large-Scale Distributed Systems Group

High-Throughput Low-Latency Analytics

2

Google Zeitgeist
40K
user queries/s
Within ms

Feedzai
40K 
card trans/s 
In 25 ms

NovaSparks
150M 
stock options/s 
In less than 1 ms

Facebook Insights
9GB 
of page metrics/s
In less than 10 s

tt+1

window



LSDS Large-Scale Distributed Systems Group 3

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

L2 Cache

DRAM DRAM

Processor1 ... N

So
ck

et
 1

So
ck

et
 2

Command Queue
PCIe Bus

DMA

10s of
streaming processors

Exploit Single-Node Heterogeneous Hardware 

Servers with CPUs and GPUs now common
– 10x higher linear memory access throughput
– Limited data transfer throughput

1000s of 
cores

10s GB of
RAM

Use both CPU & GPU resources for stream processing



LSDS Large-Scale Distributed Systems Group

CQL: SQL-based declarative language for 
continuous queries [Arasu et al., VLDBJ’06]

Credit card fraud detection example:
– Find attempts to use same card in different regions 

within 5-min window

4

select distinct W.cid
from Payments [range 300 seconds] as W,

Payments [partition-by 1 row] as L
where W.cid = L.cid and W.region != L.region

CQL offers correct window semantics

With Well-Defined High-Level Queries

<\>

Self-join



LSDS Large-Scale Distributed Systems Group

Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

5

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs



LSDS Large-Scale Distributed Systems Group

Task T2

Task T1

Problem: Window semantics affect system 
throughput and latency

– Pick task size based on window size?

6

123456

How to Parallelise Window Computation?

Window-based parallelism results in redundant computation

size: 4 sec
slide: 1 sec

Output window results 
in order



LSDS Large-Scale Distributed Systems Group

Problem: Window semantics affect system 
throughput and latency

– Pick task size based on window size?

7

On window slide?

How to Parallelise Window Computation?

Slide-based parallelism limits GPU parallelism

123456 size: 4 sec
slide: 1 sec

T1

T2

T3

T4

T5

Compose window results 
from partial results



LSDS Large-Scale Distributed Systems Group

Idea: Decouple task size from window size/slide
– Pick based on underlying hardware features

• e.g. PCIe throughput

8

10 9 8 7 6 5 4 3 2 115 14 13 12 11

– Task contains one or more window fragments
• E.g. closing/pending/opening windows in T2

SABER’s Window Processing Model

T1T2T3

w1
w2

w3
w4

w5

size: 7 rows
slide: 2 rows

5 tuples/task



LSDS Large-Scale Distributed Systems Group

Worker A stores T1 results, merges window fragment results 
and forwards complete windows downstream

Idea: Decouple task size from window size/slide
– Assemble window fragment results
– Output them in correct order

9

Worker B: T2

w1
w2
w3

w4
w5

Worker A: T1
w1

w2
w3

w1
result

w2
result

Result Stage
Slot 2 Slot 1

Output result 
circular buffer

Merging Window Fragment Results



LSDS Large-Scale Distributed Systems Group

Challenges & Contributions
1. How to parallelise sliding-window queries across CPU and GPU?
Decouple query semantics from system parameters

2. When to use CPU or GPU for a CQL operator?
Hybrid processing: offload tasks to both CPU and GPU

3. How to reduce GPU data movement costs?
Amortise data movement delays with deep pipelining

10

SABER
Window-Based Hybrid Stream Processing Engine for CPUs & GPUs



LSDS Large-Scale Distributed Systems Group

Idea: Enable tasks to run on both processors
– Scheduler assigns tasks to idle processors

11

CPU GPU
QA 3 ms 2 ms
QB 3 ms 1 ms

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue: CPU

GPU

0 3 6 9 12

CPU
GPU

First-Come First-Served

T1 T4 T8

T2 T3 T5 T6 T7 T9

T10

SABER’s Hybrid Stream Processing Model

FCFS ignores effectiveness of processor for given task

Past behavior:
comes first

Idle



LSDS Large-Scale Distributed Systems Group

Idea: Idle processor skips tasks that could be 
executed faster by another processor

– Decision based on observed query task throughput

12

T2 T1T3T4T5T6T7T8T9

QBQAQBQBQBQBQAQBQA

T10

QA

Task Queue:

0 3 6 9 12

CPU
GPU

HLS

T3

T2T1

T7 T10

T4 T5 T6

CPU

GPU
CPU GPU

QA 3 ms 2 ms
QB 3 ms 1 ms

0 3 6 9 12

Heterogeneous Look-Ahead Scheduler (HLS)

HLS fully utilises processors

T9T8

Past behavior:
comes first



LSDS Large-Scale Distributed Systems Group 13

T1

T2

T2 T1

op

αα
op

CPU

GPU

T1 T2

The SABER Architecture

Scheduling & execution stage

Dequeue tasks 
based on HLS

Dispatching stage

Dispatch 
fixed-size tasks

Merge & forward partial 
window results

Result stage

Java
15K LOC

C & OpenCL
4K LOC



LSDS Large-Scale Distributed Systems Group 14

0

10

20

30

40

50

CM2 SG1 SG2 LRB3 LRB4Th
ro

ug
hp

ut
 (1

06
tu

pl
es

/s
)

SABER (CPU contrib.)

SABER (GPU contrib.)

Cluster Mgmt. Smart Grid LRB

Is Hybrid Stream Processing Effective?

Different queries result in different CPU:GPU processing 
split that is hard to predict offline

aggravg group-byavg select

group-byavg group-bycnt

group-bycntgroup-byavg

select

Intel Xeon 2.6 GHz

NVIDIA Quadro K5200

16 cores

2,304 cores



LSDS Large-Scale Distributed Systems Group 15

0

2

4

6

Th
ro

ug
hp

ut
 (G

B/
s)

0

0.1

0.2

0.3 SABER (CPU only)
SABER (GPU only)
SABER

Is Hybrid Stream Processing Effective?

Aggregate throughput of CPU and GPU always higher 
than its counterparts 

Aggregation Group-by θ-join

GPU is faster CPU is faster Not additive due to queue 
contention



LSDS Large-Scale Distributed Systems Group 16

W1 benefits from static scheduling but HLS fully utilises GPU:
– GPU also runs ~%1 of of group-by tasks

W2 benefits from FCFS but HLS better utilises GPU:
– HLS CPU:GPU split is 1:2.5 for project and 1:0.5 for αggr

Is Heterogeneous Look-Ahead Scheduling Effective?

0

1

2

3

4

5

W1 W2

Th
ro

ug
hp

ut
 (G

B/
s) FCFS

Static
HLS

CPU GPU
π 5x
γ 6x

CPU GPU
π 1.5x
α 1.5x W1 W2

W1 W2

group-bycnt

project

aggrsum

project



LSDS Large-Scale Distributed Systems Group

Window processing model
Decouples query semantics from system parameters

Hybrid stream processing model 
Can achieve aggregate throughput of heterogeneous processors

Hybrid Look-ahead Scheduling (HLS) 
Allows use of both CPU and GPU opportunistically for arbitrary 
workloads

17

Alexandros Koliousis
github.com/lsds/saber

Thank you! Any Questions?

Summary


