FaRM: A Platform for Low-latency Computing

Aleksandar Dragojević, Dushyanth Narayanan, Greg O’Shea, Miguel Castro, Chiranjeeb Buragohain, Richie Khanna, Matt Renzelmann, Knut Magne Risvik, Sudipta Sengupta, Alex Shamis, Bin Shi, Tim Tan, John Zheng

Microsoft Research
Why low latency matters

More work within latency budget (<100 ms)
10-100 dependent accesses if latency is in ms range
1k-10k if it is in μs range

Freshness
Denormalized data for low latency
Services process data offline and bulk load into online component
Low latency allows to keep only one representation

Easier development
Less effort on tuning, more on user experience
Should not be underestimated
Enabled by hardware trends

Large amounts of DRAM
256 GB DRAM per commodity machine
New memory technology with higher density soon

Non-volatile memory
Use battery to flush DRAM to SSD on a power failure
Non-volatile memory technology

Fast networks with RDMA
100 Gbps of bandwidth, 100 M ops/s, 1-3 µs latency
RDMA reads and writes
FaRM

Shared address space

Transactions
- Key-value, graph, relational
- Read, write, alloc, free
- Replicated in memory

Performance
- High throughput
- Low latency
Outline

Design

Performance

Future work
CPU is the bottleneck
Design the system from first principles to use the hardware effectively.

- Use one-sided RDMA operations
- Reduce message counts
- Effectively use parallelism
RDMA in FaRM

Read objects with RDMA
NIC performs DMA (CPU not involved)
FaRM ensures reads are consistent

Write messages to buffers
Receiver’s CPU polls
Hardware acks the write
Also used as persistent logs
Lockless reads

Header version
64-bit to avoid overflow

Consistent if versions match and object is not locked

Read requires three network accesses
Lockless reads

Header version

Cache line versions

Space efficiency: 16-bit cache-line versions

RDMA read, check that versions match and that read does not take too long

\[t_{\text{update_min}} = 40 \text{ ns} \]
\[t_{\text{read_max}} = 40 \text{ ns} \times 2^{16} \times (1 - \varepsilon) = 2 \text{ ms} \]
Transaction execution

Write set

C

P₁

B₁

P₂

B₂
Two phase commit

Write set

Prepare

Commit
FaRM commit

Write set

C
P₁
B₁
P₂
B₂

Lock

Validate

Replicate

Update and unlock
Performance
TATP performance

Throughput ops/µs vs Latency µs

- Latency 99%
- Latency 50%

140 ops @ 30 µs
TATP recovery

Throughput ops/µs

Time ms

50 ms
Future work

Data stores
Graphs, scale-out OLTP, support analytics on fresh data

Hardware acceleration
Custom hardware primitives for low latency and high performance

Cold data
Keep cold data on storage without losing performance for hot data

Disaster recovery
Geo-replication without sacrificing too much latency

Security
RDMA does not have strong security
Extra slides
Settings

90 machines
2x Infiniband Mellanox ConnectX-3 56 Gbps
32 hardware threads
256 GB DRAM

Standard OLTP benchmarks
TATP, TPCC

Performance, speed of recovery
3-way replication
TPCC performance

- Latency 99%
- Latency 50%

- 270 M @ 0.8 ms
- 234 M @ 0.45 ms
18 machines failing

Throughput ops/µs

Time ms

130,000 tx recovered

400 ms