Modern Systems for Neural Networks

Valentin Dalibard

This talk

1. Practicalities of training Neural Networks

2.Leveraging heterogeneous hardware

Source: wikipedia

Modern Neural Networks Applications: Image classification

airplane	🔤 🐹 🚂 📈 🍬 🐂 🌌 🏭 🛶 🏜
automobile	ar 😻 🙇 🦾 🐭 😂 🖘 💖
bird	Se 🗾 🖉 🏩 Se 🖉 Se 😒 💆
cat	Si S
deer	M 💥 🖌 🥽 🎬 🚱 🟹 🕷 🚅
dog	98. 🔬 🖚 🔛 🉈 🥘 💽 🔊 🄊
frog	NY 100 100 100 100 100 100 100 100 100 10
horse	📷 🐭 🚵 👘 🕅 📷 🗠 🐝 🕷
ship	😂 🏄 🚈 📥 🚢 🥪 💋 🖉 🚈
truck	🚄 🌃 🚛 🎆 🧱 🚞 📷 🚵

Modern Neural Networks Applications: NLP

Paul Graham generator:

"The surprised in investors weren't going to raise money. I'm not the company with the time there are all interesting quickly, don't have to get off the same programmers. There's a super-angel round fundraising, why do you can do. If you have a different physical investment are become in people who reduced in a startup with the way to argument the acquirer could see them just that you're also the founders will part of users' affords that and an alternation to the idea. [2] Don't work at first member to see the way kids will seem in advance of a bad successful startup. And if you have to act the big company too."

> Source: Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

Modern Neural Networks Applications: Reinforcement Learning

Training Procedure: Stochastic Gradient Descent

Optimize the weights of the neurons to yield good predictions

Use "minibatches" of inputs to estimate the gradient

Source: wikipedia

Software platforms

Single Machine Setup:

One or a couple beefy GPUs

Distribution: Parameter Server Architecture

Source: Dean et al.: Large Scale Distributed Deep Networks

Trends in software architecture

Fewer bits per floating point

Integers rather than floating points

Optimizing the scheduling on a heterogeneous cluster

Which machines to use as workers? As parameter servers?

/workers => /computational power & /communication

How much work to schedu

Must load balance

Ways to do an Optimization

 Random Search	Genetic algorithm / Simulated annealing	Bayesian Optimization
No overhead	Slight overhead	High overhead
High #evaluation	Medium-high #evaluation	Low #evaluation

Bayesian Optimization

Bayesian Optimization

Find parameter values with high performance in the model

Bayesian Optimization

Structured Bayesian Optimization

Optimizing the scheduling of Neural Networks

Two separate models:

Individual machine model: How fast can a machine process *k* inputs

Network model: How long does it take to transfer the parameters from parameter servers to workers

Iteratively learn the behavior

Optimizing the scheduling of Neural Networks

More CPU cores aren't always better

Exposing Tradeoff

Conclusion

Growing demand for Neural networks platforms

Can leverage heterogeneous hardware but requires tuning

Bayesian Optimization can find good scheduling in a relatively short time