

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Tim Harris, Oracle Labs
Stefan Kaestle, ETH Zurich
Daniel Goodman, Oracle Labs

15 July 2016

Callisto-RTS: Fine-Grain
Parallel Loops

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for

information purposes only, and may not be incorporated into any contract. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any Oracle product or

service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

Using a graph representation for your data

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

Using a graph representation for your data
enables many interesting new analyses

Purchase Record

customer items

Communication

Product Recommendation Influencer Identification

Community Detection Pattern Matching

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

Using a graph representation for your data

and eliminates repeated join operations,
which is much more efficient when you
have a lot of relationships to traverse

enables many interesting new analyses

Purchase Record

customer items

Communication

Product Recommendation Influencer Identification

Community Detection Pattern Matching

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

10 10

10
10

10

10

10

10
10

10

5

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank inner loop

35 10

10
10

10

10

10

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hardware options

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hardware options

My laptop
•Insufficient RAM
•Insufficient CPU capacity

Non-starter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hardware options

My laptop
•Insufficient RAM
•Insufficient CPU capacity

Non-starter

Cluster
•Enough RAM
•Enough CPU capacity
•Distributed memory model

Irregular memory accesses
make it hard to program

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hardware options

My laptop
•Insufficient RAM
•Insufficient CPU capacity

Non-starter

Cluster
•Enough RAM
•Enough CPU capacity
•Distributed memory model

Irregular memory accesses
make it hard to program

Large shared memory machine
•Enough RAM
•Enough CPU capacity
•Shared memory model

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

•Queries expressed in terms of graph concepts

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism)

Domain specific
languages

•Efficient in-memory data representations, e.g.
compressed-sparse-row format

•Abundant parallelism
Generated code

•Allocation of resources to a query

•Distribution of work and data within a machine

 Runtime
system

Operating
system

parallel_for<node_t>([&](node_t n) {
 …
});

CPU

CPU CPU

RAM

RAM

RAM

RAM

CPU

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Fixed amount
of work in each
iteration

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Fixed amount
of work in each
iteration

Divide iteration space
evenly between threads
and get good load balancing

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Iteration number

It
er

at
io

n
 e

xe
cu

ti
o

n
 t

im
e

 Variable amount
of work per
iteration

(Actual data – #out-edges of the top 1000
nodes in the SNAP Twitter dataset)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches

Reduce contention distributing work
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Divide into large batches

Reduce contention distributing work
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)
OpenMP static & dynamic loops

8-socket SPARC T5
16 cores per socket
8 h/w threads per core

PageRank
SNAP LiveJournal data set

1024

512

256

128

64

32

1024 256 64 16 4

T
h
re

a
d
s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
tio

n
 tim

eBest performance: 0.26s

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

2 h/w contexts per core

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

2 h/w contexts per core

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

2 h/w contexts per core

Counter

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

2 h/w contexts per core

Counter

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

My laptop

1 socket

4 cores per socket

2 h/w contexts per core

Counter

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

8 h/w contexts per core

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

8 h/w contexts per core

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

8 h/w contexts per core

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

8 h/w contexts per core

Counter

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

T5-8

8 sockets

16 cores per socket

8 h/w contexts per core

Counter

My laptop

• 8 Threads accessing the counter

• The counter is always on the
required socket

• 1 time in 4 the counter is on the
required core

T5-8

• 1024 Threads accessing the counter

• 1 time in 8 the counter is on the
required socket

• 1 time in 128 the counter is on the
required core

The problem

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

17% improvement in
best-case performance

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Batch size / load imbalance trade-off

Divide into large batches

Reduce contention
Risk load imbalance

Divide into small batches

Increase contention distributing work
Achieve better load balance

Typically, choose manually –
but getting this right

depends on (1) algorithm,
(2) machine, (3) data

Our approach: support
efficient small batches

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Techniques

1

2

Request combining

Asynchronous work requests

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Techniques

1

2

Request combining

Asynchronous work requests

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach

8 sockets

16 cores per socket

8 h/w contexts per core

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach

8 sockets

16 cores per socket

8 h/w contexts per core

Per-socket iteration counters,
reducing communication between
sockets. Steal from other sockets
when own work complete.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach

8 sockets

16 cores per socket

8 h/w contexts per core

Per-socket iteration counters,
reducing communication between
sockets. Steal from other sockets
when own work complete.

Aggregate requests within a
socket, reducing contention on
per-socket counter.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach

8 sockets

16 cores per socket

8 h/w contexts per core

Per-socket iteration counters,
reducing communication between
sockets. Steal from other sockets
when own work complete.

Aggregate requests within a
socket, reducing contention on
per-socket counter.

Further aggregation within a
core, exploiting shared cache.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock
Per-thread request flags

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

0..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

0..8 8..16 16..24 8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

24..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Approach, consider a loop 0..65536, batch size 8

8 sockets

16 cores per socket

0..8 8..16 16..24 8 h/w contexts per core

Distribute iterations at
start of loop down to
per-core counters

24..512 512..1024

Aggregate requests
upwards within a core

Per-core lock

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Hierarchical distribution with request combining

• Combining implemented over flags in a single line in the shared L1 D$

• On TSO: no memory fences

• Synchronization remains core-local if work is evenly distributed

• Threads waiting for combining can use mwait

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Techniques

1

2

Request combining

Asynchronous work requests

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Asynchronous combining of requests

Synchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Asynchronous combining of requests

Synchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Asynchronous

Execute batch

Set flag

Wait for /
fetch next

batch

Intuition: the time taken
to execute the current
batch provides an
opportunity for other
cores to service our
request without us
needing to wait, and the
number of requests
batched together will be
larger.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

1024

512

256

128

64

32

1024 256 64 16 4
T

h
re

a
d

s

Batch size

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
o

rm
a

liz
e

d
 e

x
e

c
u

tio
n

 tim
e

PageRank – SNAP LiveJournal (4.8M vertices, 69M edges)

17% improvement in
best-case performance

OpenMP Callisto-RTS

1024

512

256

128

64

32

1024 256 64 16 4

T
h

re
a

d
s

Batch size

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Microbenchmark results
SPARC T5-8, 1024 threads

Per-socket counters

Per-core counters
Per-thread
counters

Even work

(Approx
1k cycles)

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

Per-core + asynchronous combining (blue)
Per-core + synchronous combining (green)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Microbenchmark results
SPARC T5-8, 1024 threads Per-core + asynchronous combining (blue)

Per-core + synchronous combining (green)

Per-socket counters

Per-core counters
Per-thread
counters

Even work

(Approx
1k cycles)

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

 0

 100

 200

 300

 400

 500

 4 8 16 32 64 128 256 512 1024

N
o

rm
a

liz
e

d
 s

p
e

e
d

u
p

Batch size

Imbalanced work (1024:1)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Comparison with Galois
SNAP LiveJournal data set

Xeon X4-2 SPARC T5-8

 0

 2

 4

 6

 8

 10

 12

 1 2 4 8 16 32

S
p
e
e
d
u
p
 /
 s

e
q
u

e
n
ti
a
l

Threads

Callisto-RTS

Galois

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 4 16 64 256 1024

S
p

e
e

d
u

p
 /
 s

e
q

u
e

n
ti
a

l
Threads

Callisto-RTS

Per-socket

Galois

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Better cache locality within each traversal
than between (unrelated) traversals

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

• Abundant parallelism, why use nesting?

• Contention between iterations of an outer loop

• E.g., betweenness-centrality:

– Iterate over vertices

– BFS traversal from each vertex (plus additional work)

Better cache locality within each traversal
than between (unrelated) traversals

Run at most one of
these per L2 D$

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops

1

2 3 4 6 7 8

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops: default, all threads participate

1

2 3 4 6 7 8

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops: outer level – just 1+5 participate

1

2 3 4 6 7 8

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Nested loops: inner level –help respective leaders

1

2 3 4 6 7 8

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Betweenness-centrality
SNAP Slashdot data set (82.1K nodes, 948K edges), T5-8

 0

 20

 40

 60

 80

 100

 120

 32 64 128 256 512 1024

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Threads

No nesting

4 cores

2 cores

1 core

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

In-memory graph analytics

•Queries expressed in terms of graph concepts

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism)

Domain specific
languages

•Efficient in-memory data representations, e.g.
compressed-sparse-row format

•Abundant parallelism
Generated code

•Allocation of resources to a query

•Distribution of work and data within a machine

 Runtime
system

Operating
system

parallel_for<node_t>([&](node_t n) {
 …
});

CPU

CPU CPU

RAM

RAM

RAM

RAM

CPU

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Run Time System

RTS use cases

C++ Java Other Languages

DSLs Libraries DSLs Libraries DSLs Libraries

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Future work

• Continuing development of the programming model

• Control over data placement as well as threads

– Initial examples from graph workloads generally have random accesses: spread data
and threads widely in the machine

– (See “Shoal”, USENIX ATC 2015)

• Interactions between multiple parallel workloads

– OS/runtime system interaction (ref our prior work at EuroSys 2014)

– Placement in the machine

– Control over degree of parallelism

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

