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Using a graph representation for your data 
enables many interesting new analyses 
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In-memory graph analytics 

Using a graph representation for your data 

and eliminates repeated join operations, 
which is much more efficient when you 
have a lot of relationships to traverse 

enables many interesting new analyses 

Purchase Record 

customer items 

Communication  

Product Recommendation Influencer Identification 

Community Detection Pattern Matching 
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Hardware options 

My laptop 
•Insufficient RAM 
•Insufficient CPU capacity 
 

Non-starter  

Cluster 
•Enough RAM 
•Enough CPU capacity 
•Distributed memory model 
 

Irregular memory accesses 
make it hard to program 

Large shared memory machine 
•Enough RAM 
•Enough CPU capacity 
•Shared memory model 
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In-memory graph analytics 

•Queries expressed in terms of graph concepts 

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism) 

Domain specific 
languages 

•Efficient in-memory data representations, e.g. 
compressed-sparse-row format 

•Abundant parallelism 
Generated code 

•Allocation of resources to a query 

•Distribution of work and data within a machine 

 Runtime 
system  

Operating 
system 

parallel_for<node_t>([&](node_t n) { 
     … 
}); 

CPU 

CPU CPU 

RAM 

RAM 

RAM 

RAM 

CPU 
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Batch size / load imbalance trade-off 
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Batch size / load imbalance trade-off 

Iteration number 
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 Fixed amount 
of work in each 
iteration 

Divide iteration space 
evenly between threads 
and get good load balancing 
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Batch size / load imbalance trade-off 

Iteration number 
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 Variable amount 
of work per 
iteration 

(Actual data – #out-edges of the top 1000 
nodes in the SNAP Twitter dataset) 
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Batch size / load imbalance trade-off 

Divide into large batches 
 
Reduce contention distributing work 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
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Batch size / load imbalance trade-off 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Divide into large batches 
 
Reduce contention distributing work 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 
OpenMP static & dynamic loops 

8-socket SPARC T5 
16 cores per socket 
8 h/w threads per core 
 
PageRank 
SNAP LiveJournal data set 
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T5-8 

8 sockets 

16 cores per socket 

8 h/w contexts per core 

Counter 



My laptop 

• 8 Threads accessing the counter 

 

• The counter is always on the 
required socket 

 

• 1 time in 4 the counter is on the 
required core 

T5-8 

• 1024 Threads accessing the counter 

 

• 1 time in 8 the counter is on the 
required socket 

 

• 1 time in 128 the counter is on the 
required core 

The problem 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 

OpenMP Callisto-RTS 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 

17% improvement in 
best-case performance 
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Batch size / load imbalance trade-off 

Divide into large batches 
 
Reduce contention 
Risk load imbalance  
 

Divide into small batches 
 
Increase contention distributing work 
Achieve better load balance 
 

Typically, choose manually – 
but getting this right 

depends on (1) algorithm, 
(2) machine, (3) data 

Our approach: support 
efficient small batches 
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Techniques 
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Request combining 

Asynchronous work requests 
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Techniques 

1 

2 

Request combining 

Asynchronous work requests 
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Per-socket iteration counters, 
reducing communication between 
sockets.  Steal from other sockets 
when own work complete. 
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Approach 

8 sockets 

16 cores per socket 

8 h/w contexts per core 

Per-socket iteration counters, 
reducing communication between 
sockets.  Steal from other sockets 
when own work complete. 

Aggregate requests within a 
socket, reducing contention on 
per-socket counter. 

Further aggregation within a 
core, exploiting shared cache. 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

0..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 
Per-thread request flags 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

0..8 8..16 16..24 8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

24..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 
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Approach, consider a loop 0..65536, batch size 8 

8 sockets 

16 cores per socket 

0..8 8..16 16..24 8 h/w contexts per core 

Distribute iterations at  
start of loop down to  
per-core counters 

24..512 512..1024 

Aggregate requests  
upwards within a core 

Per-core lock 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 

Hierarchical distribution with request combining 

• Combining implemented over flags in a single line in the shared L1 D$ 

• On TSO: no memory fences 

• Synchronization remains core-local if work is evenly distributed 

• Threads waiting for combining can use mwait 
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Techniques 

1 

2 

Request combining 

Asynchronous work requests 
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Asynchronous combining of requests 

Synchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 
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Asynchronous combining of requests 

Synchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 

Asynchronous 

Execute batch 

Set flag 

Wait for / 
fetch next 

batch 

Intuition: the time taken 
to execute the current 
batch provides an 
opportunity for other 
cores to service our 
request without us 
needing to wait, and the 
number of requests 
batched together will be 
larger. 
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PageRank – SNAP LiveJournal (4.8M vertices, 69M edges) 

17% improvement in 
best-case performance 
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Microbenchmark results 
SPARC T5-8, 1024 threads 

Per-socket counters 

Per-core counters 
Per-thread  
counters 

Even work 

(Approx  
1k cycles) 
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Microbenchmark results 
SPARC T5-8, 1024 threads Per-core + asynchronous combining (blue) 

Per-core + synchronous combining (green) 

Per-socket counters 

Per-core counters 
Per-thread  
counters 

Even work 

(Approx  
1k cycles) 
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Comparison with Galois 
SNAP LiveJournal data set 

Xeon X4-2 SPARC T5-8 
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Nested loops 

• Abundant parallelism, why use nesting? 

• Contention between iterations of an outer loop 

• E.g., betweenness-centrality: 

– Iterate over vertices 

– BFS traversal from each vertex (plus additional work) 

Better cache locality within each traversal  
than between (unrelated) traversals 

Run at most one of 
these per L2 D$ 



Copyright © 2016, Oracle and/or its affiliates. All rights reserved. 

Nested loops 

1 

2 3 4 6 7 8 

5 
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Nested loops: default, all threads participate 

1 

2 3 4 6 7 8 

5 
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Nested loops: outer level  – just 1+5 participate 

1 

2 3 4 6 7 8 

5 
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Nested loops: inner level –help respective leaders 

1 

2 3 4 6 7 8 

5 
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Betweenness-centrality 
SNAP Slashdot data set (82.1K nodes, 948K edges), T5-8 
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In-memory graph analytics 

•Queries expressed in terms of graph concepts 

•Tailor for different kinds of workload (e.g., sub-
graph isomorphism) 

Domain specific 
languages 

•Efficient in-memory data representations, e.g. 
compressed-sparse-row format 

•Abundant parallelism 
Generated code 

•Allocation of resources to a query 

•Distribution of work and data within a machine 

 Runtime 
system  

Operating 
system 

parallel_for<node_t>([&](node_t n) { 
     … 
}); 

CPU 
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Run Time System 

RTS use cases 

C++ Java Other Languages 

DSLs Libraries DSLs Libraries DSLs Libraries 
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Future work 

• Continuing development of the programming model 

• Control over data placement as well as threads 

– Initial examples from graph workloads generally have random accesses: spread data 
and threads widely in the machine 

– (See “Shoal”, USENIX ATC 2015) 

• Interactions between multiple parallel workloads 

– OS/runtime system interaction (ref our prior work at EuroSys 2014) 

– Placement in the machine 

– Control over degree of parallelism 
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