Synthesis of Glue Logic, Transactors,
Multiplexors
and Serialisors from Protocol Specifications.

DJ Greaves MJ Nam
University of Cambridge, Computer Laboratory University of Cambridge, Computer Laboratory
Cambridge, UK. Cambridge, UK.
David.Greaves@cl.cam.ac.uk mjn31@cl.cam.ac.uk

Abstract—Today’s system-on-chip (SoC) systems must be .
designed as quick);y asypossible by ?nt(egrat)ingylP blocks from TLM _Cllent :—LMb TLM
diverse suppliers. In this paper, we present a new automata- (Initiator) System bu Target
based algori_thm that automatice_tlly synthesizes_ glue logic CPU RAM
for SoC fabrication and Transaction-level modelling (TLM)
transactors for SoC modelling. Our approach introduces
a new encoding for state variables which captures data TLM to net ocp
conservation property and supports simple point-to-point XACTOR
connections as well as those the perform functions such as JYV Y BVCI bus
multiplexing, filtering and serialising. net-level < - - yyvyylll-~—"~""""- >
9|6 Glue logic
I. INTRODUCTION | 7Y ISA BUsS
The large scale and complexity of today’s system-on- Net-level <= - - 12 2 2

chip (SOC) demand inventive techniques and tools that
simplify the design and verification process. There are @ AUART RTL IP Block
several approaches to shorten time-to-market, and widely
used approaches are IP reuse and transaction level mod- RS-232 putchar(c)
elling (TLM) [1]. IP Reuse simply means reusing some De\éerialisin data TTY
pieces of the existing designs. TLM is an electrical system * 9 Model
level (ESL) modelling concept that allows designers to XACTOR TLM call

abstract hardware (HW) signals to abstract operations in a
higher level. At the TLM, functional calls can be used Q5. 1. Example using three (denoted with asterisks) apiioa of
execute read/write operations, and also the functionaliéyr method.
can be modelled using a higher level descrption and
more abstract date objects. IP reuse enables the team to
leverage the cost and verification across multiple desigmaplement multiplexing and/or serialisation.
and is proven to increase design productivity. TLM has Our contributions are the symbolic extension to the
been also increasingly adopted for advanced SOC desjgnoduct method §V) and its use for transactional-level
and verification to address the limitation of pure RTLlmodels §VI).
modelling methodologies. Figure 1 illustrates a typical situation where our tech-
The key element of the reuse of IP blocks and TLNhique can be used in three different places as part of a
is to make the IP blocks as close ptug-and-playas system model and for synthesis. A high-level model of a
technically possible. Manually adapting these interfdsesCPU connects to its memory and 1/O sub-systems using
tedious and may cause human errors, hence, there is a nEell calls. While one I/O component of interest is a
for automated interface synthesis both in the same levegacy UART with ISA connections, the SoC architecture
and the mixed-level communications. This paper is aimaes the OCP BVCI ports on IP blocks, therefore, there
at automatic interface synthesis adapting two incompatibihust be a net-level glue logic interfacing between BVCI
interfaces in the same level or in the mixed-level. Aand ISA. Also, we need a transactor connecting the net-
common framework is presented that can be used bdével BVCI port to the TLM processor model. This paper
for automatic synthesis of glue logic between IP blocks ishows how to generate both of the glue-logic and the trans-
SoC design, between TLM models during modelling anaictor. The third application of our technique is to generate
for and of initiator and target TLM to net-level transactora high-level model of a receiving UART that makes a
during mixed mode simulation of a SoC. The frameworkoftware call to the workstatioput char method for
extends the well-known product synthesis method bach character deserialised. Our technique works with
ranging over symbolic dead/live values. We also show haany mix of synchronous and asynchronous participants,
the technigue can be applied to multi-way connections thatovided all synchronous participants share the same clock

., Protocol P = Loop of where
domain. The first two cases mentioned above deal with 3 = gq of aﬁa H{’ét /I Parallel assignment

communication bewteen one synchronous and one asyn-I Seqoff P Ili st Z Sequgncing branch

. ; Disj of pli st Non-deterministic branching
chronous _part|C|pqnt (BVCI is a synchronous protpc_:ol.), Next I/ Wait one clock (same as i |)
and the third case is between two synchronous participam#greq is an integer expression ranging over the interface netsigTs.

(both ends of the serial link were clocked from the same TABLE |

baud rate generator). ABSTRACT SYNTAX FOR THE PROTOCOL CAPTURE LANGUAGE USED
IN OUR EXPERIMENTS GIVEN AS AN ML- LIKE DATASTRUCTURE.

Il. RELATED WORK
Automated interface converter generation has been ad-
dressed in the literature from different perspectives. We
focus on work done in the context of small subset of realrcuitry elsewhere in their component (later callgd)
hardware design based on Finite State Machine (FSMhd, from our point of view, these inputs can be changed at
models. any time. According to context, we sometime use the term,
In the early work [2], protocols were presented aparticipant’ to denote one of the participating protocol

FSMs, and their cross product was used to construglitomata and sometimes to also range over the joining
a converter This approach was later extended, and beutomaton.

problem. Sangiovanni-Vincentelli et al [3] synthesized gre yseful for protocol and transactor specification. These
converter FSM, based on selecting the non-deadlockifit|ude a wide range of commercial and experimental
paths through the cross product of a pair of FSMs. Theggnmporal logic and assertion languages. In our experi-
machines can be composed synchronously, where th@gnts, we used a combination of automatic and manual
both move at once, or asynchronously, where they takectnyersion from various sources to a common protocol
in turns. Interface synthesis using a SAT solver to populafgpresentation with abstract syntax tree shown in Table I.
a fictional FPGA was presented in [4]. Each protocol,P is represented as an infinite loop of a
There have been approaches to extend FSM-based cQfge , that is a recursively defined structure using three
verter problem with datapath issues. The early work Byrms. An ‘Eq’ node defines a list of pairs of expressions
Gajski defined ‘Finite State Machine with Datapath’ [Slyhich must be pairwise equal when the node is executed.
in a semi-formal way, and the paper [6] inspired byor example, if one half of a pair is an output or local
this work proposed more formalized definitions of th§griable and the other half is an expression that is a
notions of assignments and statuses. In the paper [7], ®@ction of inputs, then they are made equal with an
work was extended with datapath width adaptation. T%signment that copies the expression to the output or
authors of [8] introduced the data path state machine whigdta| If one half is an input and the other is a constant,
captures data path dependencies in the converter problgn the node can only be executed when the input has
between_ two synchronous hardware modules with dafggt value. This is a direction-agnostic style of participa
communication protocols. description, in the style of IP-XACT [9]. Whether a
Transactor generation methods for cross-level commupjarticular net is an input or output varies according to
cation (TLM-RTL) has been proposed iB][?] [?]. These the direction of instantiation of the associated interface
approaches are also based on finite automatgrpposed A ‘Seq’ node defines ordering of events and a ‘Disj’

a methodology where protocols manually described in\f4e gefines forking paths. A fourth node ‘Next' is used
formal language, Property Specification Language (Psﬁ)r synchronous protocols where a clock cycle must be

are transformed into a FSM, followd by the synthesig,,q meqd while no part of the interface changes, but this
of simulation code, while Extended Finite State Machln% shorthand for ‘Eqni | *. Expressions may be paired

(EFSM) are exploited in). The methods proposed inyyiw yser predicates that must be satisfied at the time

both papers require designers to fully describe the fqfe oxpression is evaluated. Each participating protacol i
malism of the protocols.q presented a technique tOyqqily compiled into a protocol automaton whose state
automate the transactor generation for RTL IP COMPONERISi " interface nets augmented with a program counter

to be reused in TLM systems. The protoc_:pl informatiof),iaple that ranges over the ‘Seq’ nodes and any extra
are extracted from testbenches by exploiting the EFSY,

; ycal state that might be needed. For a synchronous
models. This methodology assumes that RTL testbenchpﬁ)duct, transitions are taken on the active edge of the

implemented with RTL IP components, that is @ manugjoc and for asynchronous product, at any time. Hence,
Process. a protocol FSA is_defi_ned as a tuple,
I1l. PROTOCOLDESCRIPTION M =< %, V, 8, st gidle A > where,

In this section, we show the structure of the system - 3: a non-empty set of symbols (the input alphabet),
that we deal with. A system consists of a number of - V:a set of state variables that each range either over a
componentghat desire to communicate with each other. concrete enumeration or a fixed, finite set of symbolic
The basic unit of concurrency isfaite-state automaton expressions,

(FSA). Each component is connected via a net-level or- S: a finite set of states defined by the cross product
TLM interface that obeys an associated protocol specified of V,

by aprotocol FSA of which we have full knowledge. The - S ¢ S: a initial state

protocol automata, in turn, receive input from unspecified - 5S¢ c S: a set of idle states (includes initial state)

- A: S x ¥ — S a state transition function “ _| én E?fl;?)register)
The initial predicateS‘*# holds for only one setting of | a | (bitwise OR) =
V' that corresponds to the start of day, reset state. Some I E‘“EZ) N Eﬁﬁln:;?)?;i?oﬁ;‘)
protocols have more than one idle sate. An example is the | (a, Puser(e’)) (expression guarded by predicate)
two-phase handshake that attaches meaniraangesof TABLE Il
net value and has two idle stateRi?c = Req==AcKk. ABSTRACT SYNTAX FOR EXPRESSIONS HELD IN SYMBOLIC VALUES

The conventional way to represent states and signals of AT COMPILE TIME.

FSM in RTL is with boolean vectors. In this paper, we
introduce the concept afymbolicvalues. Each variable
of our FSA has either aymbolicor a concretevalue.
. . . Asynchronous systems do not use a shared clock be-
Concrete variables range over a finite enumeration type, ¢ ; .
Wween the participants whereas there is such a net in

Symbolic variables are registers each of some width In . .
a synchronous solution. Asynchronous protocols include

terms of bits, bu_t the bit valu_es are run-time c_iata. [.)u”nt%e Centronix parallel port, and other similar protocols
our pro<_:edure ("e' at compile tlme_), symbol_|c Varlablef?ased on a four-phase handshake, such as the VME bus.
are aSS|gned_ eltheniead_ (denoted .W'thl) or live with Synchronous protocols, such as AHB and OCP BVCI
some symbolic expressian Borrowing terminology from are commonly used in SoC design. The TLM style is

optimising compilers, a symbolic variable becomes live h b | f h
when a new value is stored in it and is killed to dead éa\tsync ronous but commonly transfaf:tors or synchronous
. . protocols are needed, hence requiring the product of an
its last read before the next write. asynchronous and a synchronous participant.

The input alphabets:, that are also Moore output
functions of other connected FSAs are predicates over the
concrete and symbolic values of the other state vectors.
Certain predicates are routing and filtering conditions For common transactors and pieces of glue logic, we
needed for certain connection patterns. The combinatiosiply require that the result t#ata conservingi.e. that
of values out of our interests can be abstracted away ivyloes not drop or repeat any item of data. More-advanced
assigning predicates to them. joining patterns include the demultiplexer, the multigex

Once an FSA is defined, it is relatively trivial to maghe filter, the serialiser and the deserialiser. We implémen
the FSA form to synthesisable RTL, a structural netlist, dhese as generalisations of the data conserving product.
net-level RTL. In generated SystemC TLM models, how- Our main contribution is a unification algorithm that
ever, threads instead of signals pass between componeiniglements common data movement patterns. For concrete
SystemC transactional modelling can be projected asnets, there is a natural congruence between an arc of an
FSA quite easily if we make the restriction that ever{§SA that drives the net with an arc of a receiving FSA
TLM method call is non-reentrant and called from onlghat is guarded by that net being driven to that condition.
one point, in which case every return is just a jump. Tbor symbolic nets, we implement data movement, where
make the projection, we introduce aall active flag into a live symbolic value is reduced directly tdead or
the converter state vector for every TLM interface. Thito a form with less live data that will then be further
boolean variable is initially clear, and it is set for a targgeduced. Each reduction may be associated with a user-
entry point when the thread is logically 'inside’ the joigin provided predicate that ranges over the actual contents of
FSA, and it is set for an initiating upcall when the threathe symbolic variable at run time. These guards enable
is abroad. The formal parameters and return values to #@mmon filtering, routing and multiplexing operations to
calls are just additional symbolic or concrete variables,th be expressed.
for simplicity, are only used in one direction of the call and For brevity, we present only a few forms for the
hence they are part of the state vector of the one FSA tl@ingruence algorithm to range over (Table 1), but a richer
writes to them (i.e. they are updated by its NSF, except feystem should be provided for serious use.
the death of symbolic variables, which as already stated,Where a symbolic variable goes live in the input specifi-
is an operation performed by the reader). cation it takes on a user-provided valuecofFor instance,

Our procedure automatically creates a certain amountfof serialising or deserialising a 32 bit value over an
state for the converter in proportion to the product of th& bit bus, the 8 bit bus would go live witlbg and the
participants’ states, however, some combinations requB@ bit bus would go live with((((Es << 8)|Eg) <<
additional states such as holding registers in the convert®)|Fs) << 8)|Es. Where a destination should only accept
For instance, any converter that behaves like a mailbox data that conforms to some predicate then it will go live
FIFO queue requires additional internal storage. In theséth (Puser condition(Dn)s Dn)-
cases, our approach requires the user to add sufficient stat€he congruence procedurg (Figure 2) accepts input
resources to fulfil these needs, but tends to avoid usiagd output abstract syntax trees for the symbolic argu-
excess such resources when not needed, and fails whemts,o andw, wherew may receive some or all of the
insufficient resources were made available. live data froma. C returns a triple containing actions to

In order to generate a joining machine for the mixedeffect the transfer, a guard expression that must hold if
level communications, we also should consider asythe transfer is to be performed and a remaindérthat
chronous and synchronous issues. There are two stytepresents the left over contents of the input register afte
of hardware glue logic: asynchronous and synchronowexecuting the commands. Actions are just assignments. In

IV. DATA-CONSERVING CONGRUENCE

let rec C = function

| (D, D) — ([D}, := D), n=m, L) »widh maccn Port Specialisations
| (a, Pu(w)) — TLM/Net-level
let (c,g,0a) = Cla,w) Initiator/target
in (c,g A Py(a’),) npedcae Forward/Reverse
| kill(a) —
let (c, g, ') = Cla,w) Protocol 1 | Interface 1 Concrete 1
b b _—
in (¢,g,L) nxn Protocol 2 | Interface 2 Symbolic 1
[(] ar, @) — - p—
let (¢, g, ') = Cla, w) rotocol 3 | Interface 3 Concrete 2
in (e,g A (¢ = 1),) nseraise o L
| (u, wi | wy) — ° *
let (¢, g,w") = Cla, wy) Participants Additional
in (¢,g A (W' = L), w;) ioeseriiise Resources

Composite State

| (a<<N, w) — Vector Encoding

let (¢,g,0’) = Cla>>N , w)
in ([(a>>N)/ale,g A (o = L), L) usitow

| (a,w<<N) — 1. Successor
let (¢, g,0") = Cla, w) Search
In ([(w<<N)/w]cvg A (O/ = J—), J_) /1 Shift in \

2. Live
Path Selection

Fig. 2. Core algorithm of the data-conserving congruenctetnirag
that generates guarded commands to move data famw (ML-like
pseudocode).

3. Select
Preferred
simple casesy’ = L. If unification fails, then the returned Design
guard is false.

The order of serialisation is syntax-directed in this
simple version of the algorithm. The left-hand operand of
every source disjunction is sent first and the right-hand RTL //Synthesisably
operand is received first, allowing the same expressiorl__(verilog) SystemC
to denote both the sending and receiving end of a seri-
aliser/deserialiser pair. Fig. 3. Flow Diagram for our Method.

Some data is not conserved by the converter. It is locally
consumed. This occurs in filters and where data has been)
tested with a predicate and is no longer needed (such!i®gary (e.g. in IP-XACT style) of standard protocols and
high-order address bits). THell (a) construct is used in IP blocks.
these cases. For convenience, it behaves as an identithS well as instantiating protocols and interfaces, the
function in terms of its return value, allowing us to writenaster XML file may invoke additional resources, includ-
the address decoding predicates for the BVCI to ISA gliBg holding registers and the state bit. Additional researc

(32 to 20 bit for memory and 32 to 16 for 1/0) as are typically not provided with a protocol automaton that
restricts their pattern of use, hence they can be freely used
Pismem(A) = kill(A >> 12) == 0xFF0 in the converter if needed.
Pyio(A) = kill(A >> 16)== 0xFF10 A composite state vector is created that consists of the

concatenation of the state vectors of the protocol automata
of the participating components, the predicates of client
FSAs and of the user-provided resources. An encoding
converts the composite state vector to a single integer,
Our procedure (Figure 3) starts with a master XML filso that it can be used to index an array, recording which
where the user lists the participants that need connectistates have been processed.
Our tool instantiates the interfaces with their associatedIn phase one, starting from the valuerothat represents
protocols from a library held in the form of Table | alonghe reset state of all machines, successors are explored
with user predicates. Net directions for a net-level irgegf recursively until the reachable state space is discovered.
are specialised according to whether the overall interfadde product of automata can be formed in three basic
is an input or an output. The net-level inputs to a targ&tays: synchronous form, asynchronous turn taking form
are the outputs of an initiator, and vice versa, except for stuttering synchronous form, where each participant
certain nets, such as reset and clock, that are always inputs-deterministically moves or not, provided at least one
and sourced from external third parties. A TLM port musioes. A synchronous product is appropriate when all of the
be specialised to be either an invokable target (entry poimarticipants are synchronous. Asynchronous turn-taking
or an initiator that invokes a remote method (upcall). Wearm might seem appropriate for asynchronous partici-
expect that commonly the participants are selected frompants, but cannot be used since our data conservation

V. OVERALL PROCEDURE

1. Q ={ Initial_state}; Result ={; whi | e(1)
2 Se ects c Q ReSUlt Q Q _{ S} { i,v/ai :I\Ai(ijoisgd;zxil IOiCE;e; only present when synchronous.
3. B = {(s,8)|Vo € P(fv)¥Ymec € PM).d = swi tch(po)
Usneme Em(s,0)fv A s’ =d/s} it (g1) { visel; v2=ed; ... pc=20; }
4.7 :={s"|Vn € Z* ¥(s,s') € BAd = C"(s,s')\s" = H(e2) L pes3s)
5/8/} br eak;
5Q:=QUT-R;R:=RUT; case 20;
6. if Q=0 then return R else goto 2
case ...:
Fig. 4. Successor product forming for phase 1. }

Fig. 5. Typical structure of raw transactor code beforeatreptimi-

rules require that, in a single transition of the producstatlon'

machine, a symbolic register in one participant goes liye— - e

while the register the data was sourced from, generally ¢ _ _ _

. do { sc_wait(0, SC_NS); } while (callstate != active);

in another participant, goes dead. This is not possible rc = remte_port. call (ArGs);

within the asynchronous product, so we use the stuttering, ' ='®

synchronous product.
Figure 4 outlines the product search algorithm, Whe'f@g. 6. Additional thread to make a TLM initiating port using obwn

fv is all possible settings of the client inputs (includingledicated thread (unoptimised).

autonomous go dead/live changes), and denotes up-

dating states with changes). The algorithm maintains a

queue of states to explore, seeded from the initial sta@f. assignments to outputs with a conditional branch to

For each state, for every possible change of exterrgiccessor basic blocks as the last stage. The basic block

inputs, for every possible stuttering combinationcdj of machine will typically have a number of branches to

participants, the successors are found and added to @iéerent successors that cannot be distinguished by their

results and queue if not already considered. Note Thatbranch condition. Indeed, a number of them may be

includess because no input changes and no execution @fconditional. If there are any unconditional ones then

any participants are parts of the respective powersets. Tale of the conditional ones are discarded. If there are

intermediate potential transitions sé?, is processed by only conditional branches, they are collated according to

the symbolic congruence functiaf, to produce the final equivalent branch conditions. In each group of arcs that

set of successors. For efficiency, in our implementatioghare the same guards, any of the members would result

those with manifestly invalid guards are deleted at this a correct design and we are free to select the most

stage, rather than later on. We also save the commaggsirableof them. A rank functionV/ = 3+C —-10«G+D

from the algorithm, rather than running it again in @enerates a figure of merit for each arc, whetes the

subsequent phase, but for clarity of presentation, thistis mumber of clauses in the guard expressiofs,is the

shown. Instead>™ (s, s’) denotes all changes to symbolicyumber of differences in state variables a6dis the

variables needed for a data conserving transition fronumber of data movement operations. A higher value of

state s to s’ achieved withn successive applications of M loosely denotes an arc that performs more useful work.

the congruence algorithm (Fig. 2) with their commandgence, for each guarding condition shared by a number

composed and conjunction of guards. The search owfrarcs, we retain only the highest ranked behaviour.

increasingn is terminated as soon as invalid guards are The generated converter is a finite-state machine that

generated. can be readily output as an RTL or SystemC infinite loop
E,.(s,0) denotes the changes produced by steppi@ntaining a case statement that dispatches over a variable
participantm € M in states with external inputss. PC, which ranges over the integer codings of the utilised

In phase two, we find the live states of the produdtroduct states. For a synchronous converter, the loop is
machine by eliminating all those that lead only to deadnade to wait for a clock edge at the start of each iteration
ends. The method used is to create successive iterati®iidnserting the appropriate target language construgt. Fo
of the product machine where each state is only retaingtgdium to large converters, the range of values and hence
if any of its immediate successors were present in tfgimber of bits in the PC may become excessive even
previous generation. When two iterations are the sanfBough it is sparsely used, so it must be re-encoded for
only infinite paths remain. Then, we form the intersectiofardware or SystemC implementation. The general form
over each Setting Of’l} of the resuit Of eliminating Sub is illustrated in Figure 5. Of course, we also Output the
loops that do not satisfy the idle state predicate of &PPropriately handed (input, output or local) declaration
least one participant. This uses a depth-first search frdff the participant nets so the converter can be installed
the initial state that records what idle states have beéifectly as glue logic in a system on chip implementation.
encountered at what level and discards any back arc to a
state that records the same pattern of idle states.

In phase three we generatebasic-blockmachine by Our second contribution explains how we modify one
collapsing successive product states where outputs aremore of the interfaces of our net-level converter to be
changed but no input is tested. A basic block is a sequered LM transactor.

VI. TLM OuUTPUT GENERATION

RC t1 m target (ARGS) RC t1 m.target (ARGS)
{

args = ARGS; callstate = active;
cal |l state = active; pc = 10;
do { sc_wait(0, SCNS); } while (callstate !'=idle); switch (pc)
return RC {
} case 10:

Cl0cnds;
if (g1) ...

Fig. 7. A stub to make a blocking TLM entry point (unoptimised). break;
case 90:
if (g2) { C90cnds; return RC, }
whi | e(1) br eak;
}
switch (pc) }
{
case 10:)
" E;i;'smte == active) { Ciocmds; } Fig. 9. Using a TLM target's thread to execute the converttomaton.
br eak;
case 90:
if (g2) { C90cnds; callstate = idle; pc = 10; } active/call
br eak; /_—\ DATAX XRXXXXXXXXX
) } (O OD STROBE — A | N\
D8lc DEAD/c ACK i ﬁ
Fig. 8. Typical structure of raw transactor code before atreptimi- M
sation. TLM CALL WITH ONE ARGUMENT NET.LEVEL PROTOCOL TIVING BIAGRAM
PUTCHAR(char c) PUTCHAR(char c)
™ ——>» STROBE ™ [—» STROBE
The raw form from phase 3 consists of one thread < ™= QU S (= OaTas
that communicates using shared variables for all 1/0. We cnmmowe sermiso
convert certain ports so that they invoke or can invoke eeemmenr: [V™
TLM-style methods, where the method calls can optionally
be conveyed over TLM2.0 convenience sockets. For eachmos: —»] > omoee § RITD L,y SO0
.. . DATAG = > DATAS ;) Target Target N >
of the participants that was a TLM protocol, there is ™ | l— acx
. j . N U MAILBOX
a corresponding call state variable assigned or tested in —> smose e
the machine. For initiator participants the call state will __ | e [0 o

be assigned active by the converter (in one of itsée’
i i i TABLE IIl
gs&gnmen_ts) and teSt,ed to see whether it has returned IlgAISTICIPATING PROTOCOLS ANDEXPERIMENTAL CONFIGURATIONS.
(in one of its i f (g)’ tests). On the other hand, for a
target participant, the call state variable is tested fandpe
active and assigned back to idle by the glue machine.

To render the converter as a SystemC initiator stylshinning. Additionally, in some cases, where a transactor
transactor a thread must make the TLM call. Initiallyis both a TLM initiator and a client, our optimisation may
we consider providing a separate thread for this and theRable all of the internal work as well as the initiating
explain how the original thread could be used instead, ifpcall to be performed on the thread provided by the
some cases, as an optimisation. client. Using pattern matching on the abstract syntax tree

As shown in Figure 6, the new thread for the initiatopf the converter code (i.e. before it is emitted as SystemC)
executes code consisting of an outer infinite loop that waife detect where one thread is spinning doing nothing,
for the original thread to set the call active state and th&vhile another thread is working and the other thread needs
makes the call. On return from the call it clears the activgo nothing when the first thread is not spinning. Figure 8
state flag. The code for the new thread is completean be optimised to become Figure 9 where the pattern
boilerplate, except for the name of the TLM method itnatching has detected that only one state waits for the
calls and the arguments passed, which can be configuggdistate to be active (state 10) and that there is only
in a variety of ways (e.g. from IP-XACT) and in ourgne state that sets it back to idle (state 90), and that the
experiments these were taken from the XML interfaciglle setting state transfers control only back to the active
description of the TLM participant. Note, the zero wait inaiting state.
the unoptimised version could be replaced with a longer where multiple TLM ports exist, these peephole opera-
wait that would improve efficiency when our subsequenions can be applied in some order, but one might preclude
optimisation fails or, better, as kindly pointed out by ¬her.
reviewer, we could usefully maleal | st at e a SystemC Although our code fragments show the optimisations for
event that would then be visible to the scheduller. the blocking style of transactional modelling, generating

Similarly (Figure 7), for a TLM target entry point, wethe non-blocking style follows a similar pattern, with
first off let the initiator invoke a boilerplate stub that setf gl se being returned instead of spinning at a target and
the call active flag and then spinlocks, waiting for it benaking repeated calls until success for an initiator.
set idle again by the main thread.

Now we optimise where possible, so that the main VII. EXPERIMENTAL RESULTS
thread for a target is eliminated with its work being per- Experiments with protocols and interfaces are sum-
formed by the initiator’s thread when it would otherwise benarised in illustrated in Table IIl.

Exp Participants Product Converter SystemC 4,6 work is to perfect input from IP-XACT and
concrete no. states no. states no. lines . .
states no. explored live paths integrate our tool as an Echps.%blghtly-coupled. gen-
1 Ix6=24 72 71 1070 | erator. This would enable, for instance, the interface
2 4x6=24 123 123 1848 | net names and the numerical constants in the address
3 || 6x6x4=144 575 575 14198 | decoder predicates to be sourced from other generators
4 dx4x2=232 325 324 7534 during SoC compilation. Also, optimisations to reduce
TABLE IV the output complexity are required. These can be based

EXPERIMENTAL RESULTS on any technique that combines converter states that are

observably equivalent.
Another requirement in practice is some form of ‘brand-

Experiment 1 took the product of a TLM client withiNd" because currently there is nothing to stop the glue
signatureput char (char c) with a net-level output from crossing over the address and data busses in a write

port using the centronics-style four-phase handshake. OPeration where each have the same width.

Experiment 2 was a serialising version of experiment 1, Instead of implementing the thread optimisations as pat-
where the net-level port was only four bits wide and hend€M mMatching peepholes on the AST for the converter, they
two transfers are needed for each TLM call. might better be implemented by compiling the converter

Experiment 3 was a net-level demultiplexor, where ¥ @n assembly-like language and inserting the relevant
four-phase input port connected to a pair of four-pha§[éa”5fers of control .(entry labels, subroutines cg!ls and
output ports and traffic was routed according to a usEftUrn statements) in the assembly code. Additionally,
predicate that examined the least significant bit of the.daf® Phase 3 heuristic that selects between the suitable

Experiment 4 was a mailbox component with tw&or?ver_ter machines can be e_nhanced to_make these op-
blocking TLM entry points, one for writing a charactefimisations more readily applicable. For instance, on a
and the other for reading back. This experiment requirdsM server, the call may go idle at various points without
an additional resource, a holding register, but an additiorft€"ng the correct behaviour, but if it goes idle at anyearl
state bit resource to record whether the holding registerR8Int: while there is still ‘work to do’ then the optimisatio
live or dead was not needed, since such a bit is intrindf@nnot be applied. _
to the encoding of symbolic variables that take on two A USeful improvement to the congruence algorithm that
symbolic values. coulq -aSSISt ywth hardware t|m|r_19 closure would t_)e to

The columns of the results table (Table 1V) show thgromb_lt certain data paths. Fpr instance, the sqlutlon to
number of concrete states of each participant, the numtfgfPeriment 4 transfers data directly between the input and
of states explored, which is larger owing to symboli@“tPUtS in the_ case that both are active at once, whereas
values, the number of states retained owing to being 8nSimPler design with shorter critical path would always
live paths that loop through idle states and the numbBfSS the data through the holding register.
of lines of SystemC generated. The results indicate that
no deadlocking paths were deleted in phase 2 for thzﬁf
participants considered. The relatively large output files
arise owing to all possible interleavings of external esent
being explicitly represented. 2]

REFERENCES

M. Burton, J. Aldis, R. Ginzel, and W. Klingauf, “Transaction
level modelling: A reflection on what tim is and how tlms may
be classified,” inFDL, 2007, pp. 92-97.

J. Akella and K. L. McMillan, “Synthesizing converterstween
finite state protocols,” ifCCD '91: Proceedings of the 1991 IEEE

The results table presented at the conference will in-
clude lines for the three components of Figure 1 and
perhaps report on some real-world tests. 3]

VIIl. CONCLUSION

We have extended the product technique for glue logi
generation so that it builds data paths for run-time dag:}
values, including multiplexors, filters, serialisers arel d
serialisers. (The filter is a demultiplexor with an interndbl
port that just invokeill (o) on the data it receives.) We
have demonstrated automatic synthesis of TLM modelling

components within the same framework. -
7

(8]

(9]

International Conference on Computer Design on VLSI in Qaterp
Processors Washington, DC, USA: IEEE Computer Society, 1991,
pp. 410-413.

A. L. Sangiovanni-Vincentelli, T. A. Henzinger, L. de faro, and

R. Passerone, “Convertibility verification and convertgntlesis:
two faces of the same coini€cad, vol. 00, pp. 132-139, 2002.

D. Greaves, “Automated hardware synthesis from format#ioa-
tion using sat solversRSR vol. 00, pp. 15-20, 2004.

D. D. Gajski and L. Ramachandran, “Introduction to highel
synthesis,"|IEEE Des. Testvol. 11, no. 4, pp. 44-54, 1994.

D. Borrione, J. Dushina, and L. Pierre, “Formalizationfioite state
machines with data path for the verification of high-levelthgsis,”

in SBCCI '98: Proceedings of the 11th Brazilian Symposium on
Integrated circuit design Washington, DC, USA: IEEE Computer
Society, 1998, p. 99.

V. Drsilva, A. Sowmya, S. Parameswaran, and S. Ramesh,
“A formal approach to interface synthesis for system-on-chip
design,” University of New South Wales, Sydney, Australia,
Tech. Rep. UNSW-CSE-TR-304, 2003. [Online]. Available:
citeseer.ist.psu.edu/582933.html

“Synthesis and optimization of interface hardware betwep’s
operating at different clock frequencies,” i@CD '00: Proceedings

of the 2000 IEEE International Conference on Computer Desig
Washington, DC, USA: IEEE Computer Society, 2000, p. 519.

S. C. (www.spiritconsortium.org), “IP-XACT version 2:02006.
[Online]. Available: www.spiritconsortium.org

