
Synthesis of Glue Logic, Transactors,
Multiplexors

and Serialisors from Protocol Specifications.
DJ Greaves

University of Cambridge, Computer Laboratory
Cambridge, UK.

David.Greaves@cl.cam.ac.uk

MJ Nam
University of Cambridge, Computer Laboratory

Cambridge, UK.
mjn31@cl.cam.ac.uk

Abstract—Today’s system-on-chip (SoC) systems must be
designed as quickly as possible by integrating IP blocks from
diverse suppliers. In this paper, we present a new automata-
based algorithm that automatically synthesizes glue logic
for SoC fabrication and Transaction-level modelling (TLM)
transactors for SoC modelling. Our approach introduces
a new encoding for state variables which captures data
conservation property and supports simple point-to-point
connections as well as those the perform functions such as
multiplexing, filtering and serialising.

I. I NTRODUCTION

The large scale and complexity of today’s system-on-
chip (SOC) demand inventive techniques and tools that
simplify the design and verification process. There are
several approaches to shorten time-to-market, and widely
used approaches are IP reuse and transaction level mod-
elling (TLM) [1]. IP Reuse simply means reusing some
pieces of the existing designs. TLM is an electrical system
level (ESL) modelling concept that allows designers to
abstract hardware (HW) signals to abstract operations in a
higher level. At the TLM, functional calls can be used to
execute read/write operations, and also the functionality
can be modelled using a higher level descrption and
more abstract date objects. IP reuse enables the team to
leverage the cost and verification across multiple designs
and is proven to increase design productivity. TLM has
been also increasingly adopted for advanced SOC design
and verification to address the limitation of pure RTL
modelling methodologies.

The key element of the reuse of IP blocks and TLM
is to make the IP blocks as close toplug-and-playas
technically possible. Manually adapting these interfacesis
tedious and may cause human errors, hence, there is a need
for automated interface synthesis both in the same level
and the mixed-level communications. This paper is aimed
at automatic interface synthesis adapting two incompatible
interfaces in the same level or in the mixed-level. A
common framework is presented that can be used both
for automatic synthesis of glue logic between IP blocks in
SoC design, between TLM models during modelling and
for and of initiator and target TLM to net-level transactors
during mixed mode simulation of a SoC. The framework
extends the well-known product synthesis method by
ranging over symbolic dead/live values. We also show how
the technique can be applied to multi-way connections that

TLM Client
(Initiator)

TLM
Target

CPU RAM

TLM to net
XACTOR

Glue logic

TTY
Model

OCP
BVCI bus

UART RTL IP Block

ISA Bus

Deserialising
XACTOR

TLM call

RS-232
data

TLM
system bus

putchar(c)

net-level

net-level

baud

Fig. 1. Example using three (denoted with asterisks) applications of
our method.

implement multiplexing and/or serialisation.
Our contributions are the symbolic extension to the

product method (§IV) and its use for transactional-level
models (§VI).

Figure 1 illustrates a typical situation where our tech-
nique can be used in three different places as part of a
system model and for synthesis. A high-level model of a
CPU connects to its memory and I/O sub-systems using
TLM calls. While one I/O component of interest is a
legacy UART with ISA connections, the SoC architecture
uses the OCP BVCI ports on IP blocks, therefore, there
must be a net-level glue logic interfacing between BVCI
and ISA. Also, we need a transactor connecting the net-
level BVCI port to the TLM processor model. This paper
shows how to generate both of the glue-logic and the trans-
actor. The third application of our technique is to generate
a high-level model of a receiving UART that makes a
software call to the workstationputchar method for
each character deserialised. Our technique works with
any mix of synchronous and asynchronous participants,
provided all synchronous participants share the same clock

domain. The first two cases mentioned above deal with a
communication bewteen one synchronous and one asyn-
chronous participant (BVCI is a synchronous protocol.),
and the third case is between two synchronous participants
(both ends of the serial link were clocked from the same
baud rate generator).

II. RELATED WORK

Automated interface converter generation has been ad-
dressed in the literature from different perspectives. We
focus on work done in the context of small subset of real
hardware design based on Finite State Machine (FSM)
models.

In the early work [2], protocols were presented as
FSMs, and their cross product was used to construct
a converter. This approach was later extended, and be-
came the foundation of much work in interface synthesis
problem. Sangiovanni-Vincentelli et al [3] synthesized a
converter FSM, based on selecting the non-deadlocking
paths through the cross product of a pair of FSMs. These
machines can be composed synchronously, where they
both move at once, or asynchronously, where they take it
in turns. Interface synthesis using a SAT solver to populate
a fictional FPGA was presented in [4].

There have been approaches to extend FSM-based con-
verter problem with datapath issues. The early work by
Gajski defined ‘Finite State Machine with Datapath’ [5]
in a semi-formal way, and the paper [6] inspired by
this work proposed more formalized definitions of the
notions of assignments and statuses. In the paper [7], the
work was extended with datapath width adaptation. The
authors of [8] introduced the data path state machine which
captures data path dependencies in the converter problem
between two synchronous hardware modules with data
communication protocols.

Transactor generation methods for cross-level communi-
cation (TLM-RTL) has been proposed in [?] [?] [?]. These
approaches are also based on finite automata. [?] proposed
a methodology where protocols manually described in a
formal language, Property Specification Language (PSL)
are transformed into a FSM, followd by the synthesis
of simulation code, while Extended Finite State Machine
(EFSM) are exploited in [?]. The methods proposed in
both papers require designers to fully describe the for-
malism of the protocols. [?] presented a technique to
automate the transactor generation for RTL IP components
to be reused in TLM systems. The protocol information
are extracted from testbenches by exploiting the EFSM
models. This methodology assumes that RTL testbench is
implemented with RTL IP components, that is a manual
process.

III. PROTOCOLDESCRIPTION

In this section, we show the structure of the system
that we deal with. A system consists of a number of
componentsthat desire to communicate with each other.
The basic unit of concurrency is afinite-state automaton
(FSA). Each component is connected via a net-level or
TLM interface that obeys an associated protocol specified
by aprotocol FSA, of which we have full knowledge. The
protocol automata, in turn, receive input from unspecified

ProtocolP = Loop of (ρ) where
ρ = Eq of α ∗ α list // Parallel assignment

| Seqof ρ list // Sequencing
| Disj of ρ list // Non-deterministic branching
| Next // Wait one clock (same as Eqnil.)

whereα is an integer expression ranging over the interface nets (Table II).

TABLE I
ABSTRACT SYNTAX FOR THE PROTOCOLCAPTURE LANGUAGE USED

IN OUR EXPERIMENTS, GIVEN AS AN ML- LIKE DATASTRUCTURE.

circuitry elsewhere in their component (later calledfv)
and, from our point of view, these inputs can be changed at
any time. According to context, we sometime use the term,
‘participant’ to denote one of the participating protocol
automata and sometimes to also range over the joining
automaton.

In general, many different input language constructs
are useful for protocol and transactor specification. These
include a wide range of commercial and experimental
temporal logic and assertion languages. In our experi-
ments, we used a combination of automatic and manual
conversion from various sources to a common protocol
representation with abstract syntax tree shown in Table I.
Each protocol,P is represented as an infinite loop of a
nodeρ that is a recursively defined structure using three
forms. An ‘Eq’ node defines a list of pairs of expressions
which must be pairwise equal when the node is executed.
For example, if one half of a pair is an output or local
variable and the other half is an expression that is a
function of inputs, then they are made equal with an
assignment that copies the expression to the output or
local. If one half is an input and the other is a constant,
then the node can only be executed when the input has
that value. This is a direction-agnostic style of participant
description, in the style of IP-XACT [9]. Whether a
particular net is an input or output varies according to
the direction of instantiation of the associated interface.

A ‘Seq’ node defines ordering of events and a ‘Disj’
node defines forking paths. A fourth node ‘Next’ is used
for synchronous protocols where a clock cycle must be
consumed while no part of the interface changes, but this
is shorthand for ‘Eqnil’. Expressions may be paired
with user predicates that must be satisfied at the time
the expression is evaluated. Each participating protocol is
readily compiled into a protocol automaton whose state
is the interface nets augmented with a program counter
variable that ranges over the ‘Seq’ nodes and any extra
local state that might be needed. For a synchronous
product, transitions are taken on the active edge of the
clock and for asynchronous product, at any time. Hence,
a protocol FSA is defined as a tuple,
M =< Σ, V, S, Sinit, Sidle,∆ > where,

- Σ: a non-empty set of symbols (the input alphabet),
- V : a set of state variables that each range either over a

concrete enumeration or a fixed, finite set of symbolic
expressions,

- S: a finite set of states defined by the cross product
of V ,

- Sinit ∈ S: a initial state
- Sidle ⊂ S: a set of idle states (includes initial state)

- ∆ : S × Σ → S: a state transition function

The initial predicateSinit holds for only one setting of
V that corresponds to the start of day, reset state. Some
protocols have more than one idle sate. An example is the
two-phase handshake that attaches meaning tochangesof
net value and has two idle states:P idle = Req==Ack.

The conventional way to represent states and signals of
FSM in RTL is with boolean vectors. In this paper, we
introduce the concept ofsymbolicvalues. Each variable
of our FSA has either asymbolic or a concretevalue.
Concrete variables range over a finite enumeration type.
Symbolic variables are registers each of some width in
terms of bits, but the bit values are run-time data. During
our procedure (i.e. at compile time), symbolic variables
are assigned eitherdead (denoted with⊥) or live with
some symbolic expressionα. Borrowing terminology from
optimising compilers, a symbolic variable becomes live
when a new value is stored in it and is killed to dead at
its last read before the next write.

The input alphabetsΣ, that are also Moore output
functions of other connected FSAs are predicates over the
concrete and symbolic values of the other state vectors.
Certain predicates are routing and filtering conditions
needed for certain connection patterns. The combinations
of values out of our interests can be abstracted away by
assigning predicates to them.

Once an FSA is defined, it is relatively trivial to map
the FSA form to synthesisable RTL, a structural netlist, or
net-level RTL. In generated SystemC TLM models, how-
ever, threads instead of signals pass between components.
SystemC transactional modelling can be projected as a
FSA quite easily if we make the restriction that every
TLM method call is non-reentrant and called from only
one point, in which case every return is just a jump. To
make the projection, we introduce ancall active flag into
the converter state vector for every TLM interface. This
boolean variable is initially clear, and it is set for a target
entry point when the thread is logically ’inside’ the joining
FSA, and it is set for an initiating upcall when the thread
is abroad. The formal parameters and return values to the
calls are just additional symbolic or concrete variables that,
for simplicity, are only used in one direction of the call and
hence they are part of the state vector of the one FSA that
writes to them (i.e. they are updated by its NSF, except for
the death of symbolic variables, which as already stated,
is an operation performed by the reader).

Our procedure automatically creates a certain amount of
state for the converter in proportion to the product of the
participants’ states, however, some combinations require
additional states such as holding registers in the converter.
For instance, any converter that behaves like a mailbox or
FIFO queue requires additional internal storage. In these
cases, our approach requires the user to add sufficient state
resources to fulfil these needs, but tends to avoid using
excess such resources when not needed, and fails when
insufficient resources were made available.

In order to generate a joining machine for the mixed-
level communications, we also should consider asyn-
chronous and synchronous issues. There are two styles
of hardware glue logic: asynchronous and synchronous.

α = ⊥ (dead)
| Dn (n-bit register)
| α | α′ (bitwise OR)
| α << N (constant left shift)
| kill(α) (kill expression)
| (α, Puser(α′)) (expression guarded by predicate)

TABLE II
ABSTRACT SYNTAX FOR EXPRESSIONS HELD IN SYMBOLIC VALUES

AT COMPILE TIME.

Asynchronous systems do not use a shared clock be-
tween the participants whereas there is such a net in
a synchronous solution. Asynchronous protocols include
the Centronix parallel port, and other similar protocols
based on a four-phase handshake, such as the VME bus.
Synchronous protocols, such as AHB and OCP BVCI
are commonly used in SoC design. The TLM style is
asynchronous but commonly transactors for synchronous
protocols are needed, hence requiring the product of an
asynchronous and a synchronous participant.

IV. DATA -CONSERVINGCONGRUENCE

For common transactors and pieces of glue logic, we
simply require that the result bedata conserving: i.e. that
it does not drop or repeat any item of data. More-advanced
joining patterns include the demultiplexer, the multiplexer,
the filter, the serialiser and the deserialiser. We implement
these as generalisations of the data conserving product.

Our main contribution is a unification algorithm that
implements common data movement patterns. For concrete
nets, there is a natural congruence between an arc of an
FSA that drives the net with an arc of a receiving FSA
that is guarded by that net being driven to that condition.
For symbolic nets, we implement data movement, where
a live symbolic value is reduced directly todead or
to a form with less live data that will then be further
reduced. Each reduction may be associated with a user-
provided predicate that ranges over the actual contents of
the symbolic variable at run time. These guards enable
common filtering, routing and multiplexing operations to
be expressed.

For brevity, we present only a few forms for the
congruence algorithm to range over (Table II), but a richer
system should be provided for serious use.

Where a symbolic variable goes live in the input specifi-
cation it takes on a user-provided value ofα. For instance,
for serialising or deserialising a 32 bit value over an
8 bit bus, the 8 bit bus would go live withD8 and the
32 bit bus would go live with((((E8 << 8)|E8) <<
8)|E8) << 8)|E8. Where a destination should only accept
data that conforms to some predicate then it will go live
with (Puser condition(Dn),Dn).

The congruence procedureC (Figure 2) accepts input
and output abstract syntax trees for the symbolic argu-
ments,α andω, whereω may receive some or all of the
live data fromα. C returns a triple containing actions to
effect the transfer, a guard expression that must hold if
the transfer is to be performed and a remainderα′, that
represents the left over contents of the input register after
executing the commands. Actions are just assignments. In

let rec C = function
| (Dn, D′

m
) → ([D′

m
:= Dn], n=m, ⊥) // Width match

| (α, Pu(ω)) →
let (c, g, α′) = C(α, ω)
in (c, g ∧ Pu(α′), α′) // Predicate

| kill(α) →
let (c, g, α′) = C(α, ω)
in (c, g,⊥) // Kill

| (αl | αr, ω) →
let (c, g, α′) = C(αl, ω)
in (c, g ∧ (α′ = ⊥), αr) // Serialise

| (αl, ωl | ωr) →
let (c, g, ω′) = C(α, ωr)
in (c, g ∧ (ω′ = ⊥), ωl) // Deserialise

| (α<<N , ω) →
let (c, g, α′) = C(α>>N , ω)
in ([(α>>N)/α]c, g ∧ (α′ = ⊥),⊥) // Shift out

| (α, ω<<N) →
let (c, g, α′) = C(α, ω)
in ([(ω<<N)/ω]c, g ∧ (α′ = ⊥),⊥) // Shift in

Fig. 2. Core algorithm of the data-conserving congruence/matching
that generates guarded commands to move data fromα to ω (ML-like
pseudocode).

simple cases,α′ = ⊥. If unification fails, then the returned
guard is false.

The order of serialisation is syntax-directed in this
simple version of the algorithm. The left-hand operand of
every source disjunction is sent first and the right-hand
operand is received first, allowing the same expression
to denote both the sending and receiving end of a seri-
aliser/deserialiser pair.

Some data is not conserved by the converter. It is locally
consumed. This occurs in filters and where data has been
tested with a predicate and is no longer needed (such as
high-order address bits). Thekill (α) construct is used in
these cases. For convenience, it behaves as an identity
function in terms of its return value, allowing us to write
the address decoding predicates for the BVCI to ISA glue
(32 to 20 bit for memory and 32 to 16 for I/O) as

Pismem(A) = kill(A >> 12) == 0xFF0

Pisio(A) = kill(A >> 16)== 0xFF10

V. OVERALL PROCEDURE

Our procedure (Figure 3) starts with a master XML file
where the user lists the participants that need connecting.
Our tool instantiates the interfaces with their associated
protocols from a library held in the form of Table I along
with user predicates. Net directions for a net-level interface
are specialised according to whether the overall interface
is an input or an output. The net-level inputs to a target
are the outputs of an initiator, and vice versa, except for
certain nets, such as reset and clock, that are always inputs
and sourced from external third parties. A TLM port must
be specialised to be either an invokable target (entry point)
or an initiator that invokes a remote method (upcall). We
expect that commonly the participants are selected from a

RTL
(verilog)

Interface 1Protocol 1

Interface 2Protocol 2

Interface 3Protocol 3

Participants

Synthesisable
SystemC

TLM
SystemC

3. Select
Preferred
Design

2. Live
Path Selection

1. Successor
Search

Additional
Resources

Composite State
Vector Encoding

Concrete 1

Symbolic 1

Concrete 2

Thread
Minimisation

Initiator/target

TLM/Net-level

Forward/Reverse

Port Specialisations Master
XML
File

Fig. 3. Flow Diagram for our Method.

library (e.g. in IP-XACT style) of standard protocols and
IP blocks.

As well as instantiating protocols and interfaces, the
master XML file may invoke additional resources, includ-
ing holding registers and the state bit. Additional resources
are typically not provided with a protocol automaton that
restricts their pattern of use, hence they can be freely used
in the converter if needed.

A composite state vector is created that consists of the
concatenation of the state vectors of the protocol automata
of the participating components, the predicates of client
FSAs and of the user-provided resources. An encoding
converts the composite state vector to a single integer,n,
so that it can be used to index an array, recording which
states have been processed.

In phase one, starting from the value ofn that represents
the reset state of all machines, successors are explored
recursively until the reachable state space is discovered.
The product of automata can be formed in three basic
ways: synchronous form, asynchronous turn taking form
or stuttering synchronous form, where each participant
non-deterministically moves or not, provided at least one
does. A synchronous product is appropriate when all of the
participants are synchronous. Asynchronous turn-taking
form might seem appropriate for asynchronous partici-
pants, but cannot be used since our data conservation

1. Q = { Initial state}; Result =∅;
2. selects ∈ Q-Result; Q := Q -{ s };
3. B := {(s, s′)|∀σ ∈ P(fv).∀mc ∈ P(M).δ =⋃

m∈mc
Em(s, σ)fv ∧ s′ = δ/s}

4. T := {s′′|∀n ∈ Z
+.∀(s, s′) ∈ B∧δ = Cn(s, s′)∧s′′ =

δ/s′}
5. Q := Q∪ T-R; R := R∪ T;
6. if Q=∅ then return R else goto 2

Fig. 4. Successor product forming for phase 1.

rules require that, in a single transition of the product
machine, a symbolic register in one participant goes live
while the register the data was sourced from, generally
in another participant, goes dead. This is not possible
within the asynchronous product, so we use the stuttering
synchronous product.

Figure 4 outlines the product search algorithm, where
fv is all possible settings of the client inputs (including
autonomous go dead/live changes), andδ/s denotes up-
dating states with changesδ. The algorithm maintains a
queue of states to explore, seeded from the initial state.
For each state, for every possible change of external
inputs, for every possible stuttering combination (mc) of
participants, the successors are found and added to the
results and queue if not already considered. Note thatT
includess because no input changes and no execution of
any participants are parts of the respective powersets. The
intermediate potential transitions set,B, is processed by
the symbolic congruence functionC, to produce the final
set of successors. For efficiency, in our implementation,
those with manifestly invalid guards are deleted at this
stage, rather than later on. We also save the commands
from the algorithm, rather than running it again in a
subsequent phase, but for clarity of presentation, this is not
shown. InsteadCn(s, s′) denotes all changes to symbolic
variables needed for a data conserving transition from
states to s′ achieved withn successive applications of
the congruence algorithm (Fig. 2) with their commands
composed and conjunction of guards. The search over
increasingn is terminated as soon as invalid guards are
generated.

Em(s, σ) denotes the changes produced by stepping
participantm ∈ M in states with external inputsσ.

In phase two, we find the live states of the product
machine by eliminating all those that lead only to dead
ends. The method used is to create successive iterations
of the product machine where each state is only retained
if any of its immediate successors were present in the
previous generation. When two iterations are the same,
only infinite paths remain. Then, we form the intersection
over each setting offv of the result of eliminating sub
loops that do not satisfy the idle state predicate of at
least one participant. This uses a depth-first search from
the initial state that records what idle states have been
encountered at what level and discards any back arc to a
state that records the same pattern of idle states.

In phase three we generate abasic-blockmachine by
collapsing successive product states where outputs are
changed but no input is tested. A basic block is a sequence

while(1)
{ // Wait in next line only present when synchronous.

wait (posedge clock);
switch(pc)
case 10:

if (g1) { v1=e1; v2=e2; ... pc=20; }
if (g2) { ... pc=34; }

break;

case 20:
...

case ...:
}

Fig. 5. Typical structure of raw transactor code before thread optimi-
sation.

while (1)
{

do { sc_wait(0, SC_NS); } while (callstate != active);
RC = remote_port.call(ARGS);
callstate = idle;

}

Fig. 6. Additional thread to make a TLM initiating port using its own
dedicated thread (unoptimised).

of assignments to outputs with a conditional branch to
successor basic blocks as the last stage. The basic block
machine will typically have a number of branches to
different successors that cannot be distinguished by their
branch condition. Indeed, a number of them may be
unconditional. If there are any unconditional ones then
all of the conditional ones are discarded. If there are
only conditional branches, they are collated according to
equivalent branch conditions. In each group of arcs that
share the same guards, any of the members would result
in a correct design and we are free to select the most
desirableof them. A rank functionM = 3∗C−10∗G+D
generates a figure of merit for each arc, whereG is the
number of clauses in the guard expressions,D is the
number of differences in state variables andC is the
number of data movement operations. A higher value of
M loosely denotes an arc that performs more useful work.
Hence, for each guarding condition shared by a number
of arcs, we retain only the highest ranked behaviour.

The generated converter is a finite-state machine that
can be readily output as an RTL or SystemC infinite loop
containing a case statement that dispatches over a variable,
PC, which ranges over the integer codings of the utilised
product states. For a synchronous converter, the loop is
made to wait for a clock edge at the start of each iteration
by inserting the appropriate target language construct. For
medium to large converters, the range of values and hence
number of bits in the PC may become excessive even
though it is sparsely used, so it must be re-encoded for
hardware or SystemC implementation. The general form
is illustrated in Figure 5. Of course, we also output the
appropriately handed (input, output or local) declarations
for the participant nets so the converter can be installed
directly as glue logic in a system on chip implementation.

VI. TLM O UTPUT GENERATION

Our second contribution explains how we modify one
or more of the interfaces of our net-level converter to be
a TLM transactor.

RC tlm_target(ARGS)
{

args = ARGS;
callstate = active;
do { sc_wait(0, SC_NS); } while (callstate != idle);
return RC;

}

Fig. 7. A stub to make a blocking TLM entry point (unoptimised).

while(1)
{

switch (pc)
{
case 10:

if (callstate == active) { C10cmds; }
if (g1) ...
break;

case 90:
if (g2) { C90cmds; callstate = idle; pc = 10; }
break;

}
}

Fig. 8. Typical structure of raw transactor code before thread optimi-
sation.

The raw form from phase 3 consists of one thread
that communicates using shared variables for all I/O. We
convert certain ports so that they invoke or can invoke
TLM-style methods, where the method calls can optionally
be conveyed over TLM2.0 convenience sockets. For each
of the participants that was a TLM protocol, there is
a corresponding call state variable assigned or tested in
the machine. For initiator participants the call state will
be assigned active by the converter (in one of its ‘v=e’
assignments) and tested to see whether it has returned idle
(in one of its ‘if (g)’ tests). On the other hand, for a
target participant, the call state variable is tested for being
active and assigned back to idle by the glue machine.

To render the converter as a SystemC initiator style
transactor a thread must make the TLM call. Initially,
we consider providing a separate thread for this and then
explain how the original thread could be used instead, in
some cases, as an optimisation.

As shown in Figure 6, the new thread for the initiator
executes code consisting of an outer infinite loop that waits
for the original thread to set the call active state and then
makes the call. On return from the call it clears the active
state flag. The code for the new thread is completely
boilerplate, except for the name of the TLM method it
calls and the arguments passed, which can be configured
in a variety of ways (e.g. from IP-XACT) and in our
experiments these were taken from the XML interface
description of the TLM participant. Note, the zero wait in
the unoptimised version could be replaced with a longer
wait that would improve efficiency when our subsequent
optimisation fails or, better, as kindly pointed out by a
reviewer, we could usefully makecallstate a SystemC
event that would then be visible to the scheduller.

Similarly (Figure 7), for a TLM target entry point, we
first off let the initiator invoke a boilerplate stub that sets
the call active flag and then spinlocks, waiting for it be
set idle again by the main thread.

Now we optimise where possible, so that the main
thread for a target is eliminated with its work being per-
formed by the initiator’s thread when it would otherwise be

RC tlm_target(ARGS)
{
callstate = active;
pc = 10;
switch (pc)

{
case 10:

C10cmds;
if (g1) ...
break;

case 90:
if (g2) { C90cmds; return RC; }
break;

}
}

Fig. 9. Using a TLM target’s thread to execute the converter automaton.

STROBE

DATA8

ACK

STROBE

DATA8

ACK

STROBE

DATA8

ACK

DEMULTIPLEXOR
CONVERTER

PUTCHAR(char c)

TLM
Target

CENTRONIX
TRANSACTOR
CONVERTER

STROBE

DATA8

ACK

PUTCHAR(char c)

TLM
Target

SERIALISING
TRANSACTOR
CONVERTER

STROBE

DATA4

ACK

D8/c

active/call

DEAD/c

idle/call

TLM CALL WITH ONE ARGUMENT
STATE DIAGRAM

STROBE

DATAx

ACK

FOUR PHASE HANDSHAKE
NET-LEVEL PROTOCOL TIMING DIAGRAM

EXPERIMENT 1 EXPERIMENT 2

EXPERIMENT 3

PUTCHAR(char c)
TLM
Target

MAILBOX
STYLE

CONVERTER
EXPERIMENT 4

c = GETCHAR()
TLM
Target

TABLE III
PARTICIPATING PROTOCOLS ANDEXPERIMENTAL CONFIGURATIONS.

spinning. Additionally, in some cases, where a transactor
is both a TLM initiator and a client, our optimisation may
enable all of the internal work as well as the initiating
upcall to be performed on the thread provided by the
client. Using pattern matching on the abstract syntax tree
of the converter code (i.e. before it is emitted as SystemC)
we detect where one thread is spinning doing nothing,
while another thread is working and the other thread needs
do nothing when the first thread is not spinning. Figure 8
can be optimised to become Figure 9 where the pattern
matching has detected that only one state waits for the
callstate to be active (state 10) and that there is only
one state that sets it back to idle (state 90), and that the
idle setting state transfers control only back to the active
waiting state.

Where multiple TLM ports exist, these peephole opera-
tions can be applied in some order, but one might preclude
another.

Although our code fragments show the optimisations for
the blocking style of transactional modelling, generating
the non-blocking style follows a similar pattern, with
false being returned instead of spinning at a target and
making repeated calls until success for an initiator.

VII. E XPERIMENTAL RESULTS

Experiments with protocols and interfaces are sum-
marised in illustrated in Table III.

Exp Participants Product Converter SystemC
concrete no. states no. states no. lines
states no. explored live paths

1 4× 6 = 24 72 71 1070
2 4× 6 = 24 123 123 1848
3 6× 6× 4 = 144 575 575 14198
4 4× 4× 2 = 32 325 324 7534

TABLE IV
EXPERIMENTAL RESULTS

Experiment 1 took the product of a TLM client with
signatureputchar(char c) with a net-level output
port using the centronics-style four-phase handshake.

Experiment 2 was a serialising version of experiment 1,
where the net-level port was only four bits wide and hence
two transfers are needed for each TLM call.

Experiment 3 was a net-level demultiplexor, where a
four-phase input port connected to a pair of four-phase
output ports and traffic was routed according to a user
predicate that examined the least significant bit of the data.

Experiment 4 was a mailbox component with two
blocking TLM entry points, one for writing a character
and the other for reading back. This experiment requires
an additional resource, a holding register, but an additional
state bit resource to record whether the holding register is
live or dead was not needed, since such a bit is intrinsic
to the encoding of symbolic variables that take on two
symbolic values.

The columns of the results table (Table IV) show the
number of concrete states of each participant, the number
of states explored, which is larger owing to symbolic
values, the number of states retained owing to being on
live paths that loop through idle states and the number
of lines of SystemC generated. The results indicate that
no deadlocking paths were deleted in phase 2 for these
participants considered. The relatively large output files
arise owing to all possible interleavings of external events
being explicitly represented.

The results table presented at the conference will in-
clude lines for the three components of Figure 1 and
perhaps report on some real-world tests.

VIII. C ONCLUSION

We have extended the product technique for glue logic
generation so that it builds data paths for run-time data
values, including multiplexors, filters, serialisers and de-
serialisers. (The filter is a demultiplexor with an internal
port that just invokeskill (α) on the data it receives.) We
have demonstrated automatic synthesis of TLM modelling
components within the same framework.

Future work is to perfect input from IP-XACT and
integrate our tool as an Eclipse‘tightly-coupled gen-
erator’. This would enable, for instance, the interface
net names and the numerical constants in the address
decoder predicates to be sourced from other generators
during SoC compilation. Also, optimisations to reduce
the output complexity are required. These can be based
on any technique that combines converter states that are
observably equivalent.

Another requirement in practice is some form of ‘brand-
ing’ because currently there is nothing to stop the glue
from crossing over the address and data busses in a write
operation where each have the same width.

Instead of implementing the thread optimisations as pat-
tern matching peepholes on the AST for the converter, they
might better be implemented by compiling the converter
to an assembly-like language and inserting the relevant
transfers of control (entry labels, subroutines calls and
return statements) in the assembly code. Additionally,
the phase 3 heuristic that selects between the suitable
converter machines can be enhanced to make these op-
timisations more readily applicable. For instance, on a
TLM server, the call may go idle at various points without
altering the correct behaviour, but if it goes idle at an early
point, while there is still ‘work to do’ then the optimisation
cannot be applied.

A useful improvement to the congruence algorithm that
could assist with hardware timing closure would be to
prohibit certain data paths. For instance, the solution to
Experiment 4 transfers data directly between the input and
outputs in the case that both are active at once, whereas
a simpler design with shorter critical path would always
pass the data through the holding register.

REFERENCES

[1] M. Burton, J. Aldis, R. G̈unzel, and W. Klingauf, “Transaction
level modelling: A reflection on what tlm is and how tlms may
be classified,” inFDL, 2007, pp. 92–97.

[2] J. Akella and K. L. McMillan, “Synthesizing converters between
finite state protocols,” inICCD ’91: Proceedings of the 1991 IEEE
International Conference on Computer Design on VLSI in Computer
Processors. Washington, DC, USA: IEEE Computer Society, 1991,
pp. 410–413.

[3] A. L. Sangiovanni-Vincentelli, T. A. Henzinger, L. de Alfaro, and
R. Passerone, “Convertibility verification and converter synthesis:
two faces of the same coin,”iccad, vol. 00, pp. 132–139, 2002.

[4] D. Greaves, “Automated hardware synthesis from formal specifica-
tion using sat solvers,”RSP, vol. 00, pp. 15–20, 2004.

[5] D. D. Gajski and L. Ramachandran, “Introduction to high-level
synthesis,”IEEE Des. Test, vol. 11, no. 4, pp. 44–54, 1994.

[6] D. Borrione, J. Dushina, and L. Pierre, “Formalization offinite state
machines with data path for the verification of high-level synthesis,”
in SBCCI ’98: Proceedings of the 11th Brazilian Symposium on
Integrated circuit design. Washington, DC, USA: IEEE Computer
Society, 1998, p. 99.

[7] V. D’silva, A. Sowmya, S. Parameswaran, and S. Ramesh,
“A formal approach to interface synthesis for system-on-chip
design,” University of New South Wales, Sydney, Australia,
Tech. Rep. UNSW-CSE-TR-304, 2003. [Online]. Available:
citeseer.ist.psu.edu/582933.html

[8] “Synthesis and optimization of interface hardware between ip’s
operating at different clock frequencies,” inICCD ’00: Proceedings
of the 2000 IEEE International Conference on Computer Design.
Washington, DC, USA: IEEE Computer Society, 2000, p. 519.

[9] S. C. (www.spiritconsortium.org), “IP-XACT version 2.0,” 2006.
[Online]. Available: www.spiritconsortium.org

