
Orangepath HPR H2 User Manual
Very First Tentative Draft

August 20, 2009

H2
Source

Verilog
Source

IMP
Microcode

CIL
.net

assembler

VM
btyecode

MULTI-FORMAT
SIMULATOR

Waveform
VCD

TRACES

SSMG

Imperative
Code LTL

Assertions

RTL
Gate

Compiler

H/W
Synthesis

PSL
Assertions

Imperative
Code

Verilog
Netlist

IMP
Microcode

C/C++
SystemC

Stimulus
Generator

H2 TOOL

Microcode
Compiler

RTL+Bev
Verilog

Temporal
Logic

Compiler

Convert
to C

SMV
model

Figure 1: The flows implemented in the current tool.

0.1 Overview Summary

Orangepath is a refinement framework designed for synthesisof protocols and
interfaces in hardware and software forms.

Orangepath HPR represents designs an an hierarchy of abstract machines. Each
machine is a database of declarations, executable code and goals. The goals are
assertions about the system behaviour, input directly, or generated from compi-
lation of temporal logic and data conservation rules into automata. Executable
code can pass through the system unchanged, but any undriveninternal nodes are
provided with driver code that ensures the system meets its goals.

The H2 language possesses various subsets and the intentionis that these may be
freely mixed, at a fine level, to describe a design. The main subsets are structural,
temporal logic (PSL), C-like imperative and sysML-like state hierarchic charts.

0.2 Tool Flow

The current H2 tool reads in various inputs forms, some of which can be outputs
from previous compilations. Figure 1 shows the available flows. This figure shows

that inputs are aggregated into a pair of rule sets: executable rules and assertion
rules. Naming and scoping rules for the identifiers are preserved from the input
structures. Not shown in the figure are several bypass flows, where the outputs
can be fed into the internal simulator instead of having to befed into a simulation
in a subsequent run of the tool.

Executable rules are held as an executable VM bytecode for anHPR virtual ma-
chine. This is readily compiled to IMP microcode form for thereference H2 mi-
croprocessor, SystemC or to Verilog in various forms, including netlists and cus-
tom VLIW processors. SMV output is also an option, for feeding to the nuSMV
model checker.

Executable rules may also be fed to the internal simulator, called diosim, where
they can be executed with stimulus generation form a PRBS (psudo-random bi-
nary sequence) generator or from stimulus read from ’plant’files.

Assertions can be compiled to executable form in various ways or else checked
during diosim simulation. Rather than being checked, they can constrain pseudo-
random input sequences used in simulation.

The Temporal Logic Compiler operates on PSL (property specification language)
assertions and SERES (sugar extended regular expressions) to generate executable
automata for synthesis or simulation.

The SSMG component is described in a separate document and isa complete sub-
project with respect to H2 HPR. SSMG is the main refinement component that
converts assertions to executable logic using goal-directed search.

CIL .net input language is processed by a free-standing frontend called kiwic.
This has its own manual that shares some text with this H2 manual. CIL code is
the assembly language used by the mono and .net projects. TheHPR tool can read
in CIL assembly code when invoked using thekiwic command.

The H2 input format includes finite state machine definition in SysML statechart
format.

The Orangepath H2 compiler accepts inputs in a variety of forms and generates
an executable design that is implemented as a mixture of hardware and software.
The input may be non-specific in terms of the resources to be targeted and may
be non-specific in terms of the number of states and state transitions of the output
machine, whereas the output always amounts to a deterministic automaton. Hence
the compiler is making decisions over hardware/software partitioning and details
of the algorithm.

The input is any mixture of RTL, assertions, declarations and imperative software
and the output is a mixture of hardware and software components. The following,
named steps are used:

1. Input Step(s): Read in each input form and store to disc or hold internally
as an H2 Machine.

2. Flatten Step: Combine all H2 machines into a single hierarchic H2 ma-
chine, known as the source machine, generating instance names for each
child H2 machine so that all variable names have a unique pathfrom the
design root.

3. Refinement Step:Convert the source machine into the target machine by
rewriting and augmenting the executable rules such that they are determin-
istic and consistent with the assertion rules.

4. Partition Step: Convert the target machine into a number of communicat-
ing sections, where each consists of RTL (register transferlevel) or IMP
(imperative) code. Save each section as a separate output file.

5. Compile step: Convert each IMP section into either hardware or software,
either generating an RTL or a micro-controller (MPU) section and write to
disk as a.s microcode file or.vnl Verilog net list. C and SystemC output
formats can also be used for the.

6. Simulate step: Optionally, simulate the collection of RTL and MPU sec-
tions together with stimulus and plant files provided by the user. The asser-
tion rules are monitored during the simulation and coverageis logged.

The most important step in the compiler is the refinement stepthat converts the
source H2 machine to the target H2 machine. The H2 machine is the most im-
portant data structure and we describe this first, before describing the input and
output forms.

0.3 H2 Machine

All input forms are converted into a common internal structure which consists
of a tree of H2 machines. An H2 machine is recursively defined in that any H2
machine can contain a number of child H2 machines.

An H2 machines is a pen-tuple that consists of a pair of disjoint lists of variables,
a list of sub-machines, a list of assertion rules and a list ofexecutable rule blocks.
All lists are unordered. The connections to sub-machines, the assertions and the
basic executable rules over the variables in union of the twovariable lists. The
first list contains variables visible to a parent H2 machine whereas the contents of
the second are local to the current machine.

Variables have three basic types: parameter, value or event. A value or parameter
variable ranges over a finite range of integers and where thisis just the range 0..1
we call it a boolean variable. An event variable ranges of anyfinite enumeration
but also possesses the property of not currently occurring,which may be thought
of as an extra value. Another type is the mutex, which is a special form of boolean
value type with special properties.

Not all of the variables may be needed in the generated targetmachine, but param-
eter variables explicitly must not occur in the target. All parameter variables must
be eliminated during compilation through not being needed or by being given a
constant value, either specified by the user or chosen by the compiler.

Expressions occurring in the assertion and executable ruleblocks range over the
variables, future values of variables and a special non-deterministic symbol, called
non-det, denoted with a query in parenthesis ‘(?) ’.

Future values of variables are denoted with the circle or X operator. The future
value of a parameter is itself. The future value of an external input to the system
must not be used, since this is not causal.

Value variables that are only updated when some event occursare calledsequen-
tial variables. Sequential variables that are updated only by the occurrence of
common event are part of aclock domain related to that event. All other value
variables are calledcombinational variables.

New values for value and event variables are defined by the executable rules con-
tained in the rule blocks. The aggregate of executable rulesmust never try to
assign more than one value to a variable at once, ie. it be consistent.

Executable rules are assignments held in rule blocks. A ruleblock consists of an
optional guard and an SP. A rule block with no guard is called acombinational
rule block. A sequential rule block is guarded by an event expression. An SP is
recursively defined as either an assignment of a variable from an expression, or a
sequential list of SPs, or a parallel list of SPs. The order oflisting members of
a sequential SP is important whereas it has no significance for a parallel SP. The
order is important for a sequential SP since updates to variables from executing
one member of the list are experienced by the next in the list as it evaluates its
assignment expression(s). For the parallel SP, there is no visibility of changes
made by one member at another member: changes are nominally held over until
the end of the parallel SP is reached, and then they are merged. It must be statically
determinable that there are no inconsistencies in the merge.

A rule block is calledcompilable if it can be converted to a normal form where
there are no powers of X present, except for a power of unity onthe left hand side
of each sequential executable rule.

Various other normal forms for the executable rules exist, and procedures to con-
vert between them exist, but some procedures have exponential cost and are avoided
unless needed. A normal form where every variable is updatedin just one rule
block can readily be converted to a hardware model in RTL Verilog and/or VHDL.
A normal form where there are no parallel SPs in a block allowsready conversion
of that block to a basic block in a block-structured imperative output format, such
as C.

One way to represent input language forms that use a thread that blocks at various
places is to convert each of the resume points to a separate executable rule block.
This technique is used for the H2 bevblock construct.

Every assertion rule is either a safety, liveness or initialassertion.

The next value operator: circle ‘o ’. o e
∆
= X(e)

∆
= X(e,1).

0.4 Input Formats

The main input format is source files in the H2 language and .net CIL but Verilog
RTL input format and IMP machine code are also supported. A separate user
manual describes the Kiwi CIL input format.

The H2 input format includes finite state machine definition in SysML statechart
format and regular expressions.

The H2 language is in flux, so check the h2grammar.yy yacc file and see the
examples for details.

0.4.1 CIL input format

The CIL .net assembly code is generated by a large number of third party compil-
ers from various input languages. Please see the separate kiwic manual for details
of this input format.

Chapter 1

H2 Syntax

The H2 language possesses various subsets and the intentionis that these may be
freely mixed, at a fine level, to describe a design. The main subsets are structural,
temporal logic (PSL), C-like imperative and sysML-like state hierarchic charts.

1.0.2 Concrete syntax tree

The H2 HPR concrete syntax tree is following yacc file:

1.0.3 Abstract syntax tree

The H2 HPR abstract syntax tree is defined using the followingSML datatype:

1.1 H2 Types

All expressions either have integer type or else denote partial types that are elimi-
nated during an elaboration phase of compilation, such as channel names, param-
eters and module instance names.

The boolean type is represented by the integer subrange 0..1;

Type expressions are a type name, an enumeration, an integerrange or a vector
range.

An integer range is two integers separated by two dots, such as ‘0..1’. The first
number is, by convention, lower than the second, but the order is ignored.

A Verilog RTL style vector range is two integers in brackets separated by a colon,
such as ‘[7:0]’. This example defines an integer range of 0..255 and names the
bits of a bus representation of the integer.

An array type is denoted with square brackets and if the length of the array is
known, this is placed in the brackets. The subscript range ofthe array is from zero
to the number in brackets minus one.

An enumeration type is a set of constant strings. It is definedin braces, prefixed
with the keywordenum. For example

enum { Play, Forward, Stop, Reverse }

All enumeration constants must be disjoint within their scope of use.

Note: stategraphs implicitly define enumerations with their state names.

Type names can be established with thetypedef statement. For example

typedef safe_range_t = -55..55;

typedef transport_t = enum { Play, Forward, Stop, Reverse };

1.2 H2 Expressions

1.2.1 H2 Constant Expressions

The following constants are builtin:X, (?), true, false. The symbol ’X’
denotes don’t care.

Any sequence of digits is a base-ten integer, and such integers can start with a
minus sign.

1.2.2 H2 Variables, Events and Parameters

Variables are defined using thenode statement, or one of its shorthand forms
(§1.6.2).

Variables have three basic types: parameter, value or event. A value or parameter
variable ranges over a finite range of integers and where thisis just the range 0..1
we call it a boolean variable. An event variable ranges of anyfinite enumeration
but also possesses the property of not currently occurring,which may be thought
of as an extra value. Another type is the mutex, which is a special form of boolean
value type with special properties.

All variables have a scope that is the facet they are defined inand all facets di-
rectly instantiated below, unless textually masked by moreclosely enclosing dec-
larations.

Access between facets is enabled using path names consisting of a facet instance
names separated by dots.

An facet definition may contain a list of structural formal parameters in parenthe-
sis after its name. These are formal parameters to the facet and are expanded at
instantiation using call by name. They are used only for structural (macro-style)
elaboration and are not user variables.

All parameter variables must be eliminated during compilation through not being
needed or by being given a constant value, either specified bythe user or chosen
by the compiler.

1.2.3 Operator Expressions

The symbol ’X’, when standing along, denotes don’t care. Whenused as a func-
tion it denotes the next state operator. The expressionsX(e) is short forX(e,1)
and means the next value of expressionse. Higher values ofn in X(e,n) denote
further values into the future, using the expansionX(e,n+1) = X(X(e,n)).

Bit extract is denoted with brackets: eg. ‘e[e]’.

The diadic pling operator, ‘c!e’, writes a value to a named channel. The expan-
sion of channel writes is explained in§1.4.

1.2.4 Function Application

Function applications are either of built-in functions or of user functions that act
as macros and are expanded at compile time.

The built-in function ’pause()’ is used to denote a bus-settling delay or memory-
barrier. By calling this function, the current thread is bocked until all writes made
to variables or nets are flushed out and made visible to other processes. It should
always be given the argument 1.

The built-in function ’hpr testandset(mutex, bool)’ must take a variable of
type mutex (a boolean subtype of value) as its first argument.If the second argu-
ment is ’true’ then the function attempts to set the mutex andreturns the previous
value. If the second argument is ’false’ then the mutex is cleared and false is
returned.

The built-in function ’print()’ causes console output under simulation or on
an embedded platform if supported. The arguments are converted to an ASCII
representation and output in turn.

The built-in function ’exit(rc, [msg ...])’ causes a simulation to exit. An
error is indicated using a non-zero return code in the first argument. Supporting
message information may also be provided in subsequent arguments. The be-
haviour on embedded platforms, if supported, is to halt execution of all threads
until a reset occurs.

The built-in function ’X’ is explained in§1.2.3.

User-defined functions are declared with thefundef keyword.

1.3 H2 Assertions

An assertion statement constrains the behaviour of the system.

The assertion statements may be free standing, or may be usedin the C-like code
or in the action section of a statecharts.

Where free standing, they must universally hold.

Only the safety assertions and fairness marker can occur in the C-like code and
statecharts. Their meaning is then respectively guarded bythe C-like thread reach-
ing them or the state being active.

Assertions refering to events and patterns of events followthe syntax and seman-
tics follows PSL: [[‘Property Specification Language Reference Manual’ Version
1.1 June 9, 2004]

assertion ::=

always [<string> :] <pslexp>;

| never [<string> :] <pslexp>;

| initial [<string> :] <pslexp>;

| live [<string> :] <pslexp>;

| fair [<string> :] <pslexp>;

1.4 H2 Channels

The compiler implements message passing channels. The pling operator is used to
put a value to a channel and the query operator is used for reading from a channel.

Both are blocking operators, because channels implement reliable flow-control.

The channel operations may be used in the C-like code or in the action section of
a statecharts. A blocking channel operation in a statechartwill make the whole
of/part of the state machine block (TODO explain).

The current implementation of channels is via straightforward macro expansion
in the front end of the compiler. Channels are implemented by shared access to
entries in an array called C

Both operators make copies of the channel designator on entry, in case the user’s
expression should change while blocked, and the write operator makes a copy
of the value to be sent. Copies are not made for manifest constant expressions.
Copies are kept in fresh variables denoted below with the ‘c’ suffix. The allo-
cation of index values to the array is handled by the compiler, and the back-end
compilation phase replaces hardware constant indexes withscalars.

The expansion of the write operationc!e is

c_c = c;

e_c = e;

waituntil !C.ack[c_c];

C.data[c_c] = e_c;

C.req[c_c] = 1;

waituntil C.ack[c_c];

C.req[c_c] = 0;

The expansion of the read operation ?c is

c_c = c;

waituntil C.req[c_c];

r_c = C.data[c_c];

C.ack[c_c] = 1;

waituntil !C.req[c_c];

C.ack[c_c] = 0;

return r_c;

1.5 H2 C-like Imperative Statements

The H2 language possesses various subsets. The main subsetsare structural, tem-
poral logic (PSL), C-like imperative and sysML-like state hierarchic charts. This
section defines the C-like imperative subset.

H2 includes a typical block-structured imperative programming language with
semantics based on those of C, but extended with operators including channel
write and the ‘guard’ statement.

1.5.1 The H2if statement

if (<exp>) <statment>

if (<exp>) <statment> else <statment>

The H2if statement executes its argument if the condition evaluatesto a non-zero
value.

1.5.2 The H2while statement

while (<exp>) <statment>

The H2while statement evaluates its body while its argument evaluates to a non-
zero value.

1.5.3 The H2emit statement

emit <var>;

The H2emit statement sends a nullary event to a named variable that mustbe an
event variable. Parameterised events are not generated using this statment. Instead
they are generated by assigning values to the event variable.

1.5.4 The H2waituntil statement

wait (<exp>);

The H2waituntil statement takes an expression and blocks a thread until the
expression would evaluate to a non-zero value.

1.5.5 The H2wait statement

wait (<exp>);

The H2wait statement takes a postive numeric argument and blocks a thread for
that number of time units.

1.5.6 The H2guard statement

guard (<exp>) <statment>

The H2guard statement evaluates its body if the guard expression gives anon-
zero value, but the thread exits immediately from the body ifthe guard expression
becomes zero at any time during the execution of the body, whether the thread is
blocked or not.

1.5.7 The H2resultis statement

resultis (<exp>);

The H2resultis statement returns a value to a surrounding context. It is in-
tended to be used with thevalof operator. It is interchangeable with thereturn
statement.

1.5.8 The H2return statement

return <exp>;

The H2return statement returns a value to a surrounding context. It is intended
to be used in function bodies. It is interchangeable with theresultis statement.

1.5.9 The H2skip statement

skip;

The H2skip statement does nothing.

1.5.10 The H2continue statement

continue;

The H2continue statement transfers execution to the head of the innermost sur-
roundingwhile or for loop.

1.5.11 The H2break statement

break;

The H2break statement transfers execution to the exit point of the innermost
surroundingwhile or for loop.

1.5.12 The H2 label statement

L:

The label statement defines a target for agoto statement.

1.5.13 The H2goto statement

.

goto L;

The H2 goto statement transfers execution to the named label which mustbe
present somewhere in the same behavioural sequence.

1.5.14 The H2 block statement

.

{ S1 S2 Snnn }

The H2 block statement consists of any number of statements enclosed inside
braces and they are executed in sequence.

1.5.15 The H2 assignment statement

. .

<variable> = <exp>;

The H2 assignment statement assigns a value to a variable. The assignment is
actually an expression and any expression can be used in thiscontext. A function
call expression becomes a procedure call in this way.

1.5.16 The H2 procedure call statement

.

<name>(<arg1>, ...);

The H2 procedure call statement executes a procedure, including certain builtin
procedures (§1.2.4). The call is actually an expression and any expression can be
used in this context. A function call expression becomes a procedure call in this
way.

1.5.17 The H2 channel write statement

.

<channel> ! <exp>;

The H2 channel write statement evaluates an expression and writes the value to a
named channel. The expression is evaluated immediately butthe thread can then
become blocked if the is not ready to read.

1.6 H2 Structural Statements

The H2 language possesses various subsets. The main subsetsare structural, tem-
poral logic (PSL), C-like imperative and sysML-like state hierarchic charts. This
section defines the structural subset.

The structural statements in H2 are unlike those in most languages. The power of
H2 is in its structural statements.

1.6.1 Facet definitions

An H2 program consists of a number of facet definitions. A facet definition in-
cludes instances of other facets and local code. Facet definitions may be builtin,
loaded from libraries or user defined. An instance of a facet is commonly called
a node and thenode statement, or a shorthand for it, is used to instantiate all
facets, except for the topmost facet. The topmost facet is instead mentioned on
the command line and is called the root.

The facet declaration syntax is:

structural_item ::=

<directional_context> |

<node_declaration> |

<constant_defintion> |

<behavioural_section> |

<statechart> |

<connect_statement> |

<assertion>

facet_definition ::=

<facet_type> <facet_name> [(<structural_formal>, ...)]

{

[<structural_item> ...]

}

structural_formal ::= <id>

The facettype must (currently) be one of the builtin facet types: section, unit,
protocol or interface.

The facetname must be a fresh identifier.

The structural formal parameters are optional, but must allbe provided with values
whenever the facet is instantiated. They bind identifiers occurring in the facet and
there is almost no restriction over the connect of the identifiers (e.g. types, facet
names, constants etc.). Currently, the topmost facet cannothave formals since it
is instantiated from the command line.

The contents of the facet are structural items defined in the rest of this section.

H2 defines a number of builtin leaf facets:node, protocol, action, section,

interface andsection. The node is the most general facet and also the most
basic: a node can be as simple as a boolean variable, but it canbe any other vari-
able, channel or facet. The user defines his own facets that inherit from one of
these. Facets are heirarchic, in that each may instantiate further, lower facets.
Each instantiation may be forwards or reversed and invertedor not.

1.6.2 Node declaration statement

The H2 node statement declares

node_declaration ::=

node <node_type> [<modifier> ...] : <nid> [, <nid> ...];

nid ::= <id> | !<id> | <id> (<exp> [, <exp> ...])

node_type ::= <id>

Thenode statement creates one or more named instances of an facet. The names
must be disjoint. Every node has a type. The type name can be used instead of the
keyword ‘node’ where the type is one of these builtin facet types: channel, event,
mutex, parameter, section, protocol, action, unit or interface.

When nodes are instantiated, modifiers may be used. The available modifiers are:
out, in, inout, event, unsigned, ,signed, channel, parameter, initiator,

target, forward , reverse and range declarations for arrays and scalars of
fixed ranges.

Nodes may be declared as inverted and/or reversed. An inverted declaration is
made by placing the pling character before the identifier. A reversed declaration
is made by inserting thereverse modifier in the modifier list. Nodes may be

parameterised by supplying one or more arguments after the identifier. The num-
ber of expressions must match the number of formal parameters in the node type
definition.

The program is elaborated in the textual order it occurs in the file. All identifiers
ultimately form a single, flat name space. At any point in the file, all identifiers
already defined through being a facet directly or indirectlyinstantiated in the cur-
rent facet are in scope. Multiple identifiers of the same namemay be in scope
at once: e.g. when there are two instances of a given sort of interface. Where
multiple identifiers of the same name are in scope at once, it is an error to refer
to one of the multiply-defined identifiers in an ambiguous way. Sufficient facet
prefix path details must be supplied.

Range and Array modifiers

A modifier of the form[n .. m] defines a node that can take on an integer
range of values.

A modifier of the form[h : l] defines a packed vector node with high and
low bit positions called h and l. This is another way of defining a range. A value
of zero is normally used for l.

A modifier of the form[n] defines an array with n locations, indexed from
zero.

A modifier of the form[] defines an array with an unbounded number of loca-
tions.

Only one of the first two forms is allowed for a given node.

Forwards, Reverse and Neutral modifiers

directional_context ::= forward: | neutral: | reverse:

When connecting a pair of components, the inputs of one component are normally
connected to outputs of the other, and vice versa. This requires that these terms
must be reversed when a specification written for one side of the interface is being
used at the other. This is known as having ahanded pair. To overcome this
issue, when any type of node is declared/instantiated, including interface nodes
and complete sections, it is defined in a directional context. A reverse context
causes inputs to be interpreted as output and outputs to be interpreted as inputs.

The default directional context is forward, but neutral andreverse contexts also ex-
ist. The current directional context is altered to the desired value by theforward:,
reverse: andneutral: labels. These labels alter the current context in the tex-
tually following declarations until another label is encountered. In addition, the
first two of these three words may also appear as a modifier in the actual declara-
tion of the node. The overall context of a node is reverse if there is an odd number

of reversings in the referring path. A path is reversed by each reverse instantia-
tion. A reverse instantiation either contains the reverse keyword as a modifier or is
inside a reverse directional context, but not both. If it both, they cancel out. Dec-
larations inside a neutral directional context are not altered and have their default
meaning regardless of how many reversings there are on the referring path.

1.7 Temporal Regular Expressions

The H2 language possesses various subsets. The main subsetsare structural, tem-
poral logic (PSL), C-like imperative and sysML-like state hierarchic charts. This
section defines the temporal logic (PSL) definitions.

TODO. Contents of this section are missing, but are mainly bogstandard PSL.

1.8 Stategraph Definition

The H2 language possesses various subsets. The main subsetsare structural, tem-
poral logic (PSL), C-like imperative and sysML-like state hierarchic charts. This
section defines the statechart subset.

The stategraph (or statechart) defines a finite state machine, where each state has
a state name. A top-level stategraph is always active, meaning it is in exactly one
state. On the other hand, a stategraph that is instanced as a child stategraph within
a state in another stategraph is inactive (not in any state) unless its parent is in that
instantiating state. A state may instantiate any number of child stategraphs but
recursion is not allowed.

The stategraph general form is:

stategraph graph_name()

{

state statename0 (subgraph_name, subgraph_entry_state), ... :

entry: statement;

exit: statement;

body: statement;

statement;

... // implied ’body:’ statements

statement;

c1 -> statename1: statement;

c2 -> statename2: statement;

c3 -> exit(good);

...

exit(good) -> statename3: statement;

exit(bad) -> statename4: statement;

...

endstate

state statename2:

...

...

endstate

state abort: // A special state that can be

// forced remotely (also called disable).

...

}

A state may contain tagged statements, each of which may be a basic block if re-
quired. They are distinguished using three tag words. The ‘entry’ statement is run
on entry to the state and the ‘exit’ statement is run on exit. The ‘body’ statement is
run while in the state. A ‘body’ statement must contain idempotent code, so that
there is no concept of the number of times it is run while in thestate. Statements
with no tag are treated as body tagged statements. Multiple occurrences of state-
ments with the same tag are allowed and these are evaluated asthough executed
in the textual order they occur or else in parallel (current implementation is serial
but this will be change to parallel, so watch out!).

A state contains transition definitions that define the successor states. Each tran-
sition consists of a boolean guard expression, the name of one of the states in
the current stategraph and an optional statement to be executed when taking the
transition. In situations where multiple guard expressions currently hold, the first
holding transition is taken.

The guard expressions range over the inputs to the stategraph, which are the vari-
ables and events in the current textual scope, and the exit labels of child state-
graphs.

When a child stategraph becomes active, it will start in the starting state name is
given as an argument to the instantiation, or the first state of no starting name is

given.

A child stategraph becomes inactive when its parent transitions, even if the tran-
sition is to the current state, in which case the child stategraph becomes inactive
and active again and so transitions to the appropriate entrystate.

A child stategraph can cause its parent to transition when the child transitions to
an exit state. There may be any number, including zero, of exit states in a child
stategraph but never any in a top-level stategraph. The parent must define one or
more transitions to be taken for all possible exit transitions of its children. An exit
state is either called ’exit’ or ’exit(id)’ where ’id’ is an exit tag identifier. Exit
tags used in the children must all be matched by transitions in the parent, or else
the parent must transition itself under the remaining exit conditions of the child or
else the parent must provide an untagged exit that is used by default.

A stategraph may be wholly enclosed inside any conditional statement, such as an
‘if’ or ‘ case’ statement, in which case it is as though all of its internal activity
is guarded by that condition: the condition is simply foldedinside every construct
to the point where a conditional is allowed. The stategraph does not reset to its
starting state when this guard does not hold.

A stategraph with a state calledabort may be disabled from elsewhere in the
same bundle using the ‘abort’ statement. Please see§1.8.1.

The stategraph general form is sufficient to encompass the SysML state machines.

1.8.1 Abort Statement

The ‘abort’ statement is used for a remote abort of a stategraph.

Syntax:

if (g) abort stategraph_name1, stategraph_name2, ...;

The abort statement must be conditional, otherwise the stategraph would never
leave its abort state, and the abort guard,g may either be an event or level ex-
pression. When the abort guard is a level expression it takes precedence over any
transitions in the stategraph that lead from the abort state.

if (g) abort stategraph_name1, stategraph_name2, ...;

Chapter 2

Joining Automata Synthesis

The contents of this chapter describe a particular researchproject and should be
ignored by general users (at the moment).

2.0.2 Meaningful Play and Mitre Automata

The valid operation of a protocol is defined in terms of the operations it performs
on its interface. When a protocol performs an operation, we say it makes aplay.
Only a small number of plays may be valid at any one time, as dictated by an
automata that transitions on each operation or in other constraints (eg. a wire that
is already low cannot go low). Aplay is an operation performed on the interface
by the protocol in a given state of the constraining automata.

The meaningful play set, or just play set, is a subset of the plays that convey
information. Other plays are artifacts of the protocol thatcan be modified or
ignored without changing the the meaning of the informationconveyed.

A pair of interfaces must be connected to each other for information to flow. The
wiring, logic or code used to connect the interfaces is called the connection. A
valid connection between a pair of interfaces can be defined by an automata, the
mitre automata. This automata has a pair of inputs that range over the play sets
from each interface. Every state of the mitre automata is an accepting state, but the
connection must be designed so that mitre automata never gets stuck. In general, a
single mitre automata can interconnect more than just two interfaces. Also, more
than one mitre automata can be specified, where all operate inparallel and every
play is always accepted at all automata at once.

The H2play statement is a prefix to any other behavioural statement. It denotes
that the operation(s) performed by the statement, in the current state of the execut-
ing thread or stategraph, is/are a member of the meaningful play set. An identifier,
theplay name, may be assigned to the play statement, postfixed by a colon. Afor-
mal parameter list may also be specified.

A play statement is an annotation and has no semantic effect on its argument,

which is always executed as normal when it is run.

play_statement ::= play [<play_id> [<formals>] :] <behavioural_statement>

Here is a typical example, where a play called ’mysend’ is defined. The be-
havioural statement is a block containing three successiveimperative statements.
The formal parameter list is simply a further annotation that denotes which vari-
ables occurring in the behavioural statement convey run-time data. These are
handled symbolically during mitring whereas the remainderare given concrete
values.

play mysend(dout) : { if_dout = dout; pause(); strobe = 1; }

Meaningful plays always occur in pairs, where one half of thepair is executed by
each side of the interface. This is called arendezvous.

The mitre automaton can be defined using any H2 form of expression, prefixed
with the keywordmitre. For instance, it can be defined as a statechart (§1.8)
or using a behavioural section (§2.0.3). Play names can be used inside a mitre
definition as though they were imperative statements. They can also be prefixed
with the left andright keywords or a facet instance name (identifier). Side-
effecting statements, such as assignments to variables must not be used inside a
mitre definition, except to local variables used only in the mitre definition, such as
for encoding state.

play_occurrence_statements ::=

<play_id>;

| left : <play_id>;

| right : <play_id>;

| <facet_id> : <play_id>;

Theleft andright qualifiers are optional play name prefixes that cause refer-
ence to either the first or second argument to the connect statement, respectively.
When a prefix is left out and the same play name occurs on both sides, such as
when connecting a pair of instances of the same interface, then the play applies to
both sides at once.

Where more than one mitre automata is defined, their product isimplied: that is,
they are all logically running at once and none must ever get stuck.

Mitre examples using behavioural sections

Where both sides of an interface only have one meaningful playand it is called
foo it is sufficient to write

mitre while (1) { foo; }

Where we wish to make a ping on one side do a pong on the other, it is sufficient
to write

mitre while (1) { left ping; right pong; }

mitre while (1) { right ping; left pong; }

2.0.3 Behavioural section

A behavioural section contains any number of H2 behaviouralstatements (§1.5).
They are executed as though enclosed in awhile(1) { ... } infinite loop.

behavioural_section ::=

{

<behavioural_statement> ...

}

2.0.4 Assertion

An assertion statement constrains the behaviour of the system.

Assertions refering to events and patterns of events followthe syntax and seman-
tics follows PSL: [[‘Property Specification Language Reference Manual’ Version
1.1 June 9, 2004]

assertion ::=

always [<string> :] <pslexp>;

| never [<string> :] <pslexp>;

| initial [<string> :] <pslexp>;

| live [<string> :] <pslexp>;

| fair [<string> :] <pslexp>;

2.0.5 Connect Declarations

Connections are declared with the connect statement. The H2 connect statement
joins two or more facets, either directly or by generating glue logic and/or glue
code. The facets are denoted with heirarchic path expressions (separated with
dots). A connection has an optional name and if more that two facets are to be
joined by one connection, each must have a local facet instance identifier.

connect_statement ::= connect [<connection_id> :] <exp>, <exp>

[mitre [<flaglist> :] <structural_item>] ;

connect_statement ::= connect [<connection_id> :] <facet_id> : <exp>, ...

[mitre [<flaglist> :] <structural_item>] ;

flaglist ::= [<flag_id>=<flag_exp>, ...]

When the connection identifier is supplied, it is used as a namefor the connection
and as the root name for any instantiated or generated code. Aconnection iden-
tifier can be specified as the rendering root (§??) for compilation, which allows
the synthesised code to be captured to output files (VNL, microcode, C++, and so
on).

The mitre keyword introduces a mitre automata to be used in the connection
implementation (§2.0.2).

When only two facets are to be joined, they need not be given facet instance
identifiers because the built-in namesleft andright are used by default. Facet
instance identifiers used in a connect statement are local nicknames, private to
that connection and may only be used inside the mitre clause.Where the facet in
question is also instantiated as part of the generated design, it will have a primary
instance name from that instantiation.

Where a mitre automata is not present, a simple connect is implemented, where
outputs from one facet are matched with similarly-named inputs of other sides and
wired together.

Where a mitre automata is defined, it is multiplied with the interface automata
listed in the connect statements. The state space is then collapsed over the various
rendezvous designated with play annotations so that no partof a same-named play
on different automata happens in separation from the othersof that name. Finally,
a maximal live manifold is selected that contains the idle states from all automata
and all also all of the rendezvous. A live manifold is an automata that consists of
states and edges from the collapsed product machine where all states are reach-
able from all others. A maximal live manifold is a manifold where as many paths
as possible are included (however, there can be local minimaproblems). An H2
machine is then generated that connects up the participating facets in a way that
implements the manifold. Where desired live paths are not included in the mani-
fold, the user can constrain the selection either by adding assertions into the facet
definitions or using a facet as the mitre automata and puttingassertions in that.

Where the structural item after the mitre keyword defines morethan one finite
state machine, their product machine is first formed and thenthe connection is
built as before. The resulting interface obeys all mitres atonce.

The behaviour of the generated interface logic can be modified by specifying flag
expressions. A number of flag identifiers exist that can be setto constant values
in the flag list. However, whether the interface logic consists of hardware gates,
software code or some mix is not altered by these flags: that isinstead selected by
the normal H2 synthesis option flags (§??).

The reset flag may be used to specify a reset input or condition to the inter-
face logic. The reset flag expression may range over nets occurring in any facet
of the interface or otherwise undefined variables which is/are thereby defined as
auxiliary inputs to the interface.

Theclock flag may be used to specify a clock signal for the interface logic. It may
refer to any binary signal occurring in any facet of the interface or to an otherwise
undefined variable which is thereby defined as an auxiliary input to the interface.
The clock flag is ignored if the output mode is to generate entirely software. When
no clock flag is specified, asynchronous logic is generated.

Chapter 3

SSMG Refinement Algorithm

H2 is a vehicle for exploring various refinement algorithms.

In [?], it is proposed that all interfaces are constructed using acombination of
elemental interface paradigms and that any description or implementation of an
interface can be processed to be represented in this way. Theprocessing is a form
of parsing that generated a so-called interface transform.Once an interface is
represented this way, it can be render in a variety of detailed output styles.

The default refinement algorithm uses a depth-first search and has exponential
cost in the worst case. A SAT-based algorithm was also explored in the paper [?],
but is disabled in the tool by default.

The refinement algorithm must first find a subset of the rules and variables that
are possibly needed in the target machine. The following steps achieve this.

1. Identify, from the compiler command line, the top-level target variables that
are to be driven by the target machine, thereby creating a first target variable
set, thenceforth known as the current target variable set. Create an empty
set of rules called the current rule set.

2. Identify any executable rules that drive variables in thetarget variable set,
or their past or future values, or assertion rules that referto them or their
past or future values. Add these safety and executable rulesto the current
rule set.

3. If any variables occur in the current rule set that are not external inputs and
are not members of the current target variable set, add them to the target
variable set and go back to previous step.

The refinement algorithm then proceeds to generate further executable rules from
the assertion rules and to fill in concrete values for the parameters and values of
(?) encountered, thereby generating a deterministic target machine.

The refinement algorithm uses a CNF/clause representation ofthe design and is
based around a built-in SAT solver.

1. The safety assertions are all first converted into a conjunctive-normal form
and held on a safety clause list.

2. For any executable rule that assigns a value to the next state of any variable,
v, all occurrences ofX(v,n) wheren >= 2 are substituted for using that
executable rule.

3. For all values of all external inputs, subject to plant constraints, the ex-
ecutable rules are examined for consistency and any parameter values or
non-det transitions that would make the executable rules inconsistent are
noted. Where only one possible value for a parameter exists, the parame-
ter is substituted out with that value, otherwise the constraints are added as
additional clauses to the safety clause list.

4. If the safety clause list is non-empty, a clause with a minimal number of
un-driven variables in its support is removed and convertedto an executable
rule where one of the variables is driven by a LUT function of all inputs
and driven variables where the LUT contains fresh parameters. Go back to
previous step.

5. When the safety clause list is empty, select a setting of allparameters in
the executable rules that creates a finite state machine thatsatisfies all the
liveness assertion rules. If none can be found, then backtrack to the previous
step and select a different free variable of a safety clause to be driven by a
LUT.

6. Partition the resulting machine into hardware and software components and
output.

This algorithm does not reflect the sequencing constraints of the plant...

cf. Take all at once and SAT solve!

Chapter 4

Transactor Synthesis

The command line flag-xtor invokes the transactor synthesis refinement algo-
rithm. There are some example on the web site.

TODO: describe it more.

Chapter 5

Orangepath Synthesis Engines

The Orangepath project supports various internal synthesis engines. The aim is
to include SSMG but some more simple engines are also provided. The other
engines include the FSM generator, the PSL compiler and the restructurer.

Because all input is converted to the HPR machine and all output is from that
internal form it is sensible to use the HPR library for translation purposes without
doing any actual synthesis.

A synthesis engine rewrites one HPR machine as another.

5.1 A* Live Path Interface Synthesiser

The H2 front end tool allows access to the live path interfacesynthesiser.

The A* version is described on this web page. http://www.cl.cam.ac.uk/ djg11/wwwhpr/gpibpage.html

The follow-on to this work is being undertaken by MJ Nam.

5.2 Transactor Synthesiser

The transactor synthesiser is described on this link

http://www.cl.cam.ac.uk/research/srg/han/hprls/orangepath/transactors

5.3 Asynchronous Logic Synthesiser

The H1 tool implements an asynchronous logic synthesiser described on this link.

http://www.cl.cam.ac.uk/ djg11/wwwhpr/dsasynch.html

-ubudget n

HPR
Machine

HPR
Machine(s)

Output queue with
rollback checkpoints

(pc, address, [e1/v2, e2/v2, ...]) list
Pending activation queue

Input
program

Symbolic
simulator

Input Activation

Entry point
for each thread

0, 1, or 2
output activations

Blocking
activation or

budget
consumed ?

Completed activation list

Unwind
budget

Already processed
checker ? Discard

yes

no
no

yes

Figure 5.1: The Synchronous FSM generator in the Orangepathtool.

5.4 SAT-based Logic Synthesiser

The H1 tool implements a SAT-based logic synthesiser described on this link.

http://www.cl.cam.ac.uk/ djg11/wwwhpr/dslogic.html

(This synthesiser is currently not part of the main HPR revision control branch.)

5.5 Synchronous FSM Synthesiser

The HPR tool contains a synthesiser/generator for synchronous FSMs that con-
verts a program in the HPR imperative language in to a finite state machine. The
language contains assignments, conditional gotos, fork/join and leaf calls to HPR
library functions.

The input and output to the FSM generation process are HPR machines. The
output machine uses the so-called XRTL style that is readilyconverted to Verilog
RTL by a subsequent stage.

An additional input, from the command line, is an unwind budget: a number of
basic blocks to consider in any loop unwind operation. Where loops are nested or
fork in flow of control, the budget is divided amongs the various ways.

5.5.1 Synthcontrol

Minor changes in the operation of FSM synthesiser are controlled with the-synthcontrol
command line option. The sequencer for a thread can be unpacked, normal or one-
hot. Unpacked is selected withsequencer:unpacked.

Minor changes in the operation of FSM synthesiser are controlled with the-synthcontrol
command line option. The sequencer for a thread can be unpacked, normal or one-
hot.

The stringpreserve-sequencer should be supplied to keep the per-thread ves-
tigal sequencer in RTL output structures. This makes the output code more read-
able but can make it less compact for synthesis, depending onthe capabilites of
the FPGA tools to do their own minimisation.

The stringresets:synchronous should be passed in to introduce synchronous
resets to the generated sequencer logic. This is the default.

The stringresets:asynchronous should be passed in to introduce assynchronous
resets to the generated sequencer logic.

The stringresets:none should be passed in to supress reset logic for FPGA
targets. FPGA’s tend to have built-in, dedicated reset wiring.

-synthcontrol ’preserve-sequencer;resets:none;sequencer:packed’

The central data structure is the pending activation queue,where an activation con-
sists of a program counter name, program counter value and environment mapping
variables that have so far been changed to their new (symbolic) values.

The output is a list of finite-state-machine edges that are finally placed inside a
single HPR parallel construct. The edges have to forms (g, v,e) (g, fname, [args])
where the first form assigns e to v when g holds and the second calls function
fname when g holds.

Both the pending activation queue and the output list have checkpoint annotations
so that edges generated during a failed attempt at a loop unwind can be discarded.

The pending activation list is initialised with the entry points for each thread.
Operation removes one activation and symbolically steps itthrough a basic block
of the program code, at which time zero, one or two activations are returned.
These are either added to the output list or to the pending activation list. An exit
statement terminates the activation and a basic block terminating in a conditional
branch returns two activations. A basic block is terminatedwith a single activation
at a blocking native call, such as hprpause. When returned from the symbolic
simulator, the activation may be flagged as blocking, in which case it is fed to
the output queue. Otherwise, if the unwind budget is not usedup the resulting
activations are added to the pending queue.

A third queue records successfully processed activations.Activations are dis-
carded and not added to the pending queue if they have alreadybeen successfully

processed. Checking this requires comparison of symbolic environments. These
are kept in a ”close to normal form” form so that syntactic equivalence can be
used. This list is also subject to rollback.

Operation continues until the pending activation queue is empty. A powerful proof
engine for comparing activations would enable this condition to be checked more
fully and avoid untermination with a greater number of designs.

5.6 PSL Synthesiser

The PSL synthesiser converts PSL temporal assertions into FSM-based runtime
monitors.

5.7 Statechart Synthesiser

The Sys-ML statechart synthesiser is built in to the front end of the H2 tool. It
must be built in to other front ends that generate HPR VMs,

5.8 SSMG Synthesiser

SSMG is the main refinement component that converts assertions to executable
logic using goal-directed search. The SSMG synthesiser is described in a separate
document and is a complete sub-project with respect to HPR.

5.9 Restructure Synthesiser

The RTL-style machines can be restructured, so that different operations occur
in different cycles, with automatic insertion of holding registers to maintain data
values that would not be available when needed.

Restructuring is need to avoid structural hazards arising when an ALU or multi-
plier is not fully-pipeline or when a memory has insufficientports for the level of
concurrent access required.

Chapter 6

Output Formats

The HPR library contains a number of output code generators.All of these write
out a representation of an internal HPR machine. Not all forms of HPR machine
can be written out in all output forms, but, where this is not possible, a synthesis
engine should be available that can be applied to the internal HPR machine to
convert it.

Certaint output formats can encode both an RTL/hardware-style and a software/threaded
style. For instance, a C-like input file can be rendered out again in threaded C
style, or as a list of non-blocking assignments using the SystemC library.

The following output formats may be created:

1. RTL Form: The RTL output is written as a Verilog RTL. One module is
created that either contains just the RTL portion of the design, or the RTL
and instances of each MPU that is executing software parts ofthe design.

2. Netlist Form: The RTL output is compiled to a structural netlist in Verilog
that contains nothing but gate and flip-flop instances.

3. H2 IMP Form: The HPR form is output to an IMP file. This has the same
syntax as the imperative subset of H2.

4. SMV form: The HPR VM is output as an SMV code and the assertions
that have not been compiled or refined are output as assertions for SMV to
check.

5. C Form: The HPR VM is output as C code suitable for third-party compil-
ers. RTL forms may also be output as synthesisable SystemC.

6. UIA MPU Form: The IMP imperative language is compiled to IMP as-
sembly language and output as a.s file.

7. IP XACT form: The structural components are written out as IP XACT
definitions and instances.

8. S-expression form:The HPR VM is dumped a lisp S-expression to a file.

9. UIA Machine Code: The IMP assembly is compiled to machine code for
the UIA microcontroller. This is output as Intel Hex and alsoas a list of
Verilog assignments for initialising a memory with this code.

The net-based output architecture is suitable for direct implementation as a custom
SoC (system on chip). H2 defines its own microcontroller and we use the term
MPU to denote an H2 microcontroller with an associated firmware ROM. The net-
based architecture consists of RTL logic and some number of MPUs. However,
by requesting that all output is as C code for a single MPU, thenet-based output
degenerates to a single file of portable C code.

Additional output files include log files and synthesisable and high-level models
of the UISA microprocessor that executes IMP machine machine code.

Index

	Overview Summary
	Tool Flow
	H2 Machine
	Input Formats
	CIL input format

	H2 Syntax
	Concrete syntax tree
	Abstract syntax tree

	H2 Types
	H2 Expressions
	H2 Constant Expressions
	H2 Variables, Events and Parameters
	Operator Expressions
	Function Application

	H2 Assertions
	H2 Channels
	H2 C-like Imperative Statements
	The H2 if statement
	The H2 while statement
	The H2 emit statement
	The H2 waituntil statement
	The H2 wait statement
	The H2 guard statement
	The H2 resultis statement
	The H2 return statement
	The H2 skip statement
	The H2 continue statement
	The H2 break statement
	The H2 label statement
	The H2 goto statement
	The H2 block statement
	The H2 assignment statement
	The H2 procedure call statement
	The H2 channel write statement

	H2 Structural Statements
	Facet definitions
	Node declaration statement

	Temporal Regular Expressions
	Stategraph Definition
	Abort Statement

	Joining Automata Synthesis
	Meaningful Play and Mitre Automata
	Behavioural section
	Assertion
	Connect Declarations

	SSMG Refinement Algorithm
	Transactor Synthesis
	Orangepath Synthesis Engines
	A* Live Path Interface Synthesiser
	Transactor Synthesiser
	Asynchronous Logic Synthesiser
	SAT-based Logic Synthesiser
	Synchronous FSM Synthesiser
	Synthcontrol

	PSL Synthesiser
	Statechart Synthesiser
	SSMG Synthesiser
	Restructure Synthesiser

	Output Formats

