
Control Software for Home Automation, Design Aspects and Position Paper

D. Greaves

Abstract

Keywords: Autohan, UPnP, Iota, XML.
The home is an eternal, heterogeneous, distributed com-

puting environment which must be secure and reliable.
Computers and embedded processors in the home are all
different shapes and sizes and ages. Hence the home poses
one of the most challenging environments for co-operative
programming. We envisage that control software is intro-
duced into the home by four different methods varying from
embedded ROM code to applets generated from a combina-
tion of natural language and gesture with wands. But we
argue that, in the long term, all of it must be represented in
a common, formally-verifiable language and conform to a
common scripting convention. The AutoHan project at the
University of Cambridge Computer Laboratory is the um-
brella under which we are trying to grow these ideas [3].

1 Introduction: Application Code versus
Data Processes

The number of microprocessors in the western home of
today can easily exceed one hundred. In the past, each pro-
cessor runs ROM code that encapsulated a fixed application
that was never upgraded. An application was typically a
simple event control loop, which for instance, ejected the
CD player draw when the eject button was pressed, and im-
plemented a rule of not much greater complexity for each
of the other buttons on the device or on the device’s dedi-
cated IR controller. However, as devices become networked
the interaction of these ‘canned’ applications becomes im-
portant. In addition, the presence of server platforms in the
home is growing. The modern VCR in the form a TiVo [1]
is in fact a Linux PC capable of hosting any application. For
the purpose of this paper, we will redefine the term ‘appli-
cation’ to mean a control program that does not do any data
processing. Hence a program that, for example, implements
a specific functions on stream of data, such as transcoding
from MPEG to M-JPEG, is not an application, it is a merely
a process that can be run on any suitable host with available

network and processor bandwidth. We assume that the user
interface to this transcoder, that sets up its parameters and
sets which streams it operates on, is replaced with a true
application, in our sense, that communicates using UPnP
SOAP and GENA [13] with the transcoder process. A large
library of data processors will be readily available for run-
ning in the home environment of the future. Many will be
invoked with application control software and others may
run eternally. Functions provided by members of the pro-
cess library include speech recognition, pay-per-view cre-
dential checking and electronic money handling. Some pro-
cesses are essential to the correct operation of the home con-
trol software. These include interpreters for the language(s)
that the control software is scripted in and a secure database
of information about the home.

Therefore we are arguing that all embedded applications
will export the details of their operation, or their ‘seman-
tics’ over the network. This is a natural extension to what is
offered in UPnP for exporting device description and pro-
viding device control. UPnP enables a device to describe it-
self and offer an API to allow remote applications to invoke
its internal functions. However UPnP does not export the
canned application inside a device and so there is no knowl-
edge of what a device will actually do when introduced to
the environment. Its internal, canned application will typ-
ically remain running, hosted on the internal processor in
the device. Only if a device exports information about the
control code that it introduces into the home can the home
remain stable.

Below we present our view that that there will be four
main sources of home control software before looking at
design issues in detail. We are working on the basis that all
of the control software will be written in common language
that is friendly with XML and amenable for formal proof.

2 Sources of Application Code

We think that four sources of application code will be
used in the home of the future:

1. Standalone, built-in ROM applications. Most conven-
tional consumer devices are expected to operate out-
of-the-box without connection to any home network.



The canned application in the internal ROM provides
the connection between the user-interface portion of a
device and its internal API. As standard, both of these
halves are assumed to be described in XML and con-
trollable using SOAP according to the UPnP specifica-
tion.

2. Networked, built-in ROM applications. This second
form again operates out of ROM provided in the de-
vices but is different in that it detects that a peer device
or service is accessible over the home network connec-
tion and so starts to use it or offer a service based on it.
A simple example is that a pair of hi-fi amplifiers might
detect each other and allow routing of audio from one
to the other. The user interface to these built-in appli-
cations is also built in, and in the amplifier example,
could take the form of an additional item on the source
selector menu or rotary switch, which is ‘remote am-
plifier’. The user simply selects this source to have
access to the sound channels selected with the source
selector on the other amplifier. Similar example ap-
plications using video and the relaying of commands
from infra-red remote control handsets are also likely
to be built-in to ROM.

3. Uploaded and Download Applications. These are
software programs or modules which move over the
network to their point of execution. There are three
main forms: 1) modules which are downloaded into
a device and then provide additional functionality for
that device, 2) modules which are stored in the ROM
of a device and are exported to be executed on a more
powerful platform, and 3) modules which are down-
loaded from the WWW or by a remote service techni-
cian over the access network.

4. User Applications.

User applications have been created by the user. Al-
though they are not different in architecture from
downloaded or uploaded applications, the creation of
them is via novel user interfaces, based on gesture,
natural language and a new interface paradigm. They
could also be created by AI techniques that monitor
the behaviour of the user and suggest new automa-
tions. We have been working on two scripting forms.
Firstly we have been working with SRI as part of
the project ‘Dialogues in the Home Machine Envi-
ronment’ to generate scripts to control the home and
secondly we have created programs from the ‘Media
Cubes’ described below.

3 A suitable language ?

The crux of the issue is to chose a suitable scripting lan-
guage. Java is an imperative language with a reflection API
and is worthy of consideration. However, we have previ-
ously written about the shortcomings of strongly-typed syn-
chronous RPC as the basis for eternal and flexible systems
[2]. Instead we believe that functional and declarative lan-
guages are easier to reason about and that a higher-level,
more domain-specific language will be more practical. We
have tried two approaches so far: CEL and Iota. Both of
these have been tied to XML since XML is the universal
language for extensible data representation. Extensible data
formats are essential for eternal systems such as home con-
trol. It is impossible for systems that use binary-coded data
representation, such as HAVi [12] to interoperate without
reference to a shared header file or set of RPC stubs. Such
a shared reference will soon go out of date in that it will
not include the codepoints for newly invented functions and
devices.

The utility of readily extensible systems comes from
that, as time passes, knowledge is disseminated about how
others have extended the system and this eventually be-
comes set in stone. In the same way that we are all used
to the rather arbitrary string ‘C:’ denoting the root drive on
a PC (which may be a partition and not a separate disk or
indeed it may be an entirely virtual PC), home control soft-
ware will gradually evolve to rely on certain structures to
always be present in the XML that describes a home, and to
rely on strings such as ‘FrontDoorBell’, ‘MediaServer’ or
‘LivingRoom’.

The major design considerations for our application lan-
guage are now listed:

1. Basics.

Obviously we need a language that supports concur-
rency and network communication and secure load-
able code modules. It should either have a portable
bytecode or be efficiently interpretable in source code
form.

2. Efficient handling of asynchronous, parameterised
events.

Many home automation applications will operate in re-
sponse to events generated by other applications or de-
vices that asynchronously disseminate the events. An
example is to switch the hall lights on if the front door
is opened and it is dark. Asynchronous dissemination
is used since this is efficient for nearly-reliable multi-
cast and the generator does not wish to block if a pre-
viously interested application has suddenly gone away.

3. Type-safe handling of XML.



As has now widely accepted in home automation
projects, AutoHan keeps all of the information about
the home in a secure, distributed, federated or cen-
tralised XML database with secure access. This is
called DHan and is described in [3].

One raison d’etre for XML is that it is a convenient
format for tree-structured data that can be viewed and
understood, at least to some extent, by a viewer, per-
son or application that does not have full knowledge of
the formal structure of the tree. Instead, the recipient
may have partial knowledge, or knowledge of a pre-
vious release of the structure definition, or may infer
the structure and meaning from the direct use of En-
glish and ASCII in the XML format. Parts of an XML
tree that are not recognised can be ignored while still
correctly parsing other parts of the same XML docu-
ment. An example is that XML can be viewed in a
web browser with or without style-sheets to define the
view.

Our programming language requires tight integration
with the home XML database in that most of the data
values and identifiers in the language will originate in
the database. XML itself is purely an annotated tree,
but schemas can be defined to impose further structure
on required fields, values and referential consistency
[4]. We are believers in strongly-typed programming
languages, but equally we wish to allow the format of
the XML data controlled by the program to be flexi-
ble. This is a dichotomy. Any language design must
chose how much to tolerate by default and how much
to leave the ‘user’ to provide explicit defaults or han-
dle as exceptions. We envisage a standard library that
provides all default handlers needed for a newly mech-
anised home.

Another aspect of eternal systems is to provide per-
sistent data structures that retain values over process
migration, reboot and version upgrades. We think it
is desirable to implement so-called ‘orthogonal persis-
tency’ where no special user programming is required
to achieve this. Clearly, the XML database provides
a natural place for this state to be mirrored and so is
another aspect of XML integration.

4. Canned code can re-hydrate itself.

Re-hydration, or binding, may be considered as a pro-
cess of mapping textual identifiers found in the source
code to actual objects found in the execution environ-
ment, and taking default actions if there is no map-
ping to hand. Additional code sections may need to be
loaded from the Internet or elsewhere as a side-effect.
Each code section must be securely signed and authen-
ticated. All programming languages today must imple-
ment this, but for the home, where these mappings are

more dynamic and varied from one house to another,
the language must make this very easy. The approach
of popping up a web page that presents a kind of XML
plugboard to allow the user to manually resolve and
bind unknown identifiers seems good. It can leverage
the ASCII nature of XML but relies on a suitable user
interface already being in operation.

5. Code may be replaced or upgraded while executing.

When installing new code, some of the functions of the
new code will be replacements or overrides for existing
functions. It may be a complete overlap if an applica-
tion is being upgraded to a new version or it may be
a partial overlap if a new application, such as ‘follow-
me audio and video phone’ overrides a previous ap-
plication, such as ‘play audio on speakers in current
room’. State from the previous application instance
normally needs to be preserved. Identifying the super-
seded components is hard to automate and can only
be done if the system as a whole has detailed knowl-
edge of the functions of each application. It seems in-
evitable that any solution will require at least some at-
tention to this problem by the application creator but
the programming language can perhaps go a long way
to help.

6. Programs in the language can be created by tangible
interfaces.

When speech, gesture and AI are used to create new
scripts, it is likely that a set of phrases or macros
in our language will essentially be stitched together.
However, it may be sensible for the language itself to
support most of these macro functions (near-)natively.
This leads us to consider a highly-domain-specific lan-
guage where important home concepts such as rooms,
times, temperatures, people and television channels are
all native data types.

7. The behaviour of a program can be readily understood
by automated reasoning.

We envisage that statutory regulation and contractual
agreements will cover many aspects of the operation
of the home network. We envisage ‘serious’ uses of
the equipment in the home, such as the burglar alarm
presented in example below, are envisaged alongside
frivolous applications, (such as a program perhaps
found on a freebie smartcard in a cornflakes box that
turns the house lighting into a disco sound-to-light sys-
tem.) Therefore it is essential that priorities between
competing applications can be determined and poten-
tial conflicts determined before they arise. In addition,
we will wish to impose a large set of rules on the sys-
tem regarding the allowable reachable states and per-
haps the rate of expenditure of children’s electronic



pocket money. Apart from not disabling the burglar
alarm, a base rule set may restrict the user from lock-
ing himself out of the house or spending more than 100
pounds per day on video network services.

3.1 Examples languages to date

We have written various home automation apps in C and
Java, but not with a view to achieving the above goals. We
have also written automation apps in CEL and Iota.

Cambridge Event Language (CEL) [5] is a set of al-
gebraic operators that match sequences of parameterised
events. Our event engine stores and concurrently executes a
number of event expressions composed of these operators.
Events can be received over the network in GENA form or
generated from the matching (firing) of event expressions
themselves. Other actions can be associated with a firing of
an event using an event script. Hence an application is a list
of event expression and action pairs. An action can be to
send a SOAP RPC to a device or send an HTML NOTIFY
to the XML database to change or refresh the state stored
there. Asynchronous event handling and concurrency are
innate in this language. Rehydration can be implemented
using a set of rules that macro-generate the actual event
script from a canned form by expanding it against informa-
tion currently available in the XML database and by repeat-
ing this process as needed when new information is regis-
tered in the database or certain changes occur.

Formal proof regarding reachability and interference be-
tween applications is being done for CEL by M Rowbotham
at Cambridge. He has taken a number of canned applica-
tions for home devices and added some hand-written ap-
plications that link the home devices together to perform
an integrated function. All code fragments are written in
CEL. A program performs static analysis of the whole body
of CEL and generates verification conditions. The condi-
tions are output to a n-SAT solver where n is the level of
quantization of the most fine variable in the system (e.g.
we might support only 16 different temperatures for a room
to keep n small). The important verification conditions all
seem to relate to the rate of possible generation of events.
For instance, a simple rule that prevents event storms can
be expressed as a time limit restriction on how soon the re-
sult of a given event will again cause that event to occur.
Equally, a rule that restricts expenditure of pocket money
can be expressed as a rate restriction on debit transactions.
Finally, reachability can be expressed as an infinite time be-
fore some event occurs, such as a desire to prevent a given
condition ever happening. This work is due to finish in time
for the conference. An extension will be to generate HOL
[6] theorems for proof rather than restrict to SAT cases.

3.2 Example Language: Iota.

Bierman and Sewell invented Iota as an experimental
language for manipulating XML [7]. The language is func-
tional and performs type-inference in the same way that
SML does [8]. XML code is directly embedded as patterns
or expressions in Iota. For example the following is a valid
expression in Iota

<meaning of="life">7*6</meaning>

The integers could be replaced with variables whose values
would be fetched, but as written the constant 7 is multipled
by the 6 to produce a fragment that cannot be further evalu-
ated: a constant expression.

Iota provides the powerful facility of pattern matching.
This enables compact and highly readable code. For exam-
ple the following piece of code accepts a piece of person
markup in XML as an argument and returns its age attribute
value.

fun returnAge <person age=a> => a;

Concurrency in Iota is either provided outside the lan-
guage when an external agent starts more than one program
running at once, or else internally using the built-in features
of Pi Calculus [9] including a parallel composition oper-
ator and synchronous message passing over named chan-
nels. Re-hydration of canned code can be implemented via
subroutine calls to Iota stubs that indirect through the main
XML database.

Because Iota has a formal specification based on SML,
Pi Calculus and other mainstream ideas within our theory
group, there is already a lot of experience to hand for prov-
ing properties of Iota programs, but I have yet to see any
proof results when Iota is used for home applications.

Our experience with generating applications from the
tangible interfaces suggests that rules are a good basis for
representation (e.g. when I press THIS button turn on
THAT object), and hence there was an obvious mapping
into CEL. With Iota, response to asynchronous events is
merely a matter of forking a subprocess that blocks on
each possible source of an asynchronous event. Iota pro-
vides very lightweight concurrency for this purpose and it
is an interesting question of theory meeting practice to see
whether the synchronous concurrency is indeed sufficiently
lightweight for an implementation to scale in the same way
as has been achieved with CEL.

As already mentioned, when it comes to designing a pro-
gramming language to handle XML, the weak-typing bene-
fits of XML must be respected, otherwise the language has
achieved nothing. There are a number of levels of embed-
ding XML into a programming language, and Iota has cur-
rently taken a level where the structure of the tree is not
checked for any formal structure, apart from via matches



failing at runtime. Iota also considers strings to be atomic,
i.e., strings that are not the same, but textually similar are
considered totally different. Also, the order of sub-trees
in a list is considered important by default, whereas there
are many applications of XML where the order will need to
be ignored. Further experience will show whether Iota has
taken the correct approaches. We must recognise that meth-
ods of generating and checking Iota programs may be able
to provide additional richness, rather than building features
into the language. Iota is radically different from XMILE,
an imperative language whose concrete syntax is in XML
[14].

4 Operating Systems and UbiqtOS

We are envisioning a system that is homogeneous at the
application scripting layer, although clearly there are a large
number of physical networks that can carry the required
UPnP and AutoHan protocols as well as the media and other
application data. Clearly execution platforms are different
in capabilities, but by our restriction of the definition of an
‘application’, mentioned earlier, it is fair to say that nearly
any platform will be able to execute nearly any application.
We envision the processing power needed for the interpreter
for a small number of applications being below one MIP.

Saif has generated an operating system called UbiqtOS
[10]. This has taken a slightly different approach from that
outlined above and makes interesting comparison. Saif as-
sumes an XML database of all relevant information and
similarly allows this to be federated between the different
execution platforms that make up the system. All applica-
tion and protocol code apart from the kernel itself is writ-
ten in Java bytecode and each IPC and network operation
between concurrent processes is indirected by the kernel
through the XML database where information about how
to implement the operation in detail may be stored. For
instance, depending on the database contents, a GENA no-
tify may be sent over IPV4, IPV6, UDP, TCP or as a raw
network datagram. The application code that generated
the GENA event would not know which. The kernel pro-
vides full support for weak mobility of active agents (i.e.
suspended Java programs sent over the network) and these
agents can update the XML database to configure the sys-
tem.

Saif’s view of an eternal ubiquitous system places a
small kernel and JVM in ROM in each device. He assumes
this will never need to be changed but allows that all other
aspects of the system can be upgraded by indirections stored
in XML. This provides one of the most flexible environ-
ments for embedded software ever created. Within Auto-
Han, such a platform has a clear role for the data processors
described in the introduction. It can also be used as the
underlying operating system for the application script in-

terpreter where, no doubt, wire protocols and requirements
will change from time to time. However, for the application
interpreter itself, we do not envisage much evolution, and
so do not wish to call on the available flexibility at the top
layer. Instead, we want our interpreter to assume a similar
status to the JVM, or indeed, we could compile our script to
Java bytecode without loss of the clean semantics.

5 Media Cubes and Rabbit Wand

Our fourth source of scripts is user applications, so now
we summarise our work with handheld controllers and voice
input to generate scripts.

Infra-red is an important medium for the home and cer-
tainly people will continue to use remote controllers of in-
creasing sophistication. Some controllers will stay put in a
room and others will be carried around and worn. Some
controllers will continue to be provided with consumer
goods but others will be much more general purpose. We
wish to use this new generation of controllers both for real-
time control of the network and for programming the home
to set its future actions and behaviour. A major semantic is-
sue with the controllers of today is that they must be pointed
at the object under control. In this work, we want to point at
things not immediately to hand, such as the heating boiler,
and also more abstract things, such as a radio programme on
a given channel at a future date. We also want to combine
controllers together or point them at each other to achieve
advanced operations in a natural way.

The Rabbit Wand and the Media Cubes [11] are exam-
ples of the new controller generation. The Media Cubes
provide something to point at to iconify the abstract entities
and then go further, when we combine cubes to form a pro-
gramming language. The Rabbit Wand is an IR controller
with a microphone input and both narrow and wide infra-red
beams. When the narrow beam is a visible laser pointer, or
similar, very accurate pointing is possible. We might envis-
age a consumer device with a number of little targets that
can be pointed at when it is occasionally necessary to do
some fine control function.

The controller can be used to point at devices and the
speech input function processes demonstrative adjectives
for correlation with the devices being pointed at. A mo-
tion sensor or solid-state gyro could be included cheaply in
the rabbit.

The first Rabbit does not do speech recognition itself, but
instead puts the voice over a DECT-style link to a network
receiver node. The receiver node relays the audio over the
home network to a server running the speech recognition
function and other software. We are working on this other
software.

Figure 3 shows prototype Media Cubes [11] that may be
placed next to each other in various configurations to write



Wide Angle
IR

Narrow IR

Keypad

LCD
Display

Press to talk
Microphone

Figure 1. Rabbit IR controller with Speech Input.

Radio
RX

HAN network hub27 MHz AM 10 kHz
Audio Channel

Unidirectional normally.

Consumer item
with IR receiver

HAN

IR Basestation

Speech
Recognition

One radio basestation
using DECT serves whole

house

Converts audio stream
to recognition events.

Figure 2. Rabbit network architecture.

Figure 3. Prototype Media Cubes.

programs and implement real-time home control. They can
also be pointed at by an IR wand. These first media cubes
are indeed cubic and have one button. This is deliberately
very different from an IR controller. We expect our final
controllers to be somewhere in between the two, preserving
the power and tactile nature of current IR controllers while
supporting the adjacency facilities of cubes.

The Media Cubes pictured here are early prototypes.
Each cube has a bidirectional infra-red link to the IR bases-
tation (also pictured), and can be pointed at with the Rab-
bit Wand or other IR controller. The face of each cube
has an induction coil, which allows it to detect adjacency
with other cubes. These coils should be covered over with
graphic sheets that indicate the function of each face of each
cube, but these sheets are missing in the photo.

Having induction coils, batteries and IR transceivers on
each cube is not seen as a long-term technology solution.
These prototypes are just to experiment with the cube lan-
guage and concept. In the long run, cubes are intended to
be much cheaper than today’s infra-red controllers. We also
envisage virtual cubes which can be manipulated on a dis-
play device and that home programming information can be
displayed with cubes.

Here is an example use of the cubes, developed by R
Hauge. If we point the television IR controller at the TV



and press ‘1’ it turns on the TV on BBC-1. If instead we
point the same controller at the ‘time’ cube and set the little
display on the time cube to some time tomorrow, then press-
ing the ‘1’ button on the IR controller defines a one-time
program to turn on the TV on BBC-1 at that time tomorrow.

If we point the controller at the ‘when’ cube and place
another cube which has been associated with receiving
DTMF messages by telephone on the correct face of the
‘when’ cube, then we can generate a program to turn on the
TV on channel 1 when we dial in with a given code.

The cubes may be thought of as infra-red remote con-
trollers with one or two buttons. They are at the extreme
other end of the spectrum from our current infra-red con-
trollers that bristle with buttons. We shall soon have made
some more combi-cubes that have more controls on them
yet which can still be combined with each other.

6 A Scripting Example

Figure 4 shows the basic elements on a network burglar
alarm and hi-fi system that interact owing to sharing the
same audio modules. The part of the overall system we
shall consider is how to mute the hi-fi without over-riding
the burglar alarm. The muter and the burglar alarm are sep-
arate sections of application code, written at different times
by different authors and loaded into the system at different
times. Our system ensures that they co-operate correctly, in
that we have a rule of consistency that states that the burglar-
alarm subsystem must be present and in working order at all
times.

We shall not consider the source of the mute, which
might in practice be the front-door bell or an incoming
phone call. We just consider an event source that gener-
ates a ‘mute’ event from time to time. Similarly we have
an alarm senor that generates a ‘burglar’ event from time
to time. We do not consider um-muting or turning off the
burglar alarm.

The Alarm Tone Generator is potentially a software ob-
ject running on any platform in the home. It accepts ‘start’
and ‘stop’ events and requires its output to be connected via
a multi-media stream to the audio output module. A simi-
lar stream is needed to connect the CD player to the audio
output module. These streams are created and destroyed by
sending events to the connector. The Alarm Tone Generator
needs to be instantiated when the burglar alarm application
is installed or when it goes off. The other objects are as-
sumed to exist already and to be registered in the registry
already.

Each application is essentially a one-liner in terms of
event propagation:

Burglar Alarm When ‘burglar’ is detected, send ‘start’ to
Alarm Tone Generator.

Muter When ‘mute’ is detected, set volume on Audio
Module to zero.

The critical issues is whether the Burglar Alarm also
does the following

Burglar Alarm When ‘burglar’ is detected, also set vol-
ume on Audio Module to maximum.

if it does not, then the muter application should not be al-
lowed to start, since it would potentially defeat the burglar
alarm. Apart from the volume setting on the Audio Mod-
ule, similar considerations apply to the creation of the multi-
media links.

The multi-media links may be physical wires or chan-
nel connections over an ATM or Firewire network. They
may also be connectionless flows over a simple Ethernet,
in which case they have no actual manifestation in the net-
work. They may be flows over a concatenation of different
network types. The ‘Connector’ is a system function that
enables events to control multi-media flows. To establish
a connection in our system, a connect event is sent to the
connector.

A particularly tricky part of our system design is to en-
sure that newer models of, say, the Audio Output Module
do not defeat the burglar alarm. Our aim in using XML to
describe these devices is that tags that are exported by a de-
vice but not mentioned in an application script can be safely
ignored. However, if the newer version of the module has a
new tag that essentially acts as a hidden mute function, then
our system can break. Therefore, rules for extending devices
need to be respected by the maker of such new devices.

We enlarge the burglar alarm definition beyond what is
shown in the picture by requiring it to capture ‘burglar’
events from any Burglar Sensors stored in the registry, not
just one. Similarly, we want to sound the alarm on all de-
vices that can create the required audio outputs (such as
headphones the user is wearing). Finally, modules such as
the Tone Generator and the Audio Output Module, in gen-
eral, may or may not have the capability to multiplex their
multi-media streams from or to multiple peers, and so we
wish to support a layer of abstraction or other means that au-
tomatically introduces this capability where provide in the
physical devices (such as in our Warren-based implementa-
tion of the multi-media parts).

Figure 5 shows the code for the Burglar Alarm applica-
tion. This code is fired up at system boot time by a statutory
section of the boot sequence. We assume reboot is less than
once per year. The sensors and Audio Modules have, we
envisage, a shorter lifetime than the Burglar Alarm appli-
cation: that is, they can come and go between reboots and
hence between restarting the Burglar Alarm script.

Our aim is to fully complete the implementation of this
system so that a correct way of defining device and applica-
tion properties evolves.



Audio
Output
Module

Alarm
Tone

Generator
Intruder
Sensor

Mute
event
source

CD
Player

Start

Stop

Start

Stop

Set Vol
Mute

Connector
Make

Break

Fire

Figure 4. Burglar Alarm and hi-fi Example.

process: for all Burglar Sensors, if there is a
burglar execute procedure p.

procedure p: for all audio output modules, set
their volume to max, instantiate a burglar Alarm
Tone generator, connect the module to the tone
generator and start the tone generator. Set the
module volume to max.

Figure 5. Burglar Alarm Script

process: if the muter mute event happens, set
the Audio Output Volume level to zero.

Figure 6. Part of the potentially offending
Muter Script

Acknowledgments

Acknowledgments are due to the following people for their
contribution to the work described above. Peter Sewell, Umar Saif,
Gavin Bierman, Daniel Gordon, Rob Hague, Mike Rowbotham
and Alan Blackwell.

References

[1] ‘TiVo automatic digital recordings of your favourite TV
shows without hassles’ TiVo Corporation. www.tivo.com.

[2] ‘Communication Primitives for Ubiquitous Systems or RPC
Considered Harmful’. Umar Saif, David J. Greaves. Proceedings
of 21st International Conference of Distributed Computing Sys-
tems (Workshop on Smart Appliances and Wearable Computing),
2001.

[3] AutoHan Project Web Pages.
www.cl.cam.ac.uk/Research/SRG/netos/han/AutoHAN

[4] ‘XML-Schema Part 0 Primer.’ www.w3.org/XML.

[5] ‘Using Events for the Scalable Federation of Heterogeneous
Components’. Proceedings of ACM SIGOPS European Work-
shop, September 1998. Bates, J. Bacon, K. Moody and M. Spiteri.

[6] HOL ‘Introduction to HOL’ MJC Gordon, TF Melham
(eds.) Cambridge University Press 1993 ISBN 0-521-441897.

[7] ‘The Iota Programming Language. What is it?’ G Bierman,
P Sewell. www.cl.cam.ac.uk/ gmb/Iota/

[8] ‘ML for the Working Programmer’ LC Paulson. , 2nd Edi-
tion. Cambridge University Press.

[9] ‘The Polyadic pi-Calculus: A Tutorial’ R Milner.
www.lfcs.informatics.ed.ac.uk/reports/91/ECS-LFCS-91-180

[10] ‘Context-aware Adaptation in UbiqtOS: A Java-based
Embedded Operating System for Ubiquitous Computing’. U Saif,
D Greaves Proceedings ACM SOSP 2001. Banff, Canada. See
also Saif’s PhD dissertation from Cambridge.

[11] ‘AutoHAN: An Architecture for Programming the Home’
A Blackwell, R Hague. End-User Programming Symposium at
HCC 2001.

[12] ‘The HAVi Specification V1.0 beta’ www.havi.org

[13] ‘Universal Plug and Play’ www.upnp.org

[14] XMILE http://pizza.cs.ucl.ac.uk/xmile


