
M AN215
A Simple CAN Node Using the MCP2510 and PIC12C67X
INTRODUCTION
This application note describes the design, develop-
ment and implementation of a smart, low cost, stand-
alone Controller Area Network (CAN) node. It com-
bines the Microchip 8-pin PIC12C672 microcontroller
with the Microchip 18-pin MCP2510 stand-alone CAN
controller. This creates a fully autonomous CAN node,
which supports both “time-based” and “event driven”
message transmission.
The node is interrupt driven, capable of monitoring five
external inputs (two analog and three digital) and auto-
matically generating messages based upon their value,
controlling two digital outputs, responding to message
requests via the CAN network and generating a
repeating, time-based message.
The system supports a maximum CAN bus speed of
125 kbits per second, with both standard or extended
frames. The system is presented using standard
frames. Some code changes would be required to
implement extended frames.
This application note focuses on the design and devel-
opment of the node from the system level. No discus-
sion of the nature of the analog signals is presented.
The digital inputs are, simply, switch contacts whose
purpose is left for the reader to define. This application
note concentrates on the unique requirements of imple-
menting the CAN node functions using an I/O limited
microcontroller and a stand-alone CAN protocol
controller.

SYSTEM DESCRIPTION

Overview
Figure 1 shows the block diagram of the overall sys-
tem. There are two functional blocks. The first is the
Control Logic block. This function is performed by the
PIC12C672 microcontroller. The PIC12C672 was cho-
sen because of the low pin count and powerful feature
set, which includes an internal oscillator, on-board,
multi-channel, 8-bit analog-to-digital converter (ADC),
multiple interrupt sources and low power sleep mode.
The second is the CAN interface block. This block is
comprised of the MCP2510 CAN controller and the
MCP2551 transceiver. The MCP2510 provides a full
CAN 2.0 implementation with message filtering, which
relieves the host microcontroller from having to perform
any CAN bus related overhead. This is a key feature
given the limited available code space of the
PIC12C672.

FIGURE 1: CAN NODE BLOCK
DIAGRAM

Author: Rick Stoneking,
Anadigics, Inc.

PIC12C672 MCP2510

Control Logic CAN Interface

MCP2551

CAN Bus
 2002 Microchip Technology Inc. Preliminary DS00215B-page 1

AN215

Communication between the Control Logic block and
the CAN interface block implements the MCP2510’s
built-in support for the SPI™ protocol. The PIC12C672
does not have a hardware SPI interface, so the
necessary functions are implemented in firmware.

Two external analog signals are tied directly to the ana-
log input pins of the PIC12C672. An A/D conversion is
performed automatically for analog channel 0 (AN0),
based upon the internal timer setup. The value is auto-
matically transmitted over the CAN bus once the
conversion is completed.
The node also utilizes the MCP2510’s multiple filters to
respond to four additional CAN Message Identifiers
received via the CAN bus. The masks and filters are set
to accept messages into receive buffer 1 only. The
identifiers are interpreted as one of the following,
depending upon which filter is matched:
• Read Analog Channel 1

- Perform A/D conversion for analog channel 1
(AN1) and initiate transmission of the value
back to the requesting node

• Read Digital Inputs
- Read the value of the MCP2510 input pins

and transmit the value back to the requesting
node

• Update Digital Output 1
- Write the received value to the MCP2510

digital output 1
• Update Digital Output 2

- Write the received value to the MCP2510
digital output 2

Since only receive buffer 1 is used, the mask registers
for receive buffer 0 must all be set to a ‘1’. This action
should be followed by setting the filter bits to match an
unused message indentifier (typically all '0' or all '1') in
order to take advantage of the greater number of filters
associated with that receive buffer.

Message Identifier Format
As presented, the system requires that messages
intended for the node have a standard identifier which
has a value of 0x3F0 to 0x3F3, with each of the four fil-
ters configured to accept one of these messages. For
messages the node returns, it uses the same identifier
as the received message, with the exception that the
ID3 bit is set to a ‘1’. Therefore, when the ‘Read Analog
Channel 1’ message is received (ID=0x3F0), the node
returns the data using a message ID of 0x3F8. The
time-based message for the value of analog channel 0
is transmitted with an identifier of 0x3FE. If a system
error is detected, the system error message uses the
identifier 0x3FF. Table 1 summarizes the various trans-
mit and receive message identifiers used. All transmit-
ted messages use data byte 1 of the CAN message to
hold the data to be sent.

HARDWARE DESCRIPTION

Design/Performance Considerations
When designing a system, there are a number of
design considerations/tradeoffs/limitations that must
be taken into account. Proper selection allows the sys-
tem to achieve optimal performance from available
resources and to determine if the desired performance
can be achieved. The overall performance of the sys-
tem is a function of several things:

• The system clock rate
• The throughput of the SPI bus
• Interrupt latency
• External interrupt request frequency

System Clock
The PIC12C672 has only six available I/O pins and all
of these are used. Two for analog inputs and four (three
SPI and one INT) to interface to the MCP2510. This
requires the system to take advantage of the internal
RC oscillator of the PIC12C672. The internal RC oscil-
lator provides a 4 MHz system clock to the
microcontroller, which translates to a 1 µs instruction
cycle.
The instruction cycle time directly affects the achiev-
able speed of the SPI bus. This, in turn, determines the
interrupt latency time as SPI communication makes up
the majority of the time required for the Interrupt Ser-
vice Routing (ISR).

SPI Bus
The standard SPI interface has been modified in this
application to use a common signal line for both Serial
In (SI) and Serial Out (SO) lines, isolated from each
other via a resistor. This method requires only three
I/O pins to implement the SPI interface, instead of the
usual four. Using this configuration does not support
the full duplex mode of SPI communications, which is
not an issue in this application.

TABLE 1: MESSAGE IDENTIFIERS
ID Tx/Rx Description

3F0 Rx Read Analog Channel 1
3F1 Rx Read Digital Inputs
3F2 Rx Change Digital Output 1
3F3 Rx Change Digital Output 2
3F8 Tx Analog Channel 1 value
3F9 Tx Current values of digital inputs
3FA Tx 3F2 Command Acknowledgement
3FB Tx 3F3 Command Acknowledgement
3FE Tx Analog Channel 0 value
3FF Tx System Error
DS00215B-page 2 Preliminary  2002 Microchip Technology Inc.

AN215

The system achieves an overall SPI bus rate of slightly
more than 80 kbps, with the raw SPI clock rate averag-
ing 95 kbps. The clock low time is a fixed 5 µs, and the
clock high time is either 5 µs or 6 µs, depending upon
whether a ‘0’ or a ‘1’ is being sent/received, which gives
a worst case (sending the value 0xFF) of 90.9 kbps raw
clock rate. The overall effective speed achieved
includes the additional software overhead of ‘bit-
banging’ the SPI protocol.

Interrupts
There are two interrupt sources in the system. The first
is the PIC12C672 Timer0 interrupt, which occurs every
10.16 ms. The second interrupt source is the INT pin of
the PIC12C672 and is connected to the INT output of
the MCP2510. This interrupt occurs anytime a valid
message is received, or if the MCP2510 detects a CAN
bus related error. This external interrupt is completely
asynchronous with respect to the rest of the system.

Interrupt Latency
It is necessary to carefully consider the interrupt
latency requirements during the system design/devel-
opment phase. This system has two interrupt sources:
the internal timer interrupt, which occurs approximately
every 10 ms, and the external INT pin interrupt, which
is generated by the MCP2510 CAN controller, and may
occur anytime. The latency time for the Timer ISR is
essentially fixed. This parameter is a function of the
time it takes for the ADC to perform a conversion on
both channels, write the values to the transmit buffer
and issue a Request-to-Send (RTS) command to the
MCP2510 via the SPI interface. This takes approxi-
mately 428 µs to complete.

Digital Inputs and outputs
The MCP2510 has three pins that can be configured as
general purpose inputs, and two pins that can be con-
figured as digital outputs. Both are implemented in this
design. These are discussed only at the simplest level
within the scope of this application note. The inputs
shown are connected to switch contacts, with the out-
puts being connected to LED indicators. The MCP2510
inputs have internal pull-up resistors. They will read
high when the attached switch is open, and low when it
is closed.
The MCP2510 has two I/O pins (RX0BF and RX1BF)
that can be configured as general purpose outputs.
These pins are configured as outputs and are con-
nected to LED’s to function as some type of indicator
lights, controlled via the CAN bus.

CAN Bus
The CAN bus is configured to run at 125 kbps. The
clock source for the MCP2510 is a standard 8 MHz
crystal connected to the OSC1 and OSC2 inputs. The
CAN physical layer has been implemented using an
industry standard CAN transceiver chip (e.g., Micro-
chip MCP2551). This device supports CAN bus rates of
up to 1 Mbps and is more than adequate for the
application presented here.

FIRMWARE DESCRIPTION
The firmware is written in PICmicro® microcontroller
(MCU) assembly code. The relative simplicity and
small size of this application makes assembly language
a more than suitable choice.

Figure 2 shows the top level flowchart for the overall
system operation. The PICmicro MCU, after going
through self initialization and initializing the MCP2510,
goes to sleep and waits for an interrupt to occur. The
following sections provide more detailed discussion of
the operation of each of the major blocks in the
firmware.
 2002 Microchip Technology Inc. Preliminary DS00215B-page 3

AN215

FIGURE 2: NODE OPERATION

Initialize

and MCP2510

Sleep

System POR

Interrupt
Occurred?

Process Request

Error Interrupt?

Filter Match?

Read MCP2510
Interrupt Flags

Read MCP2510
Rx Filters

Timer
Interrupt?

Perform A/D
conversion on

Write A/D value
to MCP2510

Transmit Buffer

Send Request to
Send Command

to MCP2510

Clear Interrupt
flags in

PIC12C672

Clear Interrupt
flags in

PIC12C672 and
MCP2510

Error Handler
Routine

SysErr(InvMsg)

No

Yes

No

Yes No

Yes

No

Yes

AN0

 PICmicro® MCU
DS00215B-page 4 Preliminary  2002 Microchip Technology Inc.

AN215

PICmicro MCU Initialization
Initialization of the PIC12C672 is straightforward.
There are three major functions that need to be prop-
erly configured within the PIC12C672:
• General Purpose I/O pins (GPIO)
• Timer0 module
• A/D converter module
Additionally, the configuration word must also be pro-
grammed to enable/disable code protection and select
the oscillator type.

GENERAL PURPOSE I/O PINS

The GPIO pins are the six I/O pins that are used to
interface the PIC12C672 to the MCP2510 and sample
the analog signals. The PICmicro MCU OPTION, TRIS
and INTCON registers are used to control the setup of
the GPIO pins. In this case, the OPTION register is pro-
grammed to disable the internal pull-up resistors on
GP0/GP1/GP3, and configure GP2 to generate an
interrupt on the negative going edge (to match the
MCP2510’s active low INT output). The TRIS register,
which controls whether each I/O pin is configured as an
input or an output, is configured to set GP0/GP1/GP3
as inputs, and GP2 and GP5 as outputs. With the
exception of GP4, all of the GPIO pins will remain in
their initially configured state. GP4 will be changed
between input and output mode, depending on whether
an SPI read or write operation is being performed by
the PIC12C672. The final step of configuring the port
pins is to program the INTCON register to enable the
interrupt-on-change feature for GP2. This allows the
MCP2510 to generate an interrupt for the PIC12C672.

TIMER0 MODULE

The Timer0 module operation is controlled by the
OPTION register and the TMR0 register. The OPTION
register contains the control bits for the Timer0 pres-
caler, which is set to divide by 256. The TMR0 register
is the counting register for Timer0 and generates an
interrupt when it rolls over from 0xFF to 0x00. This reg-
ister must be reloaded as part of the ISR in order to cor-
rectly control the time period between Timer0
interrupts. The target time period between Timer0 mes-
sages is 10 ms. In order to approach that target, it is
necessary to determine the amount of time required to
complete the Timer0 ISR, since the time between mes-
sages will be the sum of the Timer0 value and the ISR
execution time. The A/D conversion takes approxi-
mately 19 µs. The SPI communication to write the A/D
result to the MCP2510 transmit buffer and then send
the RTS command requires approximately 409 µs to
complete. This implies a total of approximately 428 µs
for the ISR to execute. Subtracting the ISR execution
time from the 10 ms target yields 9.572 ms. Given the
prescaler configured in, divide by 256 mode, the clos-
est value is 9.728 ms (256 µs ∗ 38). Adding the 428 µs

for the ISR execution gives a total time between
messages of 10.156 ms, which is within 2% of the
target.

ANALOG-TO-DIGITAL CONVERTER MODULE

The Timer0 module is configured to use the FOSC/8
option for the conversion clock, which gives a TAD value
of 2 µs, and an overall conversion time of 19 µs
(TAD ∗ 9.5). This is more than adequate when com-
pared to the amount of time spent on SPI
communications during the ISR.

MCP2510 Initialization
Before the system can communicate on the CAN bus,
the MCP2510 must be properly configured. Configura-
tion of the MCP2510 is accomplished by loading the
various control registers with the desired values. The
firmware is written to take advantage of the table read
functionality of the PICmicro MCU. The values for each
register are stored at the top of the PICmicro ROM
memory. During the MCP2510 initialization, the values
are sequentially read by the table read function and
then written to the MCP2510 via the SPI interface.

CAN BUS TIMING

The CAN bit rate configuration is controlled by the
CNF1, CNF2 and CNF3 registers. The details behind
determining what the ‘best’ configuration of these reg-
isters, for a given CAN bus system, is beyond the
scope of this application note. The MCP2510 is config-
ured to operate at a CAN bus rate of 125 kbps, using
the following parameters:
• 8 MHz oscillator
• Baud rate prescaler equivalent to divide by four
• 8 TQ per bit time
• Sync segment: 1 TQ
• Prop segment: 1 TQ
• Phase Segment 1: 3 TQ
• Phase Segment 2: 3 TQ
• Sync Jump Width: 1 TQ

Refer to the MCP2510 data sheet (DS21291) for more
detailed information regarding the setting of these
parameters.

In order to make use of the MCP2510’s general pur-
pose input and output pins, it is necessary to configure
the TXRTSCTRL and BFPCTRL registers,
respectively.

TXTRSCTRL

To enable the use of the TXnRTS pins as general pur-
pose inputs, the mode control bit <BnRTSM> is
cleared. This register also holds the current state of
each of the inputs pins in bits 3:5, which can be read by
the microcontroller at any time via the SPI interface.
 2002 Microchip Technology Inc. Preliminary DS00215B-page 5

AN215

BFPCTRL

To use the RXnBF pins of the MCP2510 as output pins
it is necessary to functionally enable the pin by setting
the BnBFE bits and then selecting the general purpose
output mode of operation by clearing the BnBFM bits.
Once the register has been configured, it is used to
control the state of the output pins by toggling the
BnBFS bits, which is accomplished via the MCP2510’s
built-in Bit Modify Command, which only allows the
desired bit to be modified.

CANINTE

The MCP2510’s CANINTE register controls the individ-
ual interrupt source enables. For this application only,
the error interrupt (ERRIE) and the receive buffer 1
interrupts (RX1IE) are enabled. In this configuration,
the MCP2510 will generate an interrupt when a valid
message is accepted into the receive buffer, or when
any of the various error conditions in the EFLG register
occur.

Interrupt Service Routine
Once an interrupt occurs, the PICmicro MCU begins
executing the ISR routine. Figure 3 shows the flow
chart for the ISR. The ISR first determines the source
of the interrupt (Timer0 or external INT pin) then
branches to the appropriate code to process the inter-
rupt. Figure 4 and Figure 5 show the program flow for
the Timer0 and CAN message received interrupts,
respectively.

TIMER0 INTERRUPT

When the Timer0 interrupt occurs (see Figure 4), the
PICmicro MCU initiates an A/D conversion on AN0,
constantly polling the ADDONE bit until the conversion
is complete. Once the conversion is completed, the
ADRES value is loaded into the MCP2510 transmit
buffer 0, data byte 0 and an RTS command is issued for
buffer 0. The TMR0 register is then reloaded and the
interrupt flag is cleared. The interrupts are re-enabled
by the execution of the RETIE command at the end of
the ISR.

FIGURE 3: INTERRUPT SERVICE ROUTINE (ISR) FLOWCHART

Msg Rx INT?
CAN MsgYes

CAN Bus
SysErr (CANErr)Yes

SysErr(Invalid INT)

Read MCP2510
CANINTF Register

INT pin Timer0
Interrupt?

SysErr (Invalid INT)

Timer0 Time Out

ISR

Interrupt
Occurred?

Received

Error?

Yes No No

Yes

No

No
DS00215B-page 6 Preliminary  2002 Microchip Technology Inc.

AN215

MESSAGE RECEIVED INTERRUPT

When an interrupt is generated by the MCP2510, the
PIC12C672 reads the CANINTF register of the
MCP2510 to determine the source of the interrupt. If a
valid message has been received, the MsgRcvd sub-
routine is executed (see Figure 5). If an error has
occurred, the error handling subroutine is executed
(see Figure 6).
When a valid message is received, the FILHIT<2:0>
bits of the RXB1CTRL register are read to determine
which message has been received.

If the match occurred on Filter 2, the PICmicro MCU ini-
tiates an A/D conversion on AN1, waits for the conver-
sion to complete, loads the ADRES register value into
the MCP2510 transmit buffer 0, data byte 0 and sends
the RTS command.
If the match occurred on Filter 3, the PICmicro MCU
reads the TXRTSCTRL register for the value of the
three input pins, loads this value into the MCP2510
transmit buffer and sends the RTS command.
A match on Filter 4 or Filter 5 causes the PICmicro
MCU to read the first byte of the received message and
write it to the appropriate output pin via the MCP2510
BFPCTRL register.

FIGURE 4: TIMER0 ISR FLOW

Start Conversion on AN0

Timer0 Time Out

Interrupt
Occurred?

Store AN0 value into RAM
variable

Load AN0 value into
MCP2510 TxMsg Buffer

Send RTS command to
MCP2510

Clear Interrupt Flag

Reload Timer0

Re-enable Interrupts

Exit ISR

No

Yes
 2002 Microchip Technology Inc. Preliminary DS00215B-page 7

AN215

FIGURE 5: CAN MSG RECEIVED FLOW

Read MCP2510
Rx Filter

INT pin

Filter Match = 2?

Read MCP2510
Rx Buffer for digital

output 1 data

Update MCP2510
Digital Output

Control Register

Read MCP2510
Rx Buffer for digital

output 2 data

Clear Interrupt
flags in

PIC12C672 and
MCP2510

Perform A/D
conversion on AN1

SysErr(InvMsg)

No

Yes

No

Yes

No

Yes

No

Yes

(CAN Msg Rx)

Filter Match = 3?

Filter Match = 4?

Filter Match = 5?

Exit ISR

Write A/D value to
MCP2510

Transmit Buffer

Sent Request to
Send command to

MCP2510

Read value of
three MCP2510

digital inputs

Sent Request to
Send command to

MCP2510
DS00215B-page 8 Preliminary  2002 Microchip Technology Inc.

AN215

FIGURE 6: ERROR HANDLER FLOW

Read ERRIF
Register

Error Handler

RxB1
Overflow?

No

Yes

NoYes

No

Yes

No

Yes

Error Warning
Flag Set?

Rx Error
Passive Flag

Tx Error
Passive Flag

Done

Send Error Msg
0x3FF, error code

0x11

Rx Warning
Flag Set?

Send Error Msg
0x3FF, error code

0x01

Send Error Msg
0x3FF, error code

0x02

Send Error Msg
0x3FF, error code

0x03Set

Set

Bus Off Flag
Set?

Send Error Msg
0x3FF, error code

0x13

Send Error Msg
0x3FF, error code

0x04

1st Bus Off
Occurrence?

Idle PICmicro®

Set Bus Off Flag
and re initialize

MCP2510

Send Error Msg
0x3FF, error code

0x12

Message
transmitted
successfully

No

No

Yes

Yes

No

Yes

Yes

No

MCU must RESET
system node
 2002 Microchip Technology Inc. Preliminary DS00215B-page 9

AN215

Error Handling
The system also provides for error detection for a num-
ber of different types of errors that may occur. This
includes CAN bus errors detected by the MCP2510
and invalid system state errors (see Figure 6). When
any of these errors are detected, the system transmits
a message with the ID of 0x3FF. This message con-
tains one data byte, which is a code used to represent
the type of error that occurred. Refer to Appendix B for
a listing of various errors and the associated code. The
one exception to this is the Bus-Off condition that the
MCP2510 may enter if a large number of transmit
errors are detected. If the Bus-Off condition is detected,
the PICmicro MCU performs a re-initialization of the
MCP2510 and then attempts to transmit the error mes-
sage (ID=0x3FF) with an error code of 0x12. After initi-
ating a request to send for the error message, the
PICmicro MCU checks to ensure that the message was
transmitted successfully. If it was successfully transmit-
ted, the PICmicro MCU sets an internal flag to indicate
that a Bus-Off condition has occurred, then resumes
normal operation. If the error message fails to transmit
correctly, or if the Bus-Off condition is detected a sec-
ond time, the PICmicro MCU automatically enters an
idle loop and remains there until a system reset occurs
via power on.

SUMMARY
This application note demonstrates that a smart CAN
node can be implemented with low cost, low pin count
devices, such as the PIC12C672 microcontroller and
MCP2510 Stand-Alone CAN controller, providing a
very flexible and effective solution for a variety of
applications.

REFERENCE DOCUMENTS
For additional information, the reader is directed to the
following documents:

• PIC12C67X Data Sheet, DS30561;
Microchip Technology, Inc.

• MCP2510 Stand-Alone CAN Controller Data
Sheet, DS21291; Microchip Technology, Inc.

• Controller Area Network (CAN) Basics, AN713;
DS00713; Microchip Technology, Inc.

• MCP2551 High-Speed CAN Transceiver Data
Sheet, DS21667; Microchip Technology, Inc.
DS00215B-page 10 Preliminary  2002 Microchip Technology Inc.

AN215

APPENDIX A: SCHEMATIC

T
X

C
A

N
1

R
X

C
A

N
2

C
L

K
O

U
T

3

T
X

0
R

T
S

4

T
X

1
R

T
S

5

T
X

2
R

T
S

6

O
S

C
2

7

O
S

C
1

8

V
s
s

9
R

X
1
B

F
1
0

R
X

0
B

F
1
1

IN
T

1
2

S
C

K
1
3

S
I

1
4

S
O

1
5

C
S

1
6

R
E

S
E

T
1
7

V
d
d

1
8

U
2

M
C

P
2
5
1
0

V
s
s

8

G
P

0
7

G
P

1
6

G
P

2
5

G
P

3
4

G
P

4
3

G
P

5
2

V
d
d

1

U
1

P
IC

1
2
C

6
7
X

R
1

4
.7

K

V
d
d

R
2

1
0
K

V
C

C
V

s
s

C
1

0
.1

u
F

C
2

0
.1

u
F

V
s
s

R
s

8
C

A
N

H
7

C
A

N
L

6
R

e
f

5
R

X
D

4

V
c
c

3

G
N

D
2

T
X

D
1

U
3

M
C

P
2
5
5
1

V
s
s

V
C

C

Y
1

8
M

H
z

C
3

3
0
p
F

C
4

3
0
p
F

V
s
s

S
W

1

S
W

2

S
W

3

V
s
s

A
n
a
lo

g
 I

n
p
u
t

2

A
n
a
lo

g
 I

n
p
u
t

1

D
ig

ita
l
O

u
tp

u
t

1

D
ig

ita
l
O

u
tp

u
t

2

V
s
s

162738495

C
O

N
1

C
A

N
 B

U
S

 2002 Microchip Technology Inc. Preliminary DS00215B-page 11

AN215

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX B: SOURCE CODE
; ***
; * 8pincan.asm *
; * Revision 1.0 September 2000 *
; * Developed by Rick Stoneking *
; * Developed using MPLAB V4.12 and MPASM V2.3 *
; * *
; * This code demonstrates how a very low cost *
; * CAN node can be implemented using a *
; * Microchip PIC12C672 8-pin microcontroller *
; * and a Microchip MCP2510 Stand-Alone CAN *
; * controller. *
; * *
; ***

; ***
; * Setup the MPASM assembler options *
; ***

 LIST p=12C672

; ***
; * Include the standard PIC12C672 include file *
; * and the custom MCP2510 support files *
; ***

#include <p12c672.inc>
#include “mcp2510.inc”

; ***
; * Setup the PIC12C672 configuration Word *
; ***

 __CONFIG _CP_OFF & _WDT_OFF & _MCLRE_OFF & _INTRC_OSC

; ***
; * Constants definitions *
; ***
TMR_COUNT EQU 0xD9 ; Timer Reload value:
 ; 0xD9 = 38 * 256 * 1us = 9.728ms

; ***
; * Variable definitions *
; ***
temp EQU 0x20
temp1 EQU 0x21
byte_cnt EQU 0x22
 2002 Microchip Technology Inc. Preliminary DS00215B-page 12

AN215

addr EQU 0x23
tmp_data EQU 0x24

; ***
; * PIC Initialization *
; ***

 org 0x00
 goto start ; Jump around ISR vector

; ***
; * Interrupt service vector initialization *
; ***
 org 0x04
 goto isr ; Point ISR vector to the ISR handler

; ***
; * Start of Main Code *
; ***
start
 bsf STATUS,RP0 ; select bank1
 movlw 0x87 ; Disable internal pullups
 ; Interrupt on negative going edge on GP2
 ; Prescaler = 1:256

 movwf OPTION_REG ; Load the OPTION register

 movlw 0x0B ; --001011
 movwf TRISIO ; set all ports output except GP3/1/0

 bsf INTCON,GPIE ; enable GPIO Interrupt on change

 movlw 0x04 ; GP4&2 = DIO, GP0&1= ADC, Vref=VDD
 movwf ADCON1 ;

 movlw 0x04 ; GPIE set - interrupt on pin change
 ; GIE cleared - global interrupts disabled
 bcf STATUS,RP0 ; select bank0

; Initialize the A/D converter

 movlw 0x40 ; AN0 conversion clock = Fosc/8 (TAD=2us)
 movwf ADCON0 ; Turn off A/D module

; Initialize Timer0

 movlw TMR_COUNT ; Initialize Timer0
 movwf TMR0 ; Timer0 interrupt every 9.728mS

; Set up initial conditions for the SPI

 movlw 0x24 ; CS high, INT high, data/clk low
 movwf GPIO ; write to port

 bsf GPIO,cs_pin ; set CS pin high
 bcf GPIO,sck_pin ; clear the sck pin
 bcf GPIO,sdo_pin ; clear the sdo pin

 call mcp2510_init ; initialize the mcp2510
 2002 Microchip Technology Inc. Preliminary DS00215B-page 13

AN215

; ***
; * Main wait loop *
; ***

wait ; wait for interrupt to occur
 sleep ; sleep while not processing a message
 nop ; NOP executed when waking up from sleep
 nop ; NOP executed after ISR completes
 goto wait ; go back to sleep and wait

; ***
; * MCP2510 Initialization *
; ***

mcp2510_init
 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; lower CS to enable MCP2510
 call spi_send ; send command
 movlw CANCTRL ; select CANCTRL register address
 call spi_send ; and send it
 movlw REQOP_CONFIG ; Request Config Mode
 call spi_send ; send data
 bsf GPIO,cs_pin ; raise CS to terminate operation
 bcf GPIO,sck_pin ; set clock and
 bcf GPIO,sdo_pin ; data pins low

 movlw 0x71 ; number of addresses to be written
 movwf byte_cnt ; load into byte counter
 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; enable MCP2510
 call spi_send ; send command
 movlw 0x00 ; start writing at address 0x00
 call spi_send ; send address
 movlw 0x01
 movwf addr
seq_wr ; sequential write loop
 movlw HIGH reg_init_tbl ; get high byte of reg_int_tbl address
 movwf PCLATH ; load into high byte of PC counter
 movfw addr ; write into jump table pointer (addr)
 decf addr, 1 ;
 movf addr, W ;
 call reg_init_tbl ; fetch byte to be written
 call spi_send ; send it to MCP2510
 incf addr,1 ; increment the jump table pointer
 incf addr,1 ; twice to point to the next byte
 decfsz byte_cnt,1 ; decrement the byte counter and test for zero
 goto seq_wr ; not done so repeat
 bsf GPIO,cs_pin ; raise CS to terminate operation

 movlw CAN_WRITE ; write command
 bcf GPIO,cs_pin ; enable MCP2510
 call spi_send
 movlw CANCTRL ; write to CANCTRL register
 call spi_send
 movlw REQOP_NORMAL ; Normal Mode
 call spi_send
 bsf GPIO,cs_pin ; terminate operation

 movlw 0x00 ; clear byte_cnt variable
 movwf byte_cnt

 bsf INTCON,GIE ; Enable Interrupts
 return
DS00215B-page 14 Preliminary  2002 Microchip Technology Inc.

AN215

; ***
; * Interrupt Service Routine *
; * The ISR determines whether a TMR0 interrupt or an external INT *
; * pin interrupt occurs and then proceeds accordingly *
; ***
isr
 bcf STATUS,RP1 ; select bank 0/1

 btfss INTCON,T0IE ; Timer0 interrupt?
 goto intpin ; No, so jump to external interrupt pin ISR

 movlw TMR_COUNT ; reload
 movwf TMR0 ; Timer0

 bcf ADCON0,CHS0 ; select ADC channel 0
 call adc_cnv ; go do the conversion

 bcf GPIO,cs_pin ; enable MCP2510

 movlw CAN_WRITE ; send write command to MCP2510
 call spi_send ;

 movlw TXB0D0 ; set write address to TXB0D0
 call spi_send ;

 movfw ADRES ; write ADC conversion result
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 bcf GPIO,cs_pin ; enable MCP2510
 movlw CAN_RTS_TXB0 ; Send RTS command for TXB0
 call spi_send
 bsf GPIO,cs_pin ; terminate operation

 bcf INTCON, T0IF ; clear TMR0 interrupt flag
 return ; exit isr

intpin ; Message received interrupt

 movlw CAN_READ
 bcf GPIO,cs_pin ; lower CS line
 call spi_send ; send read command to MCP2510

 ; Check for RXB1IF flag by reading
 movlw CANINTF ; the interrupt flag register (CANINTF)
 call spi_send
 call spi_rx ; read the data from the MCP2510
 bsf GPIO,cs_pin ; terminate SPI read

 movwf tmp_data ; save CANINTF value

 btfsc tmp_data,1 ; test CANINTF for RX1IF
 call msg_rcvd ; if RX1IF set go process message

 btfss tmp_data,5 ; test CANINTF for ERRIF
 call can_err ; if ERRIF set go process CAN error

 movlw B’11011101’ ; mask off RXB1IF and ERRIF bits
 andwf tmp_data,1 ; of CANINTF
 btfsc STATUS,Z ; if any bit set process invalid interrupt

 call sys_err ; Not an error interrupt so initiate an invalid interrupt
 ; occurred message.

 bcf INTCON,GPIF ; reset interrupt flag
 retfie ; return to main routine
 2002 Microchip Technology Inc. Preliminary DS00215B-page 15

AN215

; ***
; * CAN Error routine *
; * This routine reads the value of the MCP2510 Error flag (EFLG) *
; * register, writes it to byte 0 of TXB1, and then transmits the *
; * TXB1 message *
; ***
can_err

 movlw CAN_READ ; SPI Read operation
 bcf GPIO,cs_pin ; enable MCP2510
 call spi_send ;
 movlw EFLG ; EFLG register to be read
 call spi_send ;
 call spi_rx ; read the data
 bsf GPIO,cs_pin ; terminate SPI operation
 movwf tmp_data ; save the value of EFLG register

 movlw CAN_WRITE ; now write to MCP2510
 bcf GPIO,cs_pin ;
 call spi_send ;
 movlw TXB1D0 ; write to data byte 0 of TXB1
 call spi_send ;
 movfw tmp_data ; write EFLG register contents
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 movlw CAN_RTS_TXB1 ; send request to send
 bcf GPIO,cs_pin ; for transmit buffer 1
 call spi_send
 bsf GPIO,cs_pin
 ; exit isr and re-enable interrupts
 retfie

; ***
; * System Error Handler Routine *
; * This routines transmits the TXB2 message to indicate that a *
; * unidentifiable system error has occurred. *
; ***
sys_err
 movlw CAN_RTS_TXB2 ; send request to send
 bcf GPIO,cs_pin ; for transmit buffer 2
 call spi_send ; when a system error occurs
 bsf GPIO,cs_pin

 retfie

; ***
; * CAN Msg Received Routine *
; * This routine is called when a message has been received into *
; * TXB0 of the MCP2510. This routine reads the filter bits to *
; * determine the type of message received and then initiates the *
; * appropriate response. *
; ***
msg_rcvd
 movlw CAN_READ ; SPI read command
 bcf GPIO,cs_pin ; enable MCP2510
 call spi_send

 movlw RXB0CTRL ; Read buffer 0 control register
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin ; terminate function
DS00215B-page 16 Preliminary  2002 Microchip Technology Inc.

AN215

 andlw B’00000111’ ; mask off all but the FILHIT bits
 movwf temp ; store value in temp

 movlw 0x01 ;
 subwf temp,1
 btfsc STATUS,Z ; filter 1 match?
 goto filter1

 movlw 0x02
 subwf temp,1
 btfsc STATUS,Z ; filter 2 match
 goto filter2

 movlw 0x03
 subwf temp,1
 btfsc STATUS,Z ; filter 3 match
 goto filter3

 movlw 0x04
 subwf temp,1
 btfsc STATUS,Z ; filter 4 match
 goto filter4

filter1
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 bsf ADCON0,CHS0 ; select ADC channel 1
 call adc_cnv ; go do the conversion

 bcf GPIO,cs_pin ; enable MCP2510
 movlw CAN_WRITE ; send write command to MCP2510
 call spi_send ;
 movlw TXB0D0 ; set write address to TXB0D0
 call spi_send ;
 movfw ADRES ; write ADC conversion result
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 goto filter_done

filter2
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 bcf GPIO,cs_pin ; enable MCP2510
 movlw CAN_READ ; send read command to MCP2510
 call spi_send ;
 movlw TXRTSCTRL ; set read address to TXRTSCTRL
 call spi_send ;
 call spi_rx ; read data
 bsf GPIO,cs_pin

 bcf GPIO,cs_pin
 movlw CAN_WRITE ; write TXTRTSCTRL value
 call spi_send ; to data byte zero of
 movlw TXB0D0 ; transmit buffer zero
 call spi_send ;
 bsf GPIO,cs_pin ; terminate SPI operation

 goto filter_done

filter3
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 movlw CAN_READ ; Read contents of receive buffer zero
 bcf GPIO,cs_pin ; byte zero to get value to write to
 2002 Microchip Technology Inc. Preliminary DS00215B-page 17

AN215

 call spi_send ; GP output pin of MCP2510
 movlw RXB1D0 ;
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin
 movwf tmp_data ; store value in tmp_data

 movlw CAN_BIT_MODIFY ; use bit modify command to
 bcf GPIO,cs_pin ; set/reset the B0BFS bit of BFPCTRL register
 call spi_send
 movlw BFPCTRL
 call spi_send
 movlw B0BFS
 call spi_send

 movlw 0xFF ; assume that B0BFS is to be set
 btfss tmp_data,0 ; test the value received in message and if it is 0
 movlw 0x00 ; load w register to reset bit in BFPCTRL register

 call spi_send
 bsf GPIO,cs_pin

 goto filter_done

filter4
 call wrt_txb0sidh ; load the transmit buffer SIDH register

 movlw CAN_READ ; Read contents of receive buffer zero
 bcf GPIO,cs_pin ; byte zero to get value to write to
 call spi_send ; GP output pin of MCP2510
 movlw RXB1D0 ;
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin
 movwf tmp_data ; store value in tmp_data

 movlw CAN_BIT_MODIFY ; use bit modify command to
 bcf GPIO,cs_pin ; set/reset the B0BFS bit of BFPCTRL register
 call spi_send
 movlw BFPCTRL
 call spi_send
 movlw B1BFS
 call spi_send

 movlw 0xFF ; assume that B1BFS is to be set
 btfss tmp_data,0 ; test the value received in message and if it is 0
 movlw 0x00 ; load w register to reset bit in BFPCTRL register

 call spi_send
 bsf GPIO,cs_pin

filter_done
 movlw CAN_RTS_TXB0 ; last step is to send the
 bcf GPIO,cs_pin ; request to send command for
 call spi_send ; transmit buffer zero
 bsf GPIO,cs_pin

 return
DS00215B-page 18 Preliminary  2002 Microchip Technology Inc.

AN215

; ***
; * write TXB0SIDH *
; * This routine reads the SIDH register from the received message *
; * and then sets the SID3 bit and writes the new value to the TX *
; * buffer. *
; ***
wrt_txb0sidh
 movlw CAN_READ ; SPI read command
 bcf GPIO,cs_pin ; enable MCP2510
 call spi_send
 movlw RXB0SIDH ; Read received SIDH register
 call spi_send
 call spi_rx
 bsf GPIO,cs_pin ; terminate function

 movwf tmp_data ; store SIDH value in data

 bcf GPIO,cs_pin
 movlw CAN_WRITE
 call spi_send
 movlw TXB0SIDH ; write to the SIDH register
 call spi_send ;
 movfw tmp_data ; retrieve SIDH value of received message
 bsf W,0 ; set bit SID3 high
 call spi_send ;
 bsf GPIO,cs_pin
 return

; ***
; * Analog to Digital Conversion Routine *
; * This routine initiates the A/D conversion. The ADC channel *
; * select bits (CHS1:0) have to be set prior to this routine being *
; * called. The routine waits for the conversion to complete *
; * before returning to the calling function. *
; ***
adc_cnv
 bsf ADCON0,GO
adc_busy
 btfsc ADCON0,GO_DONE ; wait for ADC to complete
 goto adc_busy

 movlw CAN_WRITE ; SPI write command
 bcf GPIO,cs_pin ; lower CS line
 call spi_send ; send write command to MCP2510
 movlw TXB0D0 ; data being written to data byte zero of buff 0
 call spi_send ;
 movf ADRES,0 ; Move ADC value to W register
 call spi_send ; send to MCP2510
 bsf GPIO,cs_pin ; terminate SPI command
 return

; **
; * Include the custom three wire SPI support file *
; **

#include “spi.inc” ; SPI routines
 2002 Microchip Technology Inc. Preliminary DS00215B-page 19

AN215

; ***
; * MCP2510 register initialization table *
; * Store at the end of ROM memory *
; * Note that all addresses are initialized to simplify the *
; * initialization code. *
; ***

 org 0x0700 ; Initialization table address
reg_init_tbl
 addwf PCL, 1 ; Register Addr
 ; --------- ----
 retlw 0xff ; RXF0SIDH 0x00
 retlw 0xff ; RXF0SIDL 0x01
 retlw 0xff ; RXF0EID8 0x02
 retlw 0xff ; RXF0EID0 0x03
 retlw 0xff ; RXF1SIDH 0x04
 retlw 0xff ; RXF1SIDL 0x05
 retlw 0xff ; RXF1EID8 0x06
 retlw 0xff ; RXF1EID0 0x07
 retlw 0x7e ; RXF2SIDH 0x08 Filter 2 matches 0x3f0
 retlw 0x00 ; RXF2SIDL 0x09
 retlw 0xff ; RXF2EID8 0x0A
 retlw 0xff ; RXF2EID0 0x0B
 retlw 0x3c ; BFPCTRL 0x0C BFP pins as digital outputs, initial
 ; state hi
 retlw 0x00 ; TXRTSCTRL 0x0D TXRTS pins as digital inputs
 retlw 0x80 ; CANSTAT 0x0E
 retlw 0x80 ; CANCTRL 0x0F

 retlw 0x7e ; RXF3SIDH 0x10 Filter 3 matches 0x3f1
 retlw 0x20 ; RXF3SIDL 0x11
 retlw 0xff ; RXF3EID8 0x12
 retlw 0xff ; RXF3EID0 0x13
 retlw 0x7e ; RXF4SIDH 0x14 Filter 4 matches 0x3f2
 retlw 0x40 ; RXF4SIDL 0x15
 retlw 0xff ; RXF4EID8 0x16
 retlw 0xff ; RXF4EID0 0x17
 retlw 0x7e ; RXF5SIDH 0x18 Filter 5 matches 0x3f3
 retlw 0x50 ; RXF5SIDL 0x19
 retlw 0xff ; RXF5EID8 0x1A
 retlw 0xff ; RXF5EID0 0x1B
 retlw 0x00 ; TEC 0x1C
 retlw 0x00 ; REC 0x1D
 retlw 0x80 ; CANSTAT 0x1E
 retlw 0x80 ; CANCTRL 0x1F

 retlw 0xff ; RXM0SIDH 0x20 Enable all mask bits so that no msg’s
 retlw 0xff ; RXM0SIDL 0x21 are received into RXB0
 retlw 0xff ; RXM0EID8 0x22
 retlw 0xff ; RXM0EID0 0x23
 retlw 0x7e ; RXM1SIDH 0x24 Set RXM1 to match msg ID’s of 0x3f0
 ; to 0x3ff
 retlw 0x00 ; RXM1SIDL 0x25
 retlw 0x00 ; RXM1EID8 0x26
 retlw 0x00 ; RXM1EID0 0x27
 retlw 0x02 ; CNF3 0x28 PHSEG2 = 3TQ
 retlw 0x90 ; CNF2 0x29 PHSEG1 = 3TQ, PRSEG = 1TQ
 retlw 0x03 ; CNF1 0x2A SJW = 1TQ, BRP set to 4
 retlw 0x22 ; CANINTE 0x2B MERRIE and RX1IE enabled
 retlw 0x00 ; CANINTF 0x2C
 retlw 0x00 ; EFLG 0x2D
 retlw 0x80 ; CANSTAT 0x2E
 retlw 0x80 ; CANCTRL 0x2F

 retlw 0x03 ; TXB0CTRL 0x30 Highest priority
DS00215B-page 20 Preliminary  2002 Microchip Technology Inc.

AN215

 retlw 0x7e ; TXB0SIDH 0x31
 retlw 0x00 ; TXB0SIDL 0x32
 retlw 0x00 ; TXB0EID8 0x33
 retlw 0x00 ; TXB0EID0 0x34
 retlw 0x01 ; TXB0DLC 0x35
 retlw 0x00 ; TXB0DB0 0x36
 retlw 0x00 ; TXB0DB1 0x37
 retlw 0x00 ; TXB0DB2 0x38
 retlw 0x00 ; TXB0DB3 0x39
 retlw 0x00 ; TXB0DB4 0x3A
 retlw 0x00 ; TXB0DB5 0x3B
 retlw 0x00 ; TXB0DB6 0x3C
 retlw 0x00 ; TXB0DB7 0x3D
 retlw 0x80 ; CANSTAT 0x3E
 retlw 0x80 ; CANCTRL 0x3F

 retlw 0x03 ; TXB1CTRL 0x40 Highest priority
 retlw 0x7e ; TXB1SIDH 0x41
 retlw 0xe0 ; TXB1SIDL 0x42
 retlw 0x00 ; TXB1EID8 0x43
 retlw 0x00 ; TXB1EID0 0x44
 retlw 0x01 ; TXB1DLC 0x45
 retlw 0x00 ; TXB1DB0 0x46
 retlw 0x00 ; TXB1DB1 0x47
 retlw 0x00 ; TXB1DB2 0x48
 retlw 0x00 ; TXB1DB3 0x49
 retlw 0x00 ; TXB1DB4 0x4A
 retlw 0x00 ; TXB1DB5 0x4B
 retlw 0x00 ; TXB1DB6 0x4C
 retlw 0x00 ; TXB1DB7 0x4D
 retlw 0x80 ; CANSTAT 0x4E
 retlw 0x80 ; CANCTRL 0x4F

 retlw 0x03 ; TXB2CTRL 0x50
 retlw 0x7e ; TXB2SIDH 0x51
 retlw 0xe0 ; TXB2SIDL 0x52
 retlw 0x00 ; TXB2EID8 0x53
 retlw 0x00 ; TXB2EID0 0x54
 retlw 0x00 ; TXB2DLC 0x55
 retlw 0x00 ; TXB2DB0 0x56
 retlw 0x00 ; TXB2DB1 0x57
 retlw 0x00 ; TXB2DB2 0x58
 retlw 0x00 ; TXB2DB3 0x59
 retlw 0x00 ; TXB2DB4 0x5A
 retlw 0x00 ; TXB2DB5 0x5B
 retlw 0x00 ; TXB2DB6 0x5C
 retlw 0x00 ; TXB2DB7 0x5D
 retlw 0x80 ; CANSTAT 0x5E
 retlw 0x80 ; CANCTRL 0x5F

 retlw 0x20 ; RXB0CTRL 0x60 Receive only Standard Id’s that match
 ; Masks/Filters
 retlw 0x00 ; RXB0SIDH 0x61
 retlw 0x00 ; RXB0SIDL 0x62
 retlw 0x00 ; RXB0EID8 0x63
 retlw 0x00 ; RXB0EID0 0x64
 retlw 0x00 ; RXB0DLC 0x65
 retlw 0x00 ; RXB0DB0 0x66
 retlw 0x00 ; RXB0DB1 0x67
 retlw 0x00 ; RXB0DB2 0x68
 retlw 0x00 ; RXB0DB3 0x69
 retlw 0x00 ; RXB0DB4 0x6A
 retlw 0x00 ; RXB0DB5 0x6B
 retlw 0x00 ; RXB0DB6 0x6C
 retlw 0x00 ; RXB0DB7 0x6D
 2002 Microchip Technology Inc. Preliminary DS00215B-page 21

AN215

 retlw 0x80 ; CANSTAT 0x6E
 retlw 0x80 ; CANCTRL 0x6F

 retlw 0x20 ; RXB1CTRL 0x70 Receive only Standard Id’s that match
Masks/Filters
 END
DS00215B-page 22 Preliminary  2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
 2002 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select
Mode and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00215B - page 23

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00215B-page 24  2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

08/01/02

WORLDWIDE SALES AND SERVICE

	Introduction
	System Description
	Overview
	Figure 1: CAN Node Block Diagram

	Message Identifier Format
	Table 1: Message Identifiers

	Hardware Description
	Design/Performance Considerations
	System Clock
	SPI Bus
	Interrupts
	Interrupt Latency
	Digital Inputs and outputs
	CAN Bus

	Firmware Description
	Figure 2: Node Operation
	PICmicro MCU Initialization
	MCP2510 Initialization
	Interrupt Service Routine
	Figure 3: Interrupt Service Routine (ISR) Flowchart
	Figure 4: Timer0 ISR Flow
	Figure 5: CAN Msg Received Flow
	Figure 6: Error handler Flow

	Error Handling

	Summary
	Reference Documents

