
ARM®v7-M Architecture
Reference Manual
Copyright © 2006-2010 ARM Limited. All rights reserved.
ARM DDI 0403C_errata_v3 (ID021910)

ARM_2009_Q2 and ARM_2009_Q4
Sticky Note
Second issue of errata markup document, 2009_Q4.
Previous issue was 2009_Q2.
See the second Note on PDF page 3 for more information.

ARM tests the PDF errata markups only in Adobe Acrobat and Acrobat Reader, and cannot guarantee that the markups will appear correctly in any other PDF reader.

In body text:
 • Red strike-thru indicates a deletion. Opening the associated message box might give more information
 about the deletion, and might give replacement text.
 • Blue strike-thru indicates a replacement.
 • A blue caret indicates an insertion.
For replacements and insertions, the new text appears if you hover the mouse pointer over the markup.

Double-clicking on any markup opens a message box that describes the markup.

To ensure you locate all markup you can choose to Show Comments List. By default this lists comments by page number, and appears as a separate pane below the document view. However, you can display the comments list in a separate window. See the Acrobat Help for more information.

ARMv7-M Architecture Reference Manual
Copyright © 2006-2010 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this document.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this ARM Architecture
Reference Manual may be reproduced in any form by any means without the express prior written permission of ARM.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this ARM
Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether implementations of the ARM
architecture infringe any third party patents.

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or
non-infringement, that the content of this ARM Architecture Reference Manual is suitable for any particular purpose or
that any practice or implementation of the contents of the ARM Architecture Reference Manual will not infringe any third
party patents, copyrights, trade secrets, or other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any
use of this ARM Architecture Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited, except as otherwise stated
below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective
owners.

Copyright © 2006-2010 ARM Limited

110 Fulbourn Road Cambridge, England CB1 9NJ

Change history

Date Issue Confidentiality Change

June 2006 A Non-confidential Initial release

July 2007 B Non-confidential Second release, errata and changes documented separately

September 2008 C Non-confidential, Restricted Access Options for additional watchpoint based trace in the DWT, plus errata
updates and clarifications.

July 2009 C_errata Non-confidential Marked-up errata PDF, see page iii for more information.

February 2010 C_errata_v3 Non-confidential Additional marked-up errata PDF, see page iii for more information.
ii Copyright © 2006-2010 ARM Limited. All rights reserved. ARM DDI 0403C_errata_v3
Non-Confidential, Unrestricted Access ID021910

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Note
 The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the
ARM architecture. The context makes it clear when the term is used in this way.

Note
 • This errata PDF is regenerated from the source files of issue C of this document, but:

— Some pseudocode examples, that are imported into the document, have been updated. Markups highlight
significant changes in these pseudocode inserts.
Other pseudocode updates are made using the standard Acrobat editing tools.

— Pages ii and iii of the PDF have been replaced, by an edit to the PDF, to include an updated Proprietary
Notice.

With these exceptions, this PDF corresponds to the released PDF of issue C of the document, with errata indicated
by markups to the PDF:
— the original errata markups, issued June 2009, are identified as ARM_2009_Q2
— additional errata markups, issued February 2010, are identified as ARM_2009_Q4.

• In the revised pseudocode, the function BadReg(x) is replaced by a new construct, x IN {13,15}, that can be used
in other contexts. This is a format change only.

• From February 2010, issue C of the ARMv7-M ARM is superseded by issue D of the document. ARM strongly
recommends you to use issue D of the document in preference to using this errata PDF.
ARM DDI 0403C_errata_v3 Copyright © 2006-2010 ARM Limited. All rights reserved. iii
ID021910 Non-Confidential, Unrestricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Highlight

iv Copyright © 2006-2010 ARM Limited. All rights reserved. ARM DDI 0403C_errata_v3
Non-Confidential, Unrestricted Access ID021910

Contents
ARMv7-M Architecture Reference Manual

Preface
About this manual .. xviii
Using this manual ... xix
Conventions ... xxii
Further reading .. xxiii
Feedback .. xxiv

Part A Application Level Architecture

Chapter A1 Introduction
A1.1 The ARM Architecture – M profile .. A1-2

Chapter A2 Application Level Programmers’ Model
A2.1 About the Application level programmers’ model A2-2
A2.2 ARM core data types and arithmetic .. A2-3
A2.3 Registers and execution state .. A2-11
A2.4 Exceptions, faults and interrupts .. A2-15
A2.5 Coprocessor support .. A2-16

Chapter A3 ARM Architecture Memory Model
A3.1 Address space ... A3-2
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. v
Restricted Access Non-Confidential

Contents
A3.2 Alignment support .. A3-3
A3.3 Endian support ... A3-5
A3.4 Synchronization and semaphores .. A3-8
A3.5 Memory types and attributes and the memory order model A3-18
A3.6 Access rights .. A3-28
A3.7 Memory access order .. A3-30
A3.8 Caches and memory hierarchy .. A3-38

Chapter A4 The ARMv7-M Instruction Set
A4.1 About the instruction set .. A4-2
A4.2 Unified Assembler Language ... A4-4
A4.3 Branch instructions .. A4-7
A4.4 Data-processing instructions .. A4-8
A4.5 Status register access instructions .. A4-15
A4.6 Load and store instructions .. A4-16
A4.7 Load/store multiple instructions ... A4-19
A4.8 Miscellaneous instructions ... A4-20
A4.9 Exception-generating instructions .. A4-21
A4.10 Coprocessor instructions ... A4-22

Chapter A5 Thumb Instruction Set Encoding
A5.1 Thumb instruction set encoding ... A5-2
A5.2 16-bit Thumb instruction encoding ... A5-5
A5.3 32-bit Thumb instruction encoding ... A5-13

Chapter A6 Thumb Instruction Details
A6.1 Format of instruction descriptions .. A6-2
A6.2 Standard assembler syntax fields .. A6-7
A6.3 Conditional execution ... A6-8
A6.4 Shifts applied to a register ... A6-12
A6.5 Memory accesses .. A6-15
A6.6 Hint Instructions ... A6-16
A6.7 Alphabetical list of ARMv7-M Thumb instructions A6-17

Part B System Level Architecture

Chapter B1 System Level Programmers’ Model
B1.1 Introduction to the system level ... B1-2
B1.2 ARMv7-M: a memory mapped architecture B1-3
B1.3 System level operation and terminology overview B1-4
B1.4 Registers .. B1-8
B1.5 Exception model .. B1-14

Chapter B2 System Memory Model
B2.1 Introduction .. B2-2
vi Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Contents
B2.2 Pseudocode details of general memory system operations B2-3

Chapter B3 System Address Map
B3.1 The system address map ... B3-2
B3.2 System Control Space (SCS) ... B3-6
B3.3 System timer - SysTick .. B3-24
B3.4 Nested Vectored Interrupt Controller (NVIC) B3-28
B3.5 Protected Memory System Architecture (PMSAv7) B3-35

Chapter B4 ARMv7-M System Instructions
B4.1 Alphabetical list of ARMv7-M system instructions B4-2

Part C Debug Architecture

Chapter C1 ARMv7-M Debug
C1.1 Introduction to debug ... C1-2
C1.2 The Debug Access Port (DAP) .. C1-4
C1.3 Overview of the ARMv7-M debug features C1-8
C1.4 Debug and reset .. C1-13
C1.5 Debug event behavior .. C1-14
C1.6 Debug register support in the SCS .. C1-19
C1.7 Instrumentation Trace Macrocell (ITM) support C1-27
C1.8 Data Watchpoint and Trace (DWT) support C1-33
C1.9 Embedded Trace (ETM) support .. C1-56
C1.10 Trace Port Interface Unit (TPIU) .. C1-57
C1.11 Flash Patch and Breakpoint (FPB) support C1-61

Appendix A CPUID
A.1 Core Feature ID Registers ... AppxA-2
A.2 Processor Feature register0 (ID_PFR0) AppxA-4
A.3 Processor Feature register1 (ID_PFR1) AppxA-5
A.4 Debug Features register0 (ID_DFR0) .. AppxA-6
A.5 Auxiliary Features register0 (ID_AFR0) AppxA-7
A.6 Memory Model Feature registers ... AppxA-8
A.7 Instruction Set Attribute registers – background information ... AppxA-10
A.8 Instruction Set Attribute registers – details AppxA-12

Appendix B ARMv7-M infrastructure IDs

Appendix C Legacy Instruction Mnemonics
C.1 Thumb instruction mnemonics ... AppxC-2
C.2 Pre-UAL pseudo-instruction NOP .. AppxC-6
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. vii
Restricted Access Non-Confidential

Contents
Appendix D Deprecated Features in ARMv7-M

Appendix E Debug ITM and DWT packet protocol
E.1 Packet Types ... AppxE-2
E.2 DWT packet formats .. AppxE-8

Appendix F ARMv7-R differences
F.1 Endian support ... AppxF-2
F.2 Application level support .. AppxF-3
F.3 System level support .. AppxF-4
F.4 Debug support ... AppxF-5

Appendix G Pseudocode definition
G.1 Instruction encoding diagrams and pseudocode AppxG-2
G.2 Limitations of pseudocode .. AppxG-4
G.3 Data Types .. AppxG-5
G.4 Expressions .. AppxG-9
G.5 Operators and built-in functions .. AppxG-11
G.6 Statements and program structure ... AppxG-17
G.7 Miscellaneous helper procedures and functions AppxG-22

Appendix H Pseudocode Index
H.1 Pseudocode operators and keywords .. AppxH-2
H.2 Pseudocode functions and procedures AppxH-5

Appendix I Register Index
I.1 ARM core registers ... AppxI-2
I.2 Memory mapped system registers .. AppxI-3
I.3 Memory mapped debug registers ... AppxI-5

Glossary
viii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

List of Tables
ARMv7-M Architecture Reference Manual

Change History .. ii
Table A3-1 Little-endian byte format ... A3-5
Table A3-2 Big-endian byte format ... A3-5
Table A3-3 Little-endian memory system ... A3-6
Table A3-4 Big-endian memory system .. A3-6
Table A3-5 Load-store and element size association ... A3-7
Table A3-6 Effect of Exclusive instructions and write operations on local monitor A3-10
Table A3-7 Effect of load/store operations on global monitor for processor(n) A3-14
Table A3-8 Memory attribute summary .. A3-19
Table A4-1 Branch instructions ... A4-7
Table A4-2 Standard data-processing instructions ... A4-9
Table A4-3 Shift instructions ... A4-10
Table A4-4 General multiply instructions .. A4-11
Table A4-5 Signed multiply instructions .. A4-11
Table A4-6 Unsigned multiply instructions .. A4-11
Table A4-7 Core saturating instructions ... A4-12
Table A4-8 Packing and unpacking instructions ... A4-13
Table A4-9 Miscellaneous data-processing instructions ... A4-14
Table A4-10 Load and store instructions .. A4-16
Table A4-11 Load/store multiple instructions .. A4-19
Table A4-12 Miscellaneous instructions ... A4-20
Table A5-1 16-bit Thumb instruction encoding ... A5-5
Table A5-2 16-bit shift(immediate), add, subtract, move and compare encoding A5-6
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. ix
Restricted Access Non-Confidential

List of Tables
Table A5-3 16-bit data processing instructions ... A5-7
Table A5-4 Special data instructions and branch and exchange A5-8
Table A5-5 16-bit Load/store instructions ... A5-9
Table A5-6 Miscellaneous 16-bit instructions ... A5-10
Table A5-7 If-Then and hint instructions ... A5-11
Table A5-8 Branch and supervisor call instructions .. A5-12
Table A5-9 32-bit Thumb encoding .. A5-13
Table A5-10 32-bit modified immediate data processing instructions A5-14
Table A5-11 Encoding of modified immediates in Thumb data-processing instructions .. A5-15
Table A5-12 32-bit unmodified immediate data processing instructions A5-17
Table A5-13 Branches and miscellaneous control instructions .. A5-18
Table A5-14 Change Processor State, and hint instructions .. A5-19
Table A5-15 Miscellaneous control instructions ... A5-19
Table A5-16 Load/store multiple instructions .. A5-20
Table A5-17 Load/store dual or exclusive, table branch ... A5-21
Table A5-18 Load word .. A5-22
Table A5-19 Load halfword ... A5-23
Table A5-20 Load byte, preload ... A5-24
Table A5-21 Store single data item .. A5-25
Table A5-22 Data-processing (shifted register) .. A5-26
Table A5-23 Move register and immediate shifts ... A5-27
Table A5-24 Data processing (register) .. A5-28
Table A5-25 Miscellaneous operations ... A5-29
Table A5-26 Multiply, and multiply accumulate operations ... A5-30
Table A5-27 Long multiply, long multiply accumulate, and divide operations A5-31
Table A5-28 Coprocessor instructions .. A5-32
Table A6-1 Condition codes ... A6-8
Table A6-2 Effect of IT execution state bits .. A6-11
Table A6-3 Determination of mask field ... A6-79
Table A6-4 MOV (shift, register shift) equivalences) .. A6-152
Table B1-1 Mode, privilege and stack relationship ... B1-4
Table B1-2 The xPSR register layout ... B1-9
Table B1-3 ICI/IT bit allocation in the EPSR .. B1-10
Table B1-4 The special-purpose mask registers .. B1-10
Table B1-5 Exception numbers .. B1-16
Table B1-6 Vector table format ... B1-16
Table B1-7 Priority grouping ... B1-18
Table B1-8 Exception return behavior .. B1-26
Table B1-9 List of supported faults ... B1-40
Table B1-10 Behavior of faults which occur during NMI or HardFault execution B1-45
Table B3-1 ARMv7-M address map ... B3-3
Table B3-2 SCS address space regions ... B3-6
Table B3-3 System control and ID registers ... B3-7
Table B3-4 Auxiliary Control Register – (0xE000E008) .. B3-9
Table B3-5 CPUID Base Register – (CPUID, 0xE000ED00) .. B3-10
Table B3-6 Interrupt Control and State Register – (0xE000ED04) B3-12
Table B3-7 Vector Table Offset Register – (0xE000ED08) .. B3-13
x Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

List of Tables
Table B3-8 Application Interrupt and Reset Control Register – (0xE000ED0C) B3-14
Table B3-9 System Control Register (0xE000ED10) .. B3-15
Table B3-10 Configuration and Control Register (0xE000ED14) B3-16
Table B3-11 System Handler Priority Register 1 – (0xE000ED18) B3-17
Table B3-12 System Handler Priority Register 2 – (0xE000ED1C) B3-17
Table B3-13 System Handler Priority Register 3 – (0xE000ED20) B3-17
Table B3-14 System Handler Control and State Register – (0xE000ED24) B3-18
Table B3-15 Configurable Fault Status Registers (CFSR, 0xE000ED28) B3-19
Table B3-16 MemManage Status Register (MMFSR, 0xE000D28) B3-19
Table B3-17 BusFault Status Register (BFSR, 0xE000ED29) ... B3-20
Table B3-18 UsageFault Status Register (UFSR, 0xE000ED2A) B3-20
Table B3-19 HardFault Status Register (0xE000ED2C) ... B3-21
Table B3-20 MemManage Address Register (0xE000ED34) ... B3-22
Table B3-21 BusFault Address Register (0xE000ED38) .. B3-22
Table B3-22 Coprocessor Access Control Register– (0xE000ED88) B3-22
Table B3-23 Software Trigger Interrupt Register – (0xE000EF00) B3-23
Table B3-24 SysTick register support in the SCS .. B3-25
Table B3-25 SysTick Control and Status Register – (0xE000E010) B3-26
Table B3-26 SysTick Reload Value Register – (0xE000E014) ... B3-26
Table B3-27 SysTick Current Value Register – (0xE000E018) .. B3-27
Table B3-28 SysTick Calibration Value Register – (0xE000E01C) B3-27
Table B3-29 NVIC register support in the SCS .. B3-30
Table B3-30 Interrupt Controller Type Register – (0xE000E004) B3-32
Table B3-31 Interrupt Set-Enable Registers – (0xE000E100-E17C) B3-33
Table B3-32 Interrupt Clear-Enable Registers – (0xE000E180-E1FC) B3-33
Table B3-33 Interrupt Set-Pending Registers – (0xE000E200-E27C) B3-33
Table B3-35 Interrupt Active Bit Registers – (0xE000E300-E37C) B3-34
Table B3-36 Interrupt Priority Registers – (0xE000E400-E7F8) B3-34
Table B3-34 Interrupt Clear-Pending Registers – (0xE000E280-E2FC) B3-34
Table B3-37 MPU register support in the SCS ... B3-39
Table B3-38 MPU Type Register – (0xE000ED90) .. B3-39
Table B3-39 MPU Control Register – (0xE000ED94) ... B3-40
Table B3-40 MPU Region Number Register – (0xE000ED98) ... B3-41
Table B3-41 MPU Region Base Address Register – (0xE000ED9C) B3-41
Table B3-42 MPU Region Attribute and Size Register – (0xE000EDA0) B3-42
Table B3-43 Region Size Encoding .. B3-42
Table B3-44 Region attribute fields .. B3-43
Table B3-45 TEX/CB/S Encoding ... B3-44
Table B3-47 AP encoding ... B3-45
Table B3-48 XN encoding ... B3-45
Table B3-46 Cache policy encoding ... B3-45
Table C1-1 PPB debug related regions .. C1-3
Table C1-2 ROM table entry format .. C1-4
Table C1-3 ARMv7-M DAP accessible ROM table ... C1-4
Table C1-4 ARMv7 debug authentication signals ... C1-9
Table C1-5 Debug related faults ... C1-15
Table C1-6 Debug stepping control using the DHCSR ... C1-16
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xi
Restricted Access Non-Confidential

List of Tables
Table C1-7 Debug register region of the SCS .. C1-19
Table C1-8 Debug Fault Status Register (0xE000ED30) ... C1-19
Table C1-9 Debug Halting Control and Status Register – (0xE000EDF0) C1-20
Table C1-10 Debug Core Register Selector Register – (0xE000EDF4) C1-22
Table C1-11 Debug Core Register Data Register – (0xE000EDF8) C1-23
Table C1-12 Debug Exception and Monitor Control Register – (0xE000EDFC) C1-24
Table C1-13 ITM registers .. C1-29
Table C1-14 Stimulus Port Register: STIMx ... C1-30
Table C1-15 Transfer Enable Register: TER .. C1-30
Table C1-16 Trace Privilege Register: TPR .. C1-31
Table C1-17 Trace Control Register: TCR .. C1-31
Table C1-18 Cycle count event generation ... C1-35
Table C1-19 DWT register set feature summary .. C1-38
Table C1-20 General DWT function support ... C1-39
Table C1-21 DWT comparator support for CYCCNT .. C1-41
Table C1-22 DWT comparator support for data matching .. C1-42
Table C1-23 DWT register summary .. C1-47
Table C1-24 DWT_CTRL (0xE0001000) .. C1-48
Table C1-25 DWT_CYCCNT (0xE0001004) .. C1-49
Table C1-26 DWT_CPICNT (0xE0001008) .. C1-50
Table C1-27 DWT_INTCNT (0xE000100C) .. C1-50
Table C1-28 DWT_SLEEPCNT (0xE0001010) .. C1-51
Table C1-29 DWT_LSUCNT (0xE0001014) ... C1-51
Table C1-30 DWT_FOLDCNT (0xE0001018) .. C1-52
Table C1-31 DWT_PCSR (0xE000101C) ... C1-52
Table C1-32 DWT_COMPx .. C1-53
Table C1-33 DWT_MASKx ... C1-53
Table C1-34 DWT_FUNCTIONx ... C1-54
Table C1-35 TPIU programmers’ model overview .. C1-58
Table C1-36 Supported Synchronous Port Sizes Register (0xE0040000) C1-58
Table C1-37 Asynchronous Clock Prescaler Register (0xE0040010) C1-59
Table C1-38 Selected Pin Protocol Register (0xE00400F0) ... C1-59
Table C1-39 TPIU Type Register (0xE0040FC8) ... C1-60
Table C1-40 Flash Patch and Breakpoint register summary .. C1-62
Table C1-41 FP_CTRL ... C1-64
Table C1-42 FP_REMAP .. C1-64
Table C1-43 FP_COMPx instruction comparison ... C1-65
Table C1-44 FP_COMPx literal comparison ... C1-66
Table A-1 Core Feature ID register support in the SCS ... AppxA-2
Table B-1 Component and Peripheral ID register formats .. AppxB-2
Table B-2 ARMv7-M and CoreSight management registers AppxB-3
Table C-1 Pre-UAL assembly syntax .. AppxC-2
Table E-1 ITM and DWT general packet formats ... AppxE-2
Table E-2 Sync packet (matches ETM format) ... AppxE-3
Table E-3 Overflow packet format .. AppxE-3
Table E-4 Timestamp packet format 1 .. AppxE-4
Table E-5 Timestamp packet format 2 .. AppxE-5
xii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

List of Tables
Table E-6 Software instrumentation packet format ... AppxE-5
Table E-7 Hardware source packet format ... AppxE-6
Table E-8 Extension packet format ... AppxE-6
Table E-9 Reserved packet encodings ... AppxE-7
Table E-10 Event packet (discriminator ID0) format ... AppxE-8
Table E-11 Event flag support .. AppxE-8
Table E-12 Event packet (discriminator ID1) format ... AppxE-9
Table E-13 Event packet (discriminator ID2) format ... AppxE-9
Table E-14 Sleep packet format ... AppxE-10
Table E-15 Event packet (discriminator ID16 to ID23) format AppxE-10
Table E-16 Event packet (discriminator ID8, ID10, ID12, ID14) format AppxE-11
Table E-17 Event packet (discriminator ID9, ID11, ID13, ID15) format AppxE-11
Table H-1 Pseudocode operators and keywords .. AppxH-2
Table H-2 Pseudocode functions and procedures .. AppxH-5
Table I-1 ARM core register index .. AppxI-2
Table I-2 Memory-mapped control register index ... AppxI-3
Table I-3 Memory-mapped debug register index ... AppxI-5
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xiii
Restricted Access Non-Confidential

List of Tables
xiv Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

List of Figures
ARMv7-M Architecture Reference Manual

Figure A3-1 Instruction byte order in memory .. A3-7
Figure A3-2 Local monitor state machine diagram .. A3-10
Figure A3-3 Global monitor state machine diagram for processor(n) in a multiprocessor system

A3-13
Figure A3-4 Memory ordering restrictions .. A3-34
Figure C1-1 DBGRESTART / DBGRESTARTED handshake .. C1-10
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xv
Restricted Access Non-Confidential

List of Figures
xvi Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Preface

This preface describes the contents of this manual, then lists the conventions and terminology it uses.

• About this manual on page xviii

• Using this manual on page xix

• Conventions on page xxii

• Further reading on page xxiii

• Feedback on page xxiv.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xvii
Restricted Access Non-Confidential

Preface
About this manual

This manual documents the Microcontroller profile associated with version 7 of the ARM® Architecture
(ARMv7-M). For short-form definitions of all the ARMv7 profiles see page A1-1.

The manual consists of three parts:

Part A The application level programming model and memory model information along with the
instruction set as visible to the application programmer.

This is the information required to program applications or to develop the toolchain
components (compiler, linker, assembler and disassembler) excluding the debugger. For
ARMv7-M, this is almost entirely a subset of material common to the other two profiles.
Instruction set details which differ between profiles are clearly stated.

Note
 All ARMv7 profiles support a common procedure calling standard, the ARM Architecture

Procedure Calling Standard (AAPCS).

Part B The system level programming model and system level support instructions required for
system correctness. The system level supports the ARMv7-M exception model. It also
provides features for configuration and control of processor resources and management of
memory access rights.

This is the information in addition to Part A required for an operating system (OS) and/or
system support software. It includes details of register banking, the exception model,
memory protection (management of access rights) and cache support.

Part B is profile specific. ARMv7-M introduces a new programmers’ model and as such has
some fundamental differences at the system level from the other profiles. As ARMv7-M is
a memory-mapped architecture, the system memory map is documented here.

Part C The debug features to support the ARMv7-M debug architecture and the programmer’s
interface to the debug environment.

This is the information required in addition to Parts A and B to write a debugger. Part C
covers details of the different types of debug:

• halting debug and the related Debug state

• exception-based monitor debug

• non-invasive support for event generation and signalling of the events to an external
agent.

This part is profile specific and includes several debug features unique within the ARMv7
architecture to this profile.
xviii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Preface
Using this manual

The information in this manual is organized into four parts as described below.

Part A, Application level architecture

Part A describes the application level view of the architecture. It contains the following chapters:

Chapter A1 Introduction

ARMv7 overview, the different architecture profiles and the background to the
Microcontroller (M) profile.

Chapter A2 Application Level Programmers’ Model

Details on the registers and status bits available at the application level along with a
summary of the exception support.

Chapter A3 ARM Architecture Memory Model

Details of the ARM architecture memory attributes and memory order model.

Chapter A4 The ARMv7-M Instruction Set

General information on the Thumb® instruction set.

Chapter A5 Thumb Instruction Set Encoding

Encoding diagrams for the Thumb instruction set along with information on bit field usage,
UNDEFINED and UNPREDICTABLE terminology.

Chapter A6 Thumb Instruction Details

Contains detailed reference material on each Thumb instruction, arranged alphabetically by
instruction mnemonic. Summary information for system instructions is included and
referenced for detailed definition in Part B.

Part B, system level architecture

Part B describes the system level view of the architecture. It contains the following chapters:

Chapter B1 System Level Programmers’ Model

Details of the registers, status and control mechanisms available at the system level.

Chapter B2 System Memory Model

Details of the pseudocode used to support memory accesses to the ARM architecture
memory model.

Chapter B3 System Address Map

Overview of the system address map and details of the architecturally defined features
within the Private Peripheral Bus region. This chapter includes details of the
memory-mapped support for a protected memory system.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xix
Restricted Access Non-Confidential

Preface
Chapter B4 ARMv7-M System Instructions

Contains detailed reference material on the system level instructions.

Part C, debug architecture

Part C describes the debug architecture. It contains the following chapter:

Chapter C1 ARMv7-M Debug

ARMv7-M debug support.

Part D, appendices

This manual contains a glossary and the following appendices:

Appendix A CPUID

The revised format for ARM architecture CPUID registers including the description and
associated values of all attribute fields relevant to the ARMv7-M architecture. Attribute
values are used to describe instruction set and memory model support of an architecture
variant. Some attribute values reflect architectural choice for an implementation.

Appendix B ARMv7-M infrastructure IDs

A summary of the ARM CoreSight™ compatible ID registers used for ARM architecture
infrastructure identification.

Appendix C Legacy Instruction Mnemonics

A cross reference of Unified Assembler Language forms of the instruction syntax to the
Thumb format used in earlier versions of the ARM architecture.

Appendix D Deprecated Features in ARMv7-M

Deprecated features that software is advised to avoid for future proofing. ARM intends to
remove this functionality in a future version of the ARM architecture.

Appendix E Debug ITM and DWT packet protocol

The debug trace packet protocol used to export ITM and DWT sourced information.

Appendix F ARMv7-R differences

A summary of differences between the ARMv7-R and ARMv7-M profiles.

Appendix G Pseudocode definition

Definition of terms, format and helper functions used by the pseudocode to describe the
memory model and instruction operations.

Appendix H Pseudocode Index

Index to definitions of pseudocode operators, keywords, functions, and procedures.
xx Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Preface
Appendix I Register Index

Index to register descriptions in the manual

 Glossary

Glossary of terms - does not include terms associated with pseudocode.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xxi
Restricted Access Non-Confidential

Preface
Conventions

This manual employs typographic and other conventions intended to improve its ease of use.

General typographic conventions

typewriter Is used for assembler syntax descriptions, pseudocode descriptions of instructions,
and source code examples. For more details of the conventions used in assembler
syntax descriptions see Assembler syntax on page A6-4. For more details of
pseudocode conventions see Appendix G Pseudocode definition.

The typewriter font is also used in the main text for instruction mnemonics and for
references to other items appearing in assembler syntax descriptions, pseudocode
descriptions of instructions and source code examples.

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Is used for emphasis in descriptive lists and elsewhere, where appropriate.

SMALL CAPITALS Are used for a few terms which have specific technical meanings.
xxii Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Preface
Further reading

This section lists publications that provide additional information on the ARM architecture and ARM family
of processors. This manual provides architecture information, the contract between hardware and software
for development of ARM compliant cores, compiler and debug tools development and software to run on
the ARM targets. The Technical Reference Manual (TRM) for the implementation of interest provides
details of the IMPLEMENTATION DEFINED architecture features in the ARM compliant core. The silicon
partner’s device specification should be used for additional system details.

ARM periodically provides updates and corrections to its documentation. For the latest information and
errata, some materials are published at http://www.arm.com. Alternatively, contact your distributor, or silicon
partner who will have access to the latest published ARM information, as well as information specific to the
device of interest. Your local ARM office has access to the latest published ARM information.

ARM publications

This document is specific to the ARMv7-M architecture. Other relevant publications relating to ARMv7-M
implementations and ARM’s debug architecture are:

• Cortex-M3 Technical Reference Manual (ARM DDI 0337)

• Procedure Call Standard for the ARM Architecture (ARM GENC 003534)

• ARM Debug Interface v5 Architecture Specification (ARM IHI 0031)

• CoreSight Architecture Specification (ARM IHI 0029)

• Embedded Trace Macrocell Architecture Specification (ARM DDI 0014).

For information on ARMv6-M, see the ARMv6-M Architecture Reference Manual (ARM DDI 0419).

For information on the ARMv7-A and -R profiles, see the ARM Architecture Reference Manual (ARM DDI
0406).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. xxiii
Restricted Access Non-Confidential

Preface
Feedback

ARM welcomes feedback on its documentation.

Feedback on this book

If you notice any errors or omissions in this book, send email to errata@arm.com giving:

• the document title

• the document number

• the page number(s) to which your comments apply

• a concise explanation of the problem.

General suggestions for additions and improvements are also welcome.
xxiv Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Part A
Application Level Architecture

Chapter A1
Introduction

ARMv7 is documented as a set of architecture profiles. Three profiles have been defined as follows:

ARMv7-A the application profile for systems supporting the ARM and Thumb instruction sets, and
requiring virtual address support in the memory management model.

ARMv7-R the realtime profile for systems supporting the ARM and Thumb instruction sets, and
requiring physical address only support in the memory management model

ARMv7-M the microcontroller profile for systems supporting only the Thumb instruction set, and
where overall size and deterministic operation for an implementation are more important
than absolute performance.

While profiles were formally introduced with the ARMv7 development, the A-profile and R-profile have
implicitly existed in earlier versions, associated with the Virtual Memory System Architecture (VMSA) and
Protected Memory System Architecture (PMSA) respectively.

Instruction Set Architecture (ISA)

ARMv7-M only supports execution of Thumb instructions. For a detailed list of the
instructions supported, see Chapter A6 Thumb Instruction Details.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A1-1
Restricted Access Non-Confidential

Introduction
A1.1 The ARM Architecture – M profile

The ARM architecture has evolved through several major revisions to a point where it supports
implementations across a wide spectrum of performance points, with over a billion parts per annum being
produced. The latest version (ARMv7) has seen the diversity formally recognized in a set of architecture
profiles, the profiles used to tailor the architecture to different market requirements. A key factor is that the
application level is consistent across all profiles, and the bulk of the variation is at the system level.

The introduction of Thumb-2 technology in ARMv6T2 provided a balance to the ARM and Thumb
instruction sets, and the opportunity for the ARM architecture to be extended into new markets, in particular
the microcontroller marketplace. To take maximum advantage of this opportunity a Thumb-only profile
with a new programmers’ model (a system level consideration) has been introduced as a unique profile,
complementing ARM’s strengths in the high performance and real-time embedded markets.

Key criteria for ARMv7-M implementations are as follows:

• Enable implementations with industry leading power, performance and area constraints

— Opportunities for simple pipeline designs offering leading edge system performance levels in
a broad range of markets and applications

• Highly deterministic operation

— Single/low cycle execution

— Minimal interrupt latency (short pipelines)

— Cacheless operation

• Excellent C/C++ target – aligns with ARM’s programming standards in this area

— Exception handlers are standard C/C++ functions, entered using standard calling conventions

• Designed for deeply embedded systems

— Low pincount devices

— Enable new entry level opportunities for the ARM architecture

• Debug and software profiling support for event driven systems

This manual is specific to the ARMv7-M profile.
A1-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter A2
Application Level Programmers’ Model

This chapter provides an application level view of the programmers’ model. This is the information
necessary for application development, as distinct from the system information required to service and
support application execution under an operating system. It contains the following sections:

• About the Application level programmers’ model on page A2-2

• ARM core data types and arithmetic on page A2-3

• Registers and execution state on page A2-11

• Exceptions, faults and interrupts on page A2-15

• Coprocessor support on page A2-16

System related information is provided in overview form and/or with references to the system information
part of the architecture specification as appropriate.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-1
Restricted Access Non-Confidential

Application Level Programmers’ Model
A2.1 About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support
application execution under an operating system. That information is given in Chapter B1 System Level
Programmers’ Model.

A2.1.1 Privileged execution

System level support requires access to all features and facilities of the architecture, a level of access
generally referred to as privileged operation. System code determines whether an application runs in a
privileged or unprivileged manner. When an operating system supports both privileged and unprivileged
operation, an application usually runs unprivileged. This:

• permits the operating system to allocate system resources to it in a unique or shared manner

• provides a degree of protection from other processes and tasks, and so helps protect the operating
system from malfunctioning applications.

A2.1.2 System level architecture

Thread mode is the fundamental mode for application execution in ARMv7-M and is selected on reset.
Thread mode can raise a supervisor call using the SVC instruction or handle system access and control
directly.

All exceptions execute in Handler mode. Supervisor call (SVCall) handlers manage resources on behalf of
the application such as interaction with peripherals, memory allocation and management of software stacks.

This chapter only provides a limited amount of system level information. Where appropriate it:

• gives an overview of the system level information

• gives references to the system level descriptions in Chapter B1 System Level Programmers’ Model
and elsewhere.
A2-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
A2.2 ARM core data types and arithmetic

ARMv7-M processors support the following data types in memory:

Byte 8 bits

Halfword 16 bits

Word 32 bits

Processor registers are 32 bits in size. The instruction set contains instructions supporting the following data
types held in registers:

• 32-bit pointers

• unsigned or signed 32-bit integers

• unsigned 16-bit or 8-bit integers, held in zero-extended form

• signed 16-bit or 8-bit integers, held in sign-extended form

• unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or
halfwords zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory.
You can load and store 64-bit integers using these instructions.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer
in the range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1
to +2N-1-1, using two's complement format.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two
or more instructions to synthesize them.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-3
Restricted Access Non-Confidential

Application Level Programmers’ Model
A2.2.1 Integer arithmetic

The instruction set provides a wide variety of operations on the values in registers, including bitwise logical
operations, shifts, additions, subtractions, multiplications, and many others. These operations are defined
using the pseudocode described in Appendix G Pseudocode definition, usually in one of three ways:

• By direct use of the pseudocode operators and built-in functions defined in Operators and built-in
functions on page AppxG-11.

• By use of pseudocode helper functions defined in the main text.

• By a sequence of the form:

1. Use of the SInt(), UInt(), and Int() built-in functions defined in Converting bitstrings to
integers on page AppxG-14 to convert the bitstring contents of the instruction operands to the
unbounded integers that they represent as two's complement or unsigned integers.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded
integers to calculate other such integers.

3. Use of either the bitstring extraction operator defined in Bitstring extraction on
page AppxG-12 or of the saturation helper functions described in Pseudocode details of
saturation on page A2-9 to convert an unbounded integer result into a bitstring result that can
be written to a register.
A2-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at
the right end of the bitstring. Bits that are shifted off the left end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in
at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are
discarded, except that the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost
bit are shifted in at the left end of the bitstring. Bits that are shifted off the right end of the
bitstring are discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted
off the right end of the bitstring is re-introduced at the left end. The last bit shifted off the
the right end of the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. The carry input is shifted in at the left
end of the bitstring. The bit shifted off the right end of the bitstring can be produced as a
carry output.

Pseudocode details of shift and rotate operations

These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()
// =======

(bits(N), bit) LSL_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = x : Zeros(shift);
 result = extended_x<N-1:0>;
 carry_out = extended_x<N>;
 return (result, carry_out);

// LSL()
// =====

bits(N) LSL(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-5
Restricted Access Non-Confidential

Application Level Programmers’ Model
 (result, -) = LSL_C(x, shift);
 return result;

// LSR_C()
// =======

(bits(N), bit) LSR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = ZeroExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

// LSR()
// =====

bits(N) LSR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = LSR_C(x, shift);
 return result;

// ASR_C()
// =======

(bits(N), bit) ASR_C(bits(N) x, integer shift)
 assert shift > 0;
 extended_x = SignExtend(x, shift+N);
 result = extended_x<shift+N-1:shift>;
 carry_out = extended_x<shift-1>;
 return (result, carry_out);

// ASR()
// =====

bits(N) ASR(bits(N) x, integer shift)
 assert shift >= 0;
 if shift == 0 then
 result = x;
 else
 (result, -) = ASR_C(x, shift);
 return result;

// ROR_C()
// =======

(bits(N), bit) ROR_C(bits(N) x, integer shift)
 assert shift != 0;
 m = shift MOD N;
 result = LSR(x,m) OR LSL(x,N-m);
 carry_out = result<N-1>;
 return (result, carry_out);
A2-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
// ROR()
// =====

bits(N) ROR(bits(N) x, integer shift)
 if n == 0 then
 result = x;
 else
 (result, -) = ROR_C(x, shift);
 return result;

// RRX_C()
// =======

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
 result = carry_in : x<N-1:1>;
 carry_out = x<0>;
 return (result, carry_out);

// RRX()
// =====

bits(N) RRX(bits(N) x, bit carry_in)
 (result, -) = RRX_C(x, carry_in);
 return result;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-7
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Application Level Programmers’ Model
Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and
bitstrings, provided that if they are performed on two bitstrings, the bitstrings must be identical in length.
The result is another unbounded integer if both operands are unbounded integers, and a bitstring of the same
length as the bitstring operand(s) otherwise. For the precise definition of these operations, see Addition and
subtraction on page AppxG-15.

The main addition and subtraction instructions can produce status information about both unsigned carry
and signed overflow conditions. This status information can be used to synthesize multi-word additions and
subtractions. In pseudocode the AddWithCarry() function provides an addition with a carry input and carry
and overflow outputs:

// AddWithCarry()
// ==============

(bits(N), bit, bit) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
 unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
 signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
 result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>
 carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’;
 overflow = if SInt(result) == signed_sum then ’0’ else ’1’;
 return (result, carry_out, overflow);

An important property of the AddWithCarry() function is that if:

(result, carry_out, overflow) = AddWithCarry(x, NOT(y), carry_in)

then:

• If carry_in == '1', then result == x-y with overflow == '1' if signed overflow occurred during the
subtraction and carry_out == '1' if unsigned borrow did not occur during the subtraction (that is, if
x >= y).

• If carry_in == '0', then result == x-y-1 with overflow == '1' if signed overflow occurred during
the subtraction and carry_out == '1' if unsigned borrow did not occur during the subtraction (that is,
if x > y).

Together, these mean that the carry_in and carry_out bits in AddWithCarry() calls can act as NOT borrow
flags for subtractions as well as carry flags for additions.
A2-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the
destination signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that
range, rather than wrapping around modulo 2N. This is supported in pseudocode by the SignedSatQ() and
UnsignedSatQ() functions when a boolean result is wanted saying whether saturation occurred, and by the
SignedSat() and UnsignedSat() functions when only the saturated result is wanted:

// SignedSatQ()
// ============

(bits(N), boolean) SignedSatQ(integer i, integer N)
 if i > 2^(N-1) - 1 then
 result = 2^(N-1) - 1; saturated = TRUE;
 elsif i < -(2^(N-1)) then
 result = -(2^(N-1)); saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

// UnsignedSatQ()
// ==============

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
 if i > 2^N - 1 then
 result = 2^N - 1; saturated = TRUE;
 elsif i < 0 then
 result = 0; saturated = TRUE;
 else
 result = i; saturated = FALSE;
 return (result<N-1:0>, saturated);

// SignedSat()
// ===========

bits(N) SignedSat(integer i, integer N)
 (result, -) = SignedSatQ(i, N);
 return result;

// UnsignedSat()
// =============

bits(N) UnsignedSat(integer i, integer N)
 (result, -) = UnsignedSatQ(i, N);
 return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its
third argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on
the value of its third argument:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-9
Restricted Access Non-Confidential

Application Level Programmers’ Model
// SatQ()
// ======

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
 return (result, sat);
// Sat()
// =====

bits(N) Sat(integer i, integer N, boolean unsigned)
 result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
 return result;
A2-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
A2.3 Registers and execution state

The application level programmers’ model provides details of the general-purpose and special-purpose
registers visible to the application programmer, the ARM memory model, and the instruction set used to
load registers from memory, store registers to memory, or manipulate data (data operations) within the
registers.

Applications often interact with external events. A summary of the types of events recognized in the
architecture, along with the mechanisms provided in the architecture to interact with events, is included in
Exceptions, faults and interrupts on page A2-15). How events are handled is a system level topic described
in Exception model on page B1-14.

A2.3.1 ARM core registers

There are thirteen general-purpose 32-bit registers (R0-R12), and an additional three 32-bit registers which
have special names and usage models.

SP stack pointer (R13), used as a pointer to the active stack. For usage restrictions see Use of
0b1101 as a register specifier on page A5-4. This is preset to the top of the Main stack on
reset. See The SP registers on page B1-8 for additional information.

LR link register (R14), used to store a value (the Return Link) relating to the return address from
a subroutine which is entered using a Branch with Link instruction. This register is set to an
illegal value (all 1’s) on reset. The reset value will cause a fault condition to occur if a
subroutine return call is attempted from it. The LR register is also updated on exception
entry, see Exception entry behavior on page B1-21.

Note
 R14 can be used for other purposes when the register is not required to support a return from

a subroutine.

PC program counter. For details on the usage model of the PC see Use of 0b1111 as a register
specifier on page A5-3. The PC is loaded with the Reset handler start address on reset.

Pseudocode details of ARM core register operations

In pseudocode, the R[] function is used to:

• Read or write R0-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.

• Read the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
 assert n >= 0 && n <= 15;

R[integer n] = bits(32) value
 assert n >= 0 && n <= 14;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-11
Restricted Access Non-Confidential

Application Level Programmers’ Model
For more details on the R[] function, see Pseudocode details for ARM core register access in the Thumb
instruction set on page B1-12. Writing an address to the PC causes either a simple branch to that address or
an interworking branch that, in ARMv7-M, must select the Thumb instruction set to execute after the
branch.

Note
 The following pseudocode defines behavior in ARMv7-M. It is much simpler than the equivalent
pseudo-function definitions that apply to older ARM architecture variants and other profiles.

A simple branch is performed by the BranchWritePC() function:

// BranchWritePC()
// ===============

BranchWritePC(bits(32) address)
 BranchTo(address<31:1>:’0’);

An interworking branch is performed by the BXWritePC() function:

// BXWritePC()
// ===========

BXWritePC(bits(32) address)
 if CurrentMode == Mode_Handler && address<31:28> == '1111' then
 ExceptionReturn(address<27:0>);
 else
 EPSR.T = address<0>; // if EPSR.T == 0, a UsageFault('Invalid State')
 // is taken on the next instruction
 BranchTo(address<31:1>:'0');

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions. The functions simplify to aliases of the branch functions in the
M-profile architecture variants:

// LoadWritePC()
// =============

LoadWritePC(bits(32) address)
 BXWritePC(address);

// ALUWritePC()
// ============

ALUWritePC(bits(32) address)
 BranchWritePC(address);
A2-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Inserted Text
or BLXWritePC()

ARM_2009_Q4
Inserted Text

// BLXWritePC()
// ============

BLXWritePC(bits(32) address)
 EPSR.T = address<0>; // if EPSR.T == 0, a UsageFault('Invalid State')
 // is taken on the next instruction
 BranchTo(address<31:1>:'0');

ARM_2009_Q4
Sticky Note
The pseudocode function BLXWritePC() inserted here has been corrected from the version given in the ARM_2009_Q2 errata issue.

Application Level Programmers’ Model
A2.3.2 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR), where the defined bits
break down into a set of flags as follows:

APSR bit fields are in the following two categories:

• Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits is available in The special-purpose program status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

• Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
is regarded as a two's complement signed integer, then N == 1 if the result is negative and
N = 0 if it is positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a comparison.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V, bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition,
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if an SSAT or USAT instruction changes (saturates) the input value for the signed or
unsigned range of the result.

A2.3.3 Execution state support

ARMv7-M only executes Thumb instructions, and therefore always executes instructions in Thumb state.
See Chapter A6 Thumb Instruction Details for a list of the instructions supported.

In addition to normal program execution, there is a Debug state – see Chapter C1 ARMv7-M Debug for more
details.

A2.3.4 Privileged execution

Good system design practice requires the application developer to have a degree of knowledge of the
underlying system architecture and the services it offers. System support requires a level of access generally
referred to as privileged operation. The system support code determines whether applications run in a
privileged or unprivileged manner. Where both privileged and unprivileged support is provided by an
operating system, applications usually run unprivileged, allowing the operating system to allocate system
resources for sole or shared use by the application, and to provide a degree of protection with respect to other
processes and tasks.

31 30 29 28 27 26 0

N Z C V Q RESERVED
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-13
Restricted Access Non-Confidential

Application Level Programmers’ Model
Thread mode is the fundamental mode for application execution in ARMv7-M. Thread mode is selected on
reset, and can execute in a privileged or unprivileged manner depending on the system environment.
Privileged execution is required to manage system resources in many cases. When code is executing
unprivileged, Thread mode can execute an SVC instruction to generate a supervisor call exception. Privileged
execution in Thread mode can raise a supervisor call using SVC or handle system access and control directly.

All exceptions execute as privileged code in Handler mode. See Exception model on page B1-14 for details.
Supervisor call handlers manage resources on behalf of the application such as interaction with peripherals,
memory allocation and management of software stacks.
A2-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Application Level Programmers’ Model
A2.4 Exceptions, faults and interrupts

An exception can be caused by the execution of an exception generating instruction or triggered as a
response to a system behavior such as an interrupt, memory management protection violation, alignment or
bus fault, or a debug event. Synchronous and asynchronous exceptions can occur within the architecture.

How events are handled is a system level topic described in Exception model on page B1-14.

A2.4.1 System related events

The following types of exception are system related. Where there is direct correlation with an instruction,
reference to the associated instruction is made.

Supervisor calls are used by application code to request a service from the underlying operating system.
Using the SVC instruction, the application can instigate a supervisor call for a service requiring privileged
access to the system.

Several forms of Fault can occur:

• Instruction execution related errors

• Data memory access errors can occur on any load or store

• Usage faults from a variety of execution state related errors. Execution of an UNDEFINED instruction
is an example cause of a UsageFault exception.

• Debug events can generate a DebugMonitor exception.

Faults in general are synchronous with respect to the associated executing instruction. Some system errors
can cause an imprecise exception where it is reported at a time bearing no fixed relationship to the
instruction which caused it.

Interrupts are always treated as asynchronous events with respect to the program flow. System timer
(SysTick), a Pending1 service call (PendSV2), and a controller for external interrupts (NVIC) are all defined.
See System timer - SysTick on page B3-24 for information on the SysTick interrupt, and Nested Vectored
Interrupt Controller (NVIC) on page B3-28 for information on the interrupt controller. PendSV is supported
by the Interrupt Control State register (see Interrupt Control State Register (ICSR) on page B3-12).

A BKPT instruction generates a debug event – see Debug event behavior on page C1-14 for more information.

For power or performance reasons it can be desirable to either notify the system that an action is complete,
or provide a hint to the system that it can suspend operation of the current task. Instruction support is
provided for the following:

• Send Event and Wait for Event instructions. See SEV on page A6-212 and WFE on page A6-276.

• Wait For Interrupt. See WFI on page A6-277.

1. For the definition of a Pending exception, see Exceptions on page B1-5.
2. A service (system) call is used by an application which requires a service from an underlying operating system.

The service call associated with PendSV executes when the interrupt is taken. For a service call which executes
synchronously with respect to program execution use the SVC instruction.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A2-15
Restricted Access Non-Confidential

Application Level Programmers’ Model
A2.5 Coprocessor support

An ARMv7-M implementation can optionally support coprocessors. If it does not support them, it treats all
coprocessors as non-existent. Coprocessors 8 to 15 (CP8 to CP15) are reserved by ARM. Coprocessors 0 to
7 (CP0 to CP7) are IMPLEMENTATION DEFINED, subject to the coprocessor instruction constraints of the
instruction set architecture.

Where a coprocessor instruction is issued to a non-existent or disabled coprocessor, a NOCP UsageFault is
generated (see Fault behavior on page B1-39).

Unknown instructions issued to an enabled coprocessor generate an UNDEFINSTR UsageFault.
A2-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter A3
ARM Architecture Memory Model

This chapter covers the general principles which apply to the ARM memory model. The chapter contains
the following sections:

• Address space on page A3-2

• Alignment support on page A3-3

• Endian support on page A3-5

• Synchronization and semaphores on page A3-8

• Memory types and attributes and the memory order model on page A3-18

• Access rights on page A3-28

• Memory access order on page A3-30

• Caches and memory hierarchy on page A3-38

ARMv7-M is a memory-mapped architecture. The address map specific details that apply to ARMv7-M are
described in The system address map on page B3-2.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-1
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.1 Address space

The ARM architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1.

This address space is regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned,
which means that the address is divisible by 4. The word whose word-aligned address is A consists of the
four bytes with addresses A, A+1, A+2 and A+3. The address space can also be considered as consisting of
231 16-bit halfwords, each of whose addresses is halfword-aligned, which means that the address is divisible
by 2. The halfword whose halfword-aligned address is A consists of the two bytes with addresses A and
A+1.

While instruction fetches are always halfword-aligned, some load and store instructions support unaligned
addresses. This affects the access address A, such that A[1:0] in the case of a word access and A[0] in the
case of a halfword access can have non-zero values.

Address calculations are normally performed using ordinary integer instructions. This means that they
normally wrap around if they overflow or underflow the address space. Another way of describing this is
that any address calculation is reduced modulo 232.

Normal sequential execution of instructions effectively calculates:

(address_of_current_instruction) +(2 or 4) /*16- and 32-bit instr mix*/

after each instruction to determine which instruction to execute next. If this calculation overflows the top of
the address space, the result is UNPREDICTABLE. In ARMv7-M this condition cannot occur because the top
of memory is defined to always have the eXecute Never (XN) memory attribute associated with it. See The
system address map on page B3-2 for more details. An access violation will be reported if this scenario
occurs.

The above only applies to instructions that are executed, including those which fail their condition code
check. Most ARM implementations prefetch instructions ahead of the currently-executing instruction.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, and STM instructions access a sequence of words at increasing memory
addresses, effectively incrementing a memory address by 4 for each register load or store. If this calculation
overflows the top of the address space, the result is UNPREDICTABLE.

Any unaligned load or store whose calculated address is such that it would access the byte at 0xFFFFFFFF and
the byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.

A3.1.1 Virtual versus physical addressing

Virtual memory is not supported in ARMv7-M. A virtual address (VA) is always equal to a physical address
(PA).
A3-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
A3.2 Alignment support

The system architecture can choose one of two policies for alignment checking in ARMv7-M:

• Support the unaligned access

• Generate a fault when an unaligned access occurs.

The policy varies with the type of access. An implementation can be configured to force alignment faults
for all unaligned accesses (see below).

Writes to the PC are restricted according to the rules outlined in Use of 0b1111 as a register specifier on
page A5-3.

A3.2.1 Alignment behavior

Address alignment affects data accesses and updates to the PC.

Alignment and data access

The following data accesses always generate an alignment fault:

• Non halfword-aligned LDREXH and STREXH

• Non word-aligned LDREX and STREX

• Non word-aligned LDRD, LDMIA, LDMDB, POP, and LDC

• Non word-aligned STRD, STMIA, STMDB, PUSH, and STC

The following data accesses support unaligned addressing, and only generate alignment faults when the
CCR.UNALIGN_TRP bit is set (see Configuration and Control Register (CCR) on page B3-16):

• Non halfword-aligned LDR{S}H{T} and STRH{T}

• Non halfword-aligned TBH

• Non word-aligned LDR{T} and STR{T}

Note
 LDREXD and STREXD are not supported in ARMv7-M.

Accesses to Strongly Ordered and Device memory types must always be naturally aligned (see Memory
access restrictions on page A3-26).

The ARMv7-M alignment behavior is described in the following pseudocode:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-3
Restricted Access Non-Confidential

ARM Architecture Memory Model
For register definitions see Appendix I Register Index.
For ExceptionTaken() see Exception entry behavior on page B1-21.
The other functions are local and descriptive only. For the actual memory access functionality, see MemU[]
and MemA[] that are used in the instruction definitions (see Chapter A6 Thumb Instruction Details), and
defined in Pseudocode details of general memory system operations on page B2-3.

if IsUnaligned(Address) then // the data access is to an unaligned address
 if AlignedAccessInstr() then // the instruction does not support unaligned accesses
 UFSR.UNALIGNED = ‘1’;
 ExceptionTaken(UsageFault);
 else
 if CCR.UNALIGN_TRP then // trap on all unaligned accesses
 UFSR.UNALIGNED = ‘1’;
 ExceptionTaken(UsageFault);
 else
 UnalignedAccess(Address); // perform an unaligned access
else
 AlignedAccess(Address); // perform an aligned access

Alignment and updates to the PC

All instruction fetches must be halfword-aligned. Any exception return irregularities are captured as an
INVSTATE or INVPC UsageFault by the exception return mechanism. See Fault behavior on page B1-39.

For exception entry and return:

• exception entry using a vector with bit [0] clear causes an INVSTATE UsageFault

• a reserved EXC_RETURN value causes an INVPC UsageFault

• loading an unaligned value from the stack into the PC on an exception return is UNPREDICTABLE.

For all other cases where the PC is updated:

• bit [0] of the value is ignored when loading the PC1 using an ADD or MOV instruction

• a BLX, BX, LDR to the PC, POP or LDM including the PC instruction will cause an INVSTATE UsageFault
if bit [0] of the value loaded is zero

• loading the PC with a value from a memory location whose address is not word aligned is
UNPREDICTABLE.

1. 16-bit form of the ADD (register) and MOV (register) instructions only, otherwise loading the PC is
UNPREDICTABLE.
A3-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
A3.3 Endian support

The address space rules (Address space on page A3-2) require that for an address A:

• the word at address A consists of the bytes at addresses A, A+1, A+2 and A+3

• the halfword at address A consists of the bytes at addresses A and A+1

• the halfword at address A+2 consists of the bytes at addresses A+2 and A+3

• the word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not fully specify the mappings between words, halfwords and bytes. A memory system
uses one of the following mapping schemes. This choice is known as the endianness of the memory system.

In a little-endian memory system the mapping between bytes from memory and the interpreted value in an
ARM register is illustrated in Table A3-1.

• a byte or halfword at address A is the least significant byte or halfword within the word at that address

• a byte at a halfword address A is the least significant byte within the halfword at that address.

In a big-endian memory system the mapping between bytes from memory and the interpreted value in an
ARM register is illustrated in Table A3-2.

• a byte or halfword at address A is the most significant byte or halfword within the word at that address

• a byte at a halfword address A is the most significant byte within the halfword at that address.

Table A3-1 Little-endian byte format

31 24 23 16 15 8 7 0

Word at Address A Byte {Addr + 3} Byte {Addr + 2} Byte {Addr + 1} Byte {Addr + 0}

Halfword at Address A Byte {Addr + 1} Byte {Addr + 0}

Table A3-2 Big-endian byte format

31 24 23 16 15 8 7 0

Word at Address A Byte {Addr + 0} Byte {Addr + 1} Byte {Addr + 2} Byte {Addr + 3}

Halfword at Address A Byte {Addr + 0} Byte {Addr + 1}
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-5
Restricted Access Non-Confidential

ARM Architecture Memory Model
For a word address A, Table A3-3 and Table A3-4 show how the word at address A, the halfwords at address
A and A+2, and the bytes at addresses A, A+1, A+2 and A+3 map onto each other for each endianness.

The big-endian and little-endian mapping schemes determine the order in which the bytes of a word or
half-word are interpreted.

As an example, a load of a word (4 bytes) from address 0x1000 will result in an access of the bytes contained
at memory locations 0x1000, 0x1001, 0x1002 and 0x1003, regardless of the mapping scheme used. The
mapping scheme determines the significance of those bytes.

A3.3.1 Control of the Endian Mapping in ARMv7-M

ARMv7-M supports a selectable endian model, that is configured to be big endian (BE) or little endian (LE)
by a control input on a reset. The endian mapping has the following restrictions:

• The endian setting only applies to data accesses, instruction fetches are always little endian

• Loads and stores to the System Control Space (System Control Space (SCS) on page B3-6) are always
little endian

Where big endian format instruction support is required, it can be implemented in the bus fabric. See Endian
support on page AppxF-2 for more details.

Instruction alignment and byte ordering

Thumb instruction execution enforces 16-bit alignment on all instructions. This means that 32-bit
instructions are treated as two halfwords, hw1 and hw2, with hw1 at the lower address.

Table A3-3 Little-endian memory system

MSByte MSByte -1 LSByte + 1 LSByte

Word at Address A

Halfword at Address A+2 Halfword at Address A

Byte at Address A+3 Byte at Address A+2 Byte at Address A+1 Byte at Address A

Table A3-4 Big-endian memory system

MSByte MSByte -1 LSByte + 1 LSByte

Word at Address A

Halfword at Address A Halfword at Address A+2

Byte at Address A Byte at Address A+1 Byte at Address A+2 Byte at Address A +3
A3-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
In instruction encoding diagrams, hw1 is shown to the left of hw2. This results in the encoding diagrams
reading more naturally. The byte order of a 32-bit Thumb instruction is shown in Figure A3-1.

Figure A3-1 Instruction byte order in memory

A3.3.2 Element size and Endianness

The effect of the endianness mapping on data applies to the size of the element(s) being transferred in the
load and store instructions. Table A3-5 shows the element size of each of the load and store instructions:.

A3.3.3 Instructions to reverse bytes in a general-purpose register

When an application or device driver has to interface to memory-mapped peripheral registers or
shared-memory structures that are not the same endianness as that of the internal data structures, or the
endianness of the Operating System, an efficient way of being able to explicitly transform the endianness of
the data is required.

ARMv7-M supports instructions for the following byte transformations (see the instruction definitions in
Chapter A6 Thumb Instruction Details for details):

REV Reverse word (four bytes) register, for transforming 32-bit representations.

REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.

REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

�������	
�����
��������
��
�� �������	
�����
��������
��
��

�������������������������������������� ������������������������������������

	
������������
��������
��������
�������

�� � � �� � � ��

Table A3-5 Load-store and element size association

Instruction class Instructions Element Size

Load/store byte LDR{S}B{T}, STRB{T}, LDREXB, STREXB byte

Load/store halfword LDR{S}H{T}, STRH{T}, TBH, LDREXH,
STREXH

halfword

Load/store word LDR{T}, STR{T}, LDREX, STREX word

Load/store two words LDRD, STRD word

Load/store multiple words LDM{IA,DB}, STM{IA,DB}, PUSH, POP,
LDC, STC

word
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-7
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.4 Synchronization and semaphores

Exclusive access instructions support non-blocking shared-memory synchronization primitives that allow
calculation to be performed on the semaphore between the read and write phases, and scale for
multiprocessor system designs.

In ARMv7-M, the synchronization primitives provided are:

• Load-Exclusives:

— LDREX, see LDREX on page A6-106

— LDREXB, see LDREXB on page A6-107

— LDREXH, see LDREXH on page A6-108

• Store-Exclusives:

— STREX, see STREX on page A6-234

— STREXB, see STREXB on page A6-235

— STREXH, see STREXH on page A6-236

• Clear-Exclusive, CLREX, see CLREX on page A6-56.

Note
 This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives
using, as examples, the LDREX and STREX instructions. The same description applies to any other pair of
synchronization primitives:

• LDREXB used with STREXB

• LDREXH used with STREXH.

Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.

STREXD and LDREXD are not supported in ARMv7-M.

The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing memory address x is:

• The Load-Exclusive instruction always successfully reads a value from memory address x

• The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if
no other processor or process has performed a more recent store of address x. The Store-Exclusive
operation returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged
block is IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-15.
A Store-Exclusive instruction to the same address clears the tag.

A3.4.1 Exclusive access instructions and Non-shareable memory regions

For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted
attempt by the same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.
A3-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
A Load-Exclusive performs a load from memory, and:

• the executing processor tags the physical memory address for exclusive access

• the local monitor of the executing processor transitions to its Exclusive Access state.

A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:

If the local monitor is in its Exclusive Access state

• If the address of the Store-Exclusive is the same as the address that has been tagged
in the monitor by an earlier Load-Exclusive, then the store takes place, otherwise it
is IMPLEMENTATION DEFINED whether the store takes place.

• A status value is returned to a register:

— if the store took place the status value is 0

— otherwise, the status value is 1.

• The local monitor of the executing processor transitions to its Open Access state.

If the local monitor is in its Open Access state

• no store takes place

• a status value of 1 is returned to a register.

• the local monitor remains in its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a processor writes using any instruction other than a Store-Exclusive:

• if the write is to a physical address that is not covered by its local monitor the write does not affect
the state of the local monitor

• if the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in its Exclusive Access state and a processor performs a Store-Exclusive to any
address other than the last one from which it has performed a Load-Exclusive, it is IMPLEMENTATION
DEFINED whether the store succeeds, but in all cases the local monitor is reset to its Open Access state. In
ARMv7-M, the store must be treated as a software programming error.

Note
 It is UNPREDICTABLE whether a store to a tagged physical address causes a tag in the local monitor to be
cleared if that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-2 on page A3-10 shows the state machine for the local monitor. Table A3-6 on page A3-10 shows
the effect of each of the operations shown in the figure.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-9
Restricted Access Non-Confidential

ARM Architecture Memory Model
Figure A3-2 Local monitor state machine diagram

Note
 • The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor

being constructed so that it does not hold any physical address, but instead treats any access as
matching the address of the previous LDREX.

• A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations
from other processors.

• It is UNPREDICTABLE whether the transition from Exclusive Access to Open Access state occurs when
the STR or STREX is from another observer.

Table A3-6 shows the effect of the operations shown in Figure A3-2.

 !������
�����"���������!�����#���#���
���$��%&'()&)*	�	% *�+),%*)+��!���
�-

�
���������	��!������
��!�������
����..���������������
���������.
�/���
��������/��
����������0�����
/����
���!������
-�,���������
/�������
������
��������
���������	
��	����
�������������-

%
��
�����.���1��������	���!����
����
��(����)0�#���$���
��������

���
���	���!����
����
��2�����)0�#���$���
��������

���
���!����
����
����
����������
��������
-

�����

���
���	304

���
304

�������	304 �������	304

�����

���
3	�..��5�������4��

���
���	3	�..��5�������4

���
���	36	�..��5�������4

 !�

������

���
36	�..��5�������4

���
3	�..��5�������4��

)0�#���$�
������

Table A3-6 Effect of Exclusive instructions and write operations on local monitor

Initial state Operationa Effect Final state

Open Access CLREX No effect Open Access

Open Access StoreExcl(x) Does not update memory, returns status 1 Open Access

Open Access LoadExcl(x) Loads value from memory, tags address x Exclusive Access

Open Access Store(x) Updates memory, no effect on monitor Open Access

Exclusive Access CLREX Clears tagged address Open Access

Exclusive Access StoreExcl(t) Updates memory, returns status 0 Open Access
A3-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
 In such an implementation, the Exclusives reservation granule defined in Tagging and the size of the tagged memory block on page A3-15 [PDF page 59] is the entire memory address range.

ARM Architecture Memory Model
A3.4.2 Exclusive access instructions and Shareable memory regions

For memory regions that have the Shareable attribute, exclusive access instructions rely on:

• A local monitor for each processor in the system, that tags any address from which the processor
executes a Load-Exclusive. The local monitor operates as described in Exclusive access instructions
and Non-shareable memory regions on page A3-8, except that for Shareable memory, any
Store-Exclusive described in that section as updating memory and/or returning the status value 0 is
then subject to checking by the global monitor. The local monitor can ignore exclusive accesses from
other processors in the system.

• A global monitor that tags a physical address as exclusive access for a particular processor. This tag
is used later to determine whether a Store-Exclusive to the tagged address, that has not been failed by
the local monitor, can occur. Any successful write to the tagged address by any other observer in the
shareability domain of the memory location is guaranteed to clear the tag.

For each processor in the system, the global monitor:

— holds a single tagged address

— maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory
interfaces.

An implementation can combine the functionality of the global and local monitors into a single unit.

Exclusive Access StoreExcl(!t)
Updates memory, returns status 0b

Open Access
Does not update memory, returns status 1b

Exclusive Access LoadExcl(x) Loads value from memory, changes tag to address to x Exclusive Access

Exclusive Access Store(!t) Updates memory, no effect on monitor Exclusive Access

Exclusive Access Store(t) Updates memory
Exclusive Accessb

Open Accessb

a. In the table:
LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information see
Tagging and the size of the tagged memory block on page A3-15.

b. IMPLEMENTATION DEFINED alternative actions.

Table A3-6 Effect of Exclusive instructions and write operations on local monitor (continued)

Initial state Operationa Effect Final state
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-11
Restricted Access Non-Confidential

ARM Architecture Memory Model
Operation of the global monitor

Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of
the access to be tagged as exclusive access for the requesting processor. This access also causes the exclusive
access tag to be removed from any other physical address that has been tagged by the requesting processor.
The global monitor only supports a single outstanding exclusive access to Shareable memory per processor.

Store-Exclusive performs a conditional store to memory:

• The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access
for the requesting processor and both the local monitor and the global monitor state machines for the
requesting processor are in the Exclusive Access state. In this case:

— a status value of 0 is returned to a register to acknowledge the successful store

— the final state of the global monitor state machine for the requesting processor is
IMPLEMENTATION DEFINED

— if the address accessed is tagged for exclusive access in the global monitor state machine for
any other processor then that state machine transitions to Open Access state.

• If no address is tagged as exclusive access for the requesting processor, the store does not succeed:

— a status value of 1 is returned to a register to indicate that the store failed

— the global monitor is not affected and remains in Open Access state for the requesting
processor.

• If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:

— if the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is
returned

— if the global monitor state machine for the processor was in the Exclusive Access state before
the Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in
the system. The state machine for accesses to Shareable memory by processor (n) can respond to all the
Shareable memory accesses visible to it. This means it responds to:

• accesses generated by the associated processor (n)

• accesses generated by the other observers in the shared memory system (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that
can generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-3 on page A3-13 shows the state machine for processor(n) in a global monitor. Table A3-7 on
page A3-14 shows the effect of each of the operations shown in the figure.
A3-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
Figure A3-3 Global monitor state machine diagram for processor(n) in a multiprocessor system

Note
 • Whether a Store-Exclusive successfully updates memory or not depends on whether the address

accessed matches the tagged Shareable memory address for the processor issuing the Store-Exclusive
instruction. For this reason, Figure A3-3 and Table A3-7 on page A3-14 only show how the (!n)
entries cause state transitions of the state machine for processor(n).

• A Load-Exclusive can only update the tagged Shareable memory address for the processor issuing
the Load-Exclusive instruction.

• The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

• It is IMPLEMENTATION DEFINED whether a modification to a non-shareable memory location can

cause a global monitor Exclusive Access to Open Access transition.

• It is IMPLEMENTATION DEFINED whether an LDREX to a non-shareable memory location can cause a

global monitor Open Access to Exclusive Access transition.

7�
���
���	3	�..��5��������6
4��#������
����
������
#���/��
��
���
���	��!������������

�
���������	��!������
��!�������
����..���������������
���������.
�/���
��������/��
����������0
�����/����
���!������
-�,���������
/�������
������
��������
���������	
��	����
�������������-

�������	30�
4

 !�

������

)0�#���$�
������

�����3
4�������36
4�
�������	30�6
4�

���
���	30�
4�

���
���	30�6
4�

���
30�
4��
���
30�6
4

���
���	3	�..��5��������6
47

���
3	�..��5��������6
4

���
���	3	�..��5��������
4��

���
���	36	�..��5��������
4��

���
3	�..��5��������
4��
�����3
4��

���
���	3	�..��5��������6
47

���
36	�..��5��������
4

���
���	3	�..��5��������
4��

���
���	36	�..��5��������
4��

���
3	�..��5��������
4��
�����3
4��

���
���	36	�..��5��������6
4

���
36	�..��5��������6
4
�����36
4

�������	30�
4

 !������
�����"���������!�����#���#���
���$��%&'()&)*	�	% *�+),%*)+��!���
�-
%
��
�����.���1��������	���!����
����
��(����)0�#���$���
��������

���
���	���!����
����
��2�����)0�#���$���
��������

���
���!����
����
����
����������
��������
-
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-13
Restricted Access Non-Confidential

ARM Architecture Memory Model
Table A3-7 shows the effect of the operations shown in Figure A3-3 on page A3-13.

Table A3-7 Effect of load/store operations on global monitor for processor(n)

Initial
statea Operationb Effect

Final
statea

Open CLREX(n),
CLREX(!n)

None Open

Open StoreExcl(x,n) Does not update memory, returns status 1 Open

Open LoadExcl(x,!n) Loads value from memory, no effect on tag address for processor(n) Open

Open StoreExcl(x,!n) Depends on state machine and tag address for processor issuing
STREXc

Open

Open STR(x,n),
STR(x,!n)

Updates memory, no effect on monitor Open

Open LoadExcl(x,n) Loads value from memory, tags address x Exclusive

Exclusive LoadExcl(x,n) Loads value from memory, tags address x Exclusive

Exclusive CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Exclusivee

Opene

Exclusive CLREX(!n) None Exclusive

Exclusive StoreExcl(t,!n)
Updates memory, returns status 0c Open

Does not update memory, returns status 1c Exclusive

Exclusive StoreExcl(t,n) Updates memory, returns status 0d
Open

Exclusive

Exclusive StoreExcl(!t,n)

Updates memory, returns status 0e
Open

Exclusive

Does not update memory, returns status 1e
Open

Exclusive

Exclusive StoreExcl(!t,!n) Depends on state machine and tag address for processor issuing
STREX

Exclusive
A3-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
A3.4.3 Tagging and the size of the tagged memory block

As shown in Figure A3-2 on page A3-10 and Figure A3-3 on page A3-13, when a LDREX instruction is
executed, the resulting tag address ignores the least significant bits of the memory address:

Tagged_address == Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 2 and a
maximum value of 11. For example, in an implementation where a = 4, a successful LDREX of address
0x000341B4 gives a tag value of bits [31:4] of the address, giving 0x000341B. This means that the four words
of memory from 0x000341B0 to 0x000341BF are tagged for exclusive access. Subsequently, a valid STREX to
any address in this block will remove the tag.

The size of the tagged memory block is called the Exclusives Reservation Granule. The Exclusives
Reservation Granule is IMPLEMENTATION DEFINED between:

• one word, in an implementation with a == 2

• 512 words, in an implementation with a == 11.

Exclusive Store(t,n) Updates memory
Exclusivee

Opene

Exclusive Store(t,!n) Updates memory Open

Exclusive Store(!t,n),
Store(!t,!n)

Updates memory, no effect on monitor Exclusive

a. Open = Open Access state, Exclusive = Exclusive Access state.
b. In the table:

LoadExcl represents any Load-Exclusive instruction
StoreExcl represents any Store-Exclusive instruction
Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by
processor(n), see Tagging and the size of the tagged memory block.

c. The result of a STREX(x,!n) or a STREX(t,!n) operation depends on the state machine and tagged address for the
processor issuing the STREX instruction. This table shows how each possible outcome affects the state machine for
processor(n).

d. After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However,
this state has no effect on the subsequent operation of the global monitor.

e. Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

Table A3-7 Effect of load/store operations on global monitor for processor(n) (continued)

Initial
statea Operationb Effect

Final
statea
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-15
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text

----- Note -----
For the local monitor, one of the IMPLEMENTATION DEFINED implementation options is for the monitor to treat any access as matching the address of the previous Load-Exclusive access. In such an implementation, the Exclusives reservation granule is the entire memory address range.

ARM Architecture Memory Model
A3.4.4 Context switch support

It is necessary to ensure that the local monitor is in the Open Access state after a context switch. In
ARMv7-M, the local monitor is changed to Open Access automatically as part of an exception entry or exit
sequence. The local monitor can also be forced to the Open Access state by a CLREX instruction.

Note
 Context switching is not an application level operation. However, this information is included here to
complete the description of the exclusive operations.

A context switch might cause a subsequent Store-Exclusive to fail, requiring a load … store sequence to be
replayed. To minimize the possibility of this happening, ARM recommends that the Store-Exclusive
instruction is kept as close as possible to the associated Load-Exclusive instruction, see Load-Exclusive and
Store-Exclusive usage restrictions.

A3.4.5 Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are designed to work together, as a pair, for example
a LDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that
the Store-Exclusive instruction always follows within a few instructions of its associated Load-Exclusive
instructions. In order to support different implementations of these functions, software must follow the notes
and restrictions given here.

These notes describe use of a LDREX/STREX pair, but apply equally to any other
Load-Exclusive/Store-Exclusive pair:

• The exclusives support a single outstanding exclusive access for each processor thread that is
executed. The architecture makes use of this by not requiring an address or size check as part of the
IsExclusiveLocal() function. If the target address of an STREX is different from the preceding LDREX in
the same execution thread, behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only
be relied upon to eventually succeed if they are executed with the same address.

• An explicit store to memory can cause the clearing of exclusive monitors associated with other
processors, therefore, performing a store between the LDREX and the STREX can result in a livelock
situation. As a result, code must avoid placing an explicit store between an LDREX and an STREX in a
single code sequence.

• If two STREX instructions are executed without an intervening LDREX the second STREX returns a status
value of 1. This means that:

— every STREX must have a preceding LDREX associated with it in a given thread of execution

— it is not necessary for every LDREX to have a subsequent STREX.

• An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any
thread of execution, the transaction size of a Store-Exclusive is the same as the transaction size of the
preceding Load-Exclusive that was executed in that thread. If the transaction size of a
Store-Exclusive is different from the preceding Load-Exclusive in the same execution thread,
behavior can be UNPREDICTABLE. As a result, software can rely on a Load-Exclusive/Store-Exclusive
pair to eventually succeed only if they are executed with the same address.
A3-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
• An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written
for such an implementation must avoid having any explicit memory accesses or cache maintenance
operations between the LDREX and STREX instructions.

• Implementations can benefit from keeping the LDREX and STREX operations close together in a single
code sequence. This minimizes the likelihood of the exclusive monitor state being cleared between
the LDREX instruction and the STREX instruction. Therefore, ARM recommends strongly a limit of 128
bytes between LDREX and STREX instructions in a single code sequence, for best performance.

• Implementations that implement coherent protocols, or have only a single master, might combine the
local and global monitors for a given processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE
parts of the definitions in Pseudocode details of operations on exclusive monitors on page B2-8 are
provided to cover this behavior.

• The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as
exclusive. Therefore, for performance reasons, ARM recommends that software separates objects
that will be accessed by exclusive accesses by at least 2048 bytes. This is a performance guideline
rather than a functional requirement.

• LDREX and STREX operations must be performed only on memory with the Normal memory attribute.

• If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between
the LDREX and the STREX, behavior is UNPREDICTABLE.

A3.4.6 Synchronization primitives and the memory order model

The synchronization primitives follow the memory ordering model of the memory type accessed by the
instructions. For this reason:

• Portable code for claiming a spinlock must include a DMB instruction between claiming the spinlock
and making any access that makes use of the spinlock.

• Portable code for releasing a spinlock must include a DMB instruction before writing to clear the
spinlock.

This requirement applies to code using the Load-Exclusive/Store-Exclusive instruction pairs, for example
LDREX/STREX.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-17
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

ARMv7 defines a set of memory attributes with the characteristics required to support the memory and
devices in the system memory map.

The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the
memory attributes. This model is described in the following sections:

• Memory types

• Summary of ARMv7 memory attributes on page A3-19

• Atomicity in the ARM architecture on page A3-20

• Normal memory on page A3-22

• Device memory on page A3-24

• Strongly-ordered memory on page A3-25

• Memory access restrictions on page A3-26

A3.5.1 Memory types

For each memory region, the most significant memory attribute specifies the memory type. There are three
mutually exclusive memory types:

• Normal

• Device

• Strongly-ordered.

Normal and Device memory regions have additional attributes.

Usually, memory used for program code and for data storage is Normal memory. Examples of Normal
memory technologies are:

• programmed Flash ROM

Note
 During programming, Flash memory can be ordered more strictly than Normal memory.

• ROM

• SRAM

• DRAM and DDR memory.

System peripherals (I/O) generally conform to different access rules to Normal memory. Examples of I/O
accesses are:

• FIFOs where consecutive accesses

— add queued values on write accesses

— remove queued values on read accesses.

• interrupt controller registers where an access can be used as an interrupt acknowledge, changing the
state of the controller itself
A3-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
• memory controller configuration registers that are used to set up the timing and correctness of areas
of Normal memory

• memory-mapped peripherals, where accessing a memory location can cause side effects in the
system.

In ARMv7, regions of the memory map for these accesses are defined as Device or Strongly-ordered
memory. To ensure system correctness, access rules for Device and Strongly-ordered memory are more
restrictive than those for Normal memory:

• both read and write accesses can have side effects

• accesses must not be repeated, for example, on return from an exception

• the number, order and sizes of the accesses must be maintained.

In addition, for Strongly-ordered memory, all memory accesses are strictly ordered to correspond to the
program order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes

Table A3-8 summarizes the memory attributes. For more information about theses attributes see:

• Normal memory on page A3-22 and Shareable attribute for Device memory regions on page A3-25,
for the shareability attribute

• Write-Through cacheable, Write-Back cacheable and Non-cacheable Normal memory on
page A3-23, for the cacheability attribute.

Table A3-8 Memory attribute summary

Memory type
attribute

Shareability Other attributes Description

Strongly-
ordered

- All memory accesses to
Strongly-ordered memory
occur in program order. All
Strongly-ordered regions are
assumed to be Shareable.

Device Shareable Intended to handle memory-
mapped peripherals that are
shared by several processors.

Non-
shareable

Intended to handle memory-
mapped peripherals that are
used only by a single processor.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-19
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.5.3 Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description
refers to two types of atomicity, defined in:

• Single-copy atomicity

• Multi-copy atomicity on page A3-21.

Single-copy atomicity

A read or write operation is single-copy atomic if the following conditions are both true:

• After any number of write operations to an operand, the value of the operand is the value written by
one of the write operations. It is impossible for part of the value of the operand to come from one
write operation and another part of the value to come from a different write operation.

• When a read operation and a write operation are made to the same operand, the value obtained by the
read operation is one of:

— the value of the operand before the write operation

— the value of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the
write operation and partly the value of the operand after the write operation.

In ARMv7-M, the single-copy atomic processor accesses are:

• all byte accesses

• all halfword accesses to halfword-aligned locations

• all word accesses to word-aligned locations

Normal Shareable Cacheability, one of: a Intended to handle Normal
memory that is shared between
several processors.Non-cacheable

Write-Through cacheable
Write-Back Write-Allocate cacheable
Write-Back no Write-Allocate cacheable

Non-
shareable

Cacheability, one of: a Intended to handle Normal
memory that is used by only a
single processor.Non-cacheable

Write-Through cacheable
Write-Back Write-Allocate cacheable
Write-Back no Write-Allocate cacheable

a. The cacheability attribute is defined independently for inner and outer cache regions.

Table A3-8 Memory attribute summary (continued)

Memory type
attribute

Shareability Other attributes Description
A3-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, and POP instructions are executed as a sequence of
word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. A
subsequence of two or more word accesses from the sequence might not exhibit single-copy atomicity.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which
is single-copy atomic, at least at the byte level.

If an instruction is executed as a sequence of accesses according to these rules, some exceptions can be taken
in the sequence and cause execution of the instruction to be abandoned.

On exception return, the instruction that generated the sequence of accesses is re-executed and so any
accesses that had already been performed before the exception was taken might be repeated, see Exceptions
in LDM and STM operations on page B1-30.

Note
 The exception behavior for these multiple access instructions means they are not suitable for use for writes
to memory for the purpose of software synchronization.

For implicit accesses:

• Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or
instruction fetches.

• Instruction fetches are single-copy atomic for each instruction fetched.

Note
 32-bit Thumb instructions are fetched as two 16-bit items.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions
are both true:

• All writes to the same location are serialized, meaning they are observed in the same order by all
observers, although some observers might not observe all of the writes.

• A read of a location does not return the value of a write until all observers observe that write.

Writes to Normal memory are not multi-copy atomic.

All writes to Device and Strongly-Ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up
to the point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-21
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.5.4 Normal memory

Normal memory is idempotent, meaning that it exhibits the following properties:

• read accesses can be repeated with no side effects

• repeated read accesses return the last value written to the resource being read

• read accesses can prefetch additional memory locations with no side effects

• write accesses can be repeated with no side effects, provided that the contents of the location are
unchanged between the repeated writes

• unaligned accesses can be supported

• accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either
Shareable or Non-shareable.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal memory have a weakly consistent model of memory ordering. See a standard text
describing memory ordering issues for a description of weakly consistent memory models, for example
chapter 2 of Memory Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo,
Stanford University Technical Report CSL-TR-95-685. In general, for Normal memory, barrier operations
are required where the order of memory accesses observed by other observers must be controlled. This
requirement applies regardless of the cacheability and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on
page A3-32 apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-20 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note
 For ARMv7-M, the LDM and STM instructions can restart or continue on exception return, see Exceptions in
LDM and STM operations on page B1-30.
A3-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be
accessed only by a single processor.

A region of memory marked as Non-shareable Normal does not have any requirement to make the effect of
a cache transparent for data or instruction accesses. If other observers share the memory system, software
must use cache maintenance operations if the presence of caches might lead to coherency issues when
communicating between the observers. This cache maintenance requirement is in addition to the barrier
operations that are required to ensure memory ordering.

For Non-shareable Normal memory, the Load Exclusive and Store Exclusive synchronization primitives do
not take account of the possibility of accesses by more than one observer.

Shareable Normal memory

For Normal memory, the Shareable memory attribute describes Normal memory that is expected to be
accessed by multiple processors or other system masters.

A region of Normal memory with the Sharable attribute is one for which the effect of interposing a cache,
or caches, on the memory system is entirely transparent to data accesses in the same shareability domain.
Explicit software management is needed to ensure the coherency of instruction caches.

Implementations can use a variety of mechanisms to support this management requirement, from simply not
caching accesses in Shareable regions to more complex hardware schemes for cache coherency for those
regions.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take
account of the possibility of accesses by more than one observer in the same Shareability domain.

Note
 The Shareable concept enables system designers to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume
that specifying a memory region as Non-shareable permits software to make assumptions about the
incoherency of memory locations between different processors in a shared memory system. Such
assumptions are not portable between different multiprocessing implementations that make use of the
Shareable concept. Any multiprocessing implementation might implement caches that, inherently, are
shared between different processing elements.

Write-Through cacheable, Write-Back cacheable and Non-cacheable Normal
memory

In addition to being Shareable or Non-shareable, each region of Normal memory can be marked as being
one of:

• Write-Through cacheable
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-23
Restricted Access Non-Confidential

ARM Architecture Memory Model
• Write-Back cacheable, with an additional qualifier that marks it as one of:

— Write-Back, Write-Allocate

— Write-Back, no Write-Allocate

• Non-cacheable.

The cacheability attributes for a region are independent of the shareability attributes for the region. The
cacheability attributes indicate the required handling of the data region if it is used for purposes other than
the handling of shared data. This independence means that, for example, a region of memory that is marked
as being cacheable and Shareable might not be held in the cache in an implementation where Shareable
regions do not cache their data.

A3.5.5 Device memory

The Device memory type attribute defines memory locations where an access to the location can cause side
effects, or where the value returned for a load can vary depending on the number of loads performed.
memory-mapped peripherals and I/O locations are examples of memory regions that normally are marked
as being Device.

For explicit accesses from the processor to memory marked as Device:

• all accesses occur at their program size

• the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Device memory location if the program has only one
access to that location. In other words, accesses to Device memory locations are not restartable.

The architecture does not permit speculative accesses to memory marked as Device.

Address locations marked as Device are Non-cacheable. While writes to Device memory can be buffered,
writes can be merged only where the merge maintains:

• the number of accesses

• the order of the accesses

• the size of each access.

Multiple accesses to the same address must not change the number of accesses to that address. Coalescing
of accesses is not permitted for accesses to Device memory.

When a Device memory operation has side effects that apply to Normal memory regions, software must use
a Memory Barrier to ensure correct execution. An example is programming the configuration registers of a
memory controller with respect to the memory accesses it controls.

All explicit accesses to Device memory must comply with the ordering requirements of accesses described
in Ordering requirements for memory accesses on page A3-32.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-20 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.
A3-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
Note
 Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction
might restart after an exception and repeat any write accesses, see Exceptions in LDM and STM operations
on page B1-30 for more information.

Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

Shareable attribute for Device memory regions

Device memory regions can be given the Shareable attribute. This means that a region of Device memory
can be described as either:

• Shareable Device memory

• Non-shareable Device memory.

Non-shareable Device memory is defined as only accessible by a single processor. An example of a system
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

• a local bus for its private peripherals

• system peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or
interrupt controllers. In particular, a specific address in a Non-shareable Device memory region might
access a different physical peripheral for each processor.

A3.5.6 Strongly-ordered memory

Memory regions with the Strongly-ordered memory type attribute have a strong memory-ordering model
for all explicit memory accesses from a processor. Any access to memory with the Strongly-ordered
attribute must act as if DMB UN instructions were inserted before and after the access from the processor. See
Data Memory Barrier (DMB) on page A3-35.

When synchronization is required, a program must include an explicit Memory Barrier between the memory
access and the following instruction, see Data Synchronization Barrier (DSB) on page A3-36.

For explicit accesses from the processor to memory marked as Strongly-ordered:

• all accesses occur at their program size

• the number of accesses is the number specified by the program.

An implementation must not repeat an access to a Strongly-ordered memory location if the program has
only one access to that location. In other words, accesses to Strongly-ordered memory locations are not
restartable.

The architecture does not permit speculative accesses to memory marked as Strongly-ordered.

Address locations in Strongly-ordered memory are not held in a cache, and are always treated as Shareable
memory locations.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-25
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
An implementation must not perform more accesses to a Strongly-ordered memory location than are specified by a simple sequential execution of the program, except as a result of an exception. This section describes this permitted effect of an exception.

ARM_2009_Q4
Sticky Note
This is a clarification of the intended meaning of this section. This issue of the errata adds a definition of simple sequential execution to the Glossary, see PDF page 713.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
The Strongly-ordered memory type attribute defines memory locations where an access to the location can cause side effects, or where the value returned for a load can vary depending on the number of loads performed. Examples of memory regions normally marked as being Strongly-ordered are memory-mapped peripherals and I/O locations.

ARM_2009_Q4
Sticky Note
This change aligns the ARMv7-M memory model with the ARMv7-A and ARMv7-R architectural profiles, and clarifies the use of Strongly-ordered memory.

ARM Architecture Memory Model
All explicit accesses to Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-32.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page A3-20 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

Note
 Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the
instruction might restart after an exception and repeat any write accesses, see Exceptions in LDM and STM
operations on page B1-30 for more information.

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered
memory has UNPREDICTABLE behavior.

A3.5.7 Memory access restrictions

The following restrictions apply to memory accesses:

• For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise
the behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans a boundary
between different memory types is UNPREDICTABLE.

• For any two memory accesses X and Y that are generated by the same instruction, the bytes accessed
by X and Y must all have the same memory type attribute, otherwise the results are UNPREDICTABLE.
For example, an LDC, LDM, LDRD, STC, STM, or STRD that spans a boundary between Normal and Device
memory is UNPREDICTABLE.

• An instruction that generates an unaligned memory access to Device or Strongly-ordered memory is
UNPREDICTABLE.

• For instructions that generate accesses to Device or Strongly-ordered memory, implementations must
not change the sequence of accesses specified by the pseudocode of the instruction. This includes not
changing:

— how many accesses there are

— the time order of the accesses

— the data sizes and other properties of each access.

In addition, processor core implementations expect any attached memory system to be able to
identify the memory type of an accesses, and to obey similar restrictions with regard to the number,
time order, data sizes and other properties of the accesses.
A3-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
 at any particular memory-mapped peripheral

ARM_2009_Q4
Sticky Note
This is a clarification of the intended meaning.

ARM Architecture Memory Model
Exceptions to this rule are:

— An implementation of a processor core can break this rule, provided that the information it
supplies to the memory system enables the original number, time order, and other details of
the accesses to be reconstructed. In addition, the implementation must place a requirement on
attached memory systems to do this reconstruction when the accesses are to Device or
Strongly-ordered memory.

For example, an implementation with a 64-bit bus might pair the word loads generated by an
LDM into 64-bit accesses. This is because the instruction semantics ensure that the 64-bit access
is always a word load from the lower address followed by a word load from the higher address.
However the implementation must permit the memory systems to unpack the two word loads
when the access is to Device or Strongly-ordered memory.

— Any implementation technique that produces results that cannot be observed to be different
from those described above is legitimate.

• LDM and STM instructions that are used with the IT instruction are restartable if interrupted during
execution. Restarting a load or store instruction is incompatible with the Device and Strongly
Ordered memory access rules. For details on the architecture constraints associated with LDM and
STM and the exception model see Exceptions in LDM and STM operations on page B1-30.

• Any multi-access instruction that loads or stores the PC must access only Normal memory. If the
instruction accesses Device or Strongly-ordered memory the result is UNPREDICTABLE.

• Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered
memory, the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an
area of memory that contains read-sensitive devices, because there is no ordering requirement
between instruction fetches and explicit accesses.

To ensure correctness, read-sensitive locations must be marked as non-executable (see Privilege level access
controls for instruction accesses on page A3-28).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-27
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.6 Access rights

ARMv7 includes additional attributes for memory regions, that enable:

• Data accesses to be restricted, based on the privilege of the access. See Privilege level access controls
for data accesses.

• Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch.
See Privilege level access controls for instruction accesses.

A3.6.1 Privilege level access controls for data accesses

The memory attributes can define that a memory region is:

• not accessible to any accesses

• accessible only to Privileged accesses

• accessible to Privileged and Unprivileged accesses.

The access privilege level is defined separately for explicit read and explicit write accesses. However, a
system that defines the memory attributes is not required to support all combinations of memory attributes
for read and write accesses.

A Privileged access is an access made during privileged execution, as a result of a load or store operation
other than LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.

An Unprivileged access is an access made as a result of load or store operation performed in one of these
cases:

• when the current execution mode is configured for Unprivileged access only

• when the processor is in any mode and the access is made as a result of a LDRT, STRT, LDRBT, STRBT,
LDRHT, STRHT, LDRSHT, or LDRSBT instruction.

An exception occurs if the processor attempts a data access that the access rights do not permit. For example,
a MemManage exception occurs if the processor mode is Unprivileged and the processor attempts to access
a memory region that is marked as only accessible to Privileged accesses.

Note
 Data access control is only supported when a Memory Protection Unit is implemented and enabled, see
Protected Memory System Architecture (PMSAv7) on page B3-35.

A3.6.2 Privilege level access controls for instruction accesses

Memory attributes can define that a memory region is:

• not accessible for execution

• accessible for execution by Privileged processes only

• accessible for execution by Privileged and Unprivileged processes.
A3-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
To define the instruction access rights to a memory region, the memory attributes describe, separately, for
the region:

• its read access rights

• whether it is suitable for execution.

For example, a region that is accessible for execution by Privileged processes has the memory attributes:

• accessible only to Privileged read accesses

• suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of a region to
explicit memory accesses, and those that define that a region can be executed.

A MemManage exception occurs if a processor attempts to execute code from a memory location with
attributes that do not permit code execution.

Note
 Instruction access control is fully supported when a Memory Protection Unit is implemented and enabled,
see Protected Memory System Architecture (PMSAv7) on page B3-35.

Instruction execution access control is also supported in the default address map, see The system address
map on page B3-2.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-29
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.7 Memory access order

ARMv7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined
memory access properties.

The ARMv7 application-level view of the memory attributes is described in:

• Memory types and attributes and the memory order model on page A3-18

• Access rights on page A3-28.

When considering memory access ordering, an important feature is the Shareable memory attribute that
indicates whether a region of memory can be shared between multiple processors, and therefore requires an
appearance of cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

• For software programmers, considering the model at the application level, the key factor is that for
accesses to Normal memory, barriers are required in some situations where the order of accesses
observed by other observers must be controlled.

• For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and
when to indicate completion of an access.

Note
 Implementations remain free to choose the mechanisms required to implement the functionality of

the memory model.

More information about the memory order model is given in the following subsections:

• Reads and writes

• Ordering requirements for memory accesses on page A3-32

• Memory barriers on page A3-35.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in
the system level section of this manual, see Protected Memory System Architecture (PMSAv7) on
page B3-35.

A3.7.1 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required
by the function of an instruction. The following can cause memory accesses that are not explicit:

• instruction fetches

• cache loads and writebacks

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

Reads

Reads are defined as memory operations that have the semantics of a load.
A3-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
The memory accesses of the following instructions are reads:

• LDR, LDRB, LDRH, LDRSB, and LDRSH

• LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT

• LDREX, LDREXB, and LDREXH

• LDM{IA,DB}, LDRD, and POP

• LDC and LDC2

• the return of status values by STREX, STREXB, and STREXH

• TBB and TBH.

Writes

Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:

• STR, STRB, and STRH

• STRT, STRBT, and STRHT

• STREX, STREXB, and STREXH

• STM{IA,DB}, STRD, and PUSH

• STC and STC2

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order
model. The synchronization primitive instructions are defined as those instructions that are used to ensure
memory synchronization:

• LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization
and semaphores on page A3-8.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable
memory. Non-shareable memory can be used to synchronize processes that are running on the same
processor. Shareable memory must be used to synchronize processes that might be running on different
processors.

Observability and completion

The set of observers that can observe a memory access is defined by the system.

For all memory:

• a write to a location in memory is said to be observed by an observer when a subsequent read of the
location by the same observer will return the value written by the write
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-31
Restricted Access Non-Confidential

ARM Architecture Memory Model
• a write to a location in memory is said to be globally observed for a shareability domain when a
subsequent read of the location by any observer within that shareability domain that is capable of
observing the write will return the value written by the write

• a read of a location in memory is said to be observed by an observer when a subsequent write to the
location by the same observer will have no effect on the value returned by the read

• a read of a location in memory is said to be globally observed for a shareability domain when a
subsequent write to the location by any observer within that shareability domain that is capable of
observing the write will have no effect on the value returned by the read.

Additionally, for Strongly-ordered memory:

• A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be
observed, and globally observed, only when the read or write:

— meets the general conditions listed

— can begin to affect the state of the memory-mapped peripheral

— can trigger all associated side effects, whether they affect other peripheral devices, cores or
memory.

For all memory, the ARMv7-M completion rules are defined as:

• A read or write is complete for a shareability domain when all of the following are true:

— the read or write is globally observed for that shareability domain

— any instruction fetches by observers within the shareability domain have observed the read or
write.

• A cache or branch predictor maintenance operation is complete for a shareability domain when the
effects of operation are globally observed for that shareability domain.

Side effect completion in Strongly-ordered and Device memory

The completion of a memory access in Strongly-ordered or Device memory is not guaranteed to be
sufficient to determine that the side effects of the memory access are visible to all observers. The mechanism
that ensures the visibility of side-effects of a memory access is IMPLEMENTATION DEFINED, for example
provision of a status register that can be polled.

A3.7.2 Ordering requirements for memory accesses

ARMv7-M defines access restrictions in the permitted ordering of memory accesses. These restrictions
depend on the memory attributes of the accesses involved.
A3-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by a read access is used to compute
the address of a subsequent read or write access. An address dependency exists even if the
value read by the first read access does not change the address of the second read or write
access. This might be the case if the value returned is masked off before it is used, or if it
has no effect on the predicted address value for the second access.

Control dependency

A control dependency exists when the data value returned by a read access is used to
determine the condition code flags, and the values of the flags are used for condition code
evaluation to determine the address of a subsequent read access. This address determination
might be through conditional execution, or through the evaluation of a branch

Figure A3-4 on page A3-34 shows the memory ordering between two explicit accesses A1 and A2, where
A1 occurs before A2 in program order. The symbols used in the figure are as follows:

< Accesses must be globally observed in program order, that is, A1 must be globally observed
strictly before A2.

- Accesses can be globally observed in any order, provided that the requirements of
uniprocessor semantics, for example respecting dependencies between instructions in a
single processor, are maintained.

The following additional restrictions apply to the ordering of memory accesses that have this
symbol:

• If there is an address dependency then the two memory accesses are observed in
program order.

This ordering restriction does not apply if there is only a control dependency between
the two read accesses.

If there is both an address dependency and a control dependency between two read
accesses the ordering requirements of the address dependency apply.

• If the value returned by a read access is used as data written by a subsequent write
access, then the two memory accesses are observed in program order.

• It is impossible for an observer to observe a write access to a memory location if that
location would not be written to in a sequential execution of a program

• It is impossible for an observer to observe a write value to a memory location if that
value would not be written in a sequential execution of a program.

In Figure A3-4 on page A3-34, an access refers to a read or a write access to the specified
memory type. For example, Device access, Non-shareable refers to a read or write access to
Non-shareable Device memory.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-33
Restricted Access Non-Confidential

ARM Architecture Memory Model
Figure A3-4 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution

The program order of instruction execution is the order of the instructions in the control flow trace.

Explicit memory accesses in an execution can be either:

Strictly Ordered
Denoted by <. Must occur strictly in order.

Ordered Denoted by <=. Can occur either in order or simultaneously.

Multiple load and store instructions, LDC, LDC2, LDMDB, LDMIA, LDRD, POP, PUSH, STC, STC2, STMDB, STMIA, and STRD,
generate multiple word accesses, each of which is a separate access for the purpose of determining ordering.

The rules for determining program order for two accesses A1 and A2 are:

If A1 and A2 are generated by two different instructions:

• A1 < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in
program order

• A2 < A1 if the instruction that generates A2 occurs before the instruction that generates A1 in
program order.

If A1 and A2 are generated by the same instruction:

• If A1 and A2 are two word loads generated by an LDC, LDC2, LDMDB, LDMIA or POP instruction, or two
word stores generated by a PUSH, STC, STC2, STMDB, or STMIA instruction, excluding LDMDB, LDMIA or POP
instructions with a register list that includes the PC:

— A1 <= A2 if the address of A1 is less than the address of A2

— A2 <= A1 if the address of A2 is less than the address of A1.

• If A1 and A2 are two word loads generated by an LDMDB, LDMIA or POP instruction with a register list
that includes the PC, the program order of the memory accesses is not defined.

• If A1 and A2 are two word loads generated by an LDRD instruction or two word stores generated by
an STRD instruction, the program order of the memory accesses is not defined.

��

*����#�������

+�$������������*�
��
�����#�

2���
.#�
 ������
������2
�����#�*�
��
�����#�

+�$����������*����#
������

��

8

2���
.#�� ������������� 8 8 8 8

+�$������������2
�����#�

8

8

8

8

� ��

� �

� �
A3-34 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
-

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
-

ARM_2009_Q4
Sticky Note
There are no architectural ordering restrictions between accesses to Normal and Strongly-ordered memory.

ARM Architecture Memory Model
• For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity
rules described in Single-copy atomicity on page A3-20 mean the operation becomes a sequence of
accesses, then the time-ordering of those accesses is not defined.

A3.7.3 Memory barriers

Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load and store instructions in a processor core.
A memory barrier is used to guarantee both:

• completion of preceding load and store instructions to the programmers’ model

• flushing of any prefetched instructions before the memory barrier event.

ARMv7-M requires three explicit memory barriers to support the memory order model described in this
chapter. The three memory barriers are:

• Data Memory Barrier, see Data Memory Barrier (DMB)

• Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-36

• Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-37.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load and
store instructions. Instruction fetches are not explicit accesses and are not affected.

Note
 In ARMv7-M, memory barrier operations might be required in conjunction with data or unified cache and
branch predictor maintenance operations.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to
as the executing processor, Pe. The DMB instruction takes the required shareability domain and required
access types as arguments.

Note
 ARMv7-M only supports system-wide barriers with no shareability domain or access type limitations.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

• all explicit memory accesses of the required access types from observers within the
same shareability domain as Pe that are observed by Pe before the DMB instruction.
This includes any accesses of the required access types and required shareability
domain performed by Pe.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-35
Restricted Access Non-Confidential

ARM Architecture Memory Model
• all loads of required access types from observers within the same shareability domain
as Pe that have been observed by any given observer Py within the same required
shareability domain as Pe before Py has performed a memory access that is a member
of Group A.

Group B Contains:

• all explicit memory accesses of the required access types by Pe that occur in program
order after the DMB instruction

• all explicit memory accesses of the required access types by any given observer Px
within the same required shareability domain as Pe that can only occur after Px has
observed a store that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it
observes any member of Group B. Where members of Group A and Group B access the same
memory-mapped peripheral, all members of Group A will be visible at the memory-mapped peripheral
before any members of Group B are visible at that peripheral.

Note
 • A memory access might be in neither Group A nor Group B. The DMB does not affect the order of

observation of such a memory access.

• The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives
from the observation by Py of a load before Py performs an access that is a member of Group A as a
result of the first part of the definition of Group A.

• The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives
from the observation by any observer of an access by Pe that is a member of Group B as a result of
the first part of the definition of Group B.

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
processor.

For details of the DMB instruction see DMB on page A6-68.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory
accesses. The DSB instruction takes the required shareability domain and required access types as arguments.
A DSB behaves as a DMB with the same arguments, and also has the additional properties defined here.

Note
 ARMv7-M only supports system-wide barriers with no shareability domain or access type limitations.
A3-36 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
A DSB completes when both:

• all explicit memory accesses that are observed by Pe before the DSB is executed, are of the required
access types, and are from observers in the same required shareability domain as Pe, are complete for
the set of observers within the required shareability domain

• all Cache and Branch predictor maintenance operations issued by Pe before the DSB are complete.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB
completes.

For details of the DSB instruction see DSB on page A6-70.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB
instruction in program order are fetched from cache or memory only after the ISB instruction has completed.
Using an ISB ensures that the effects of context altering operations executed before the ISB are visible to the
instructions fetched after the ISB instruction. Examples of context altering operations that might require the
insertion of an ISB instruction to ensure the operations are complete are:

• ensuring a system control update has occurred

• branch predictor maintenance operations.

In addition, any branches that appear in program order after the ISB instruction are written into the branch
prediction logic with the context that is visible after the ISB instruction. This is needed to ensure correct
execution of the instruction stream.

Any context altering operations appearing in program order after the ISB instruction only take effect after
the ISB has been executed.

An ARMv7-M implementation must choose how far ahead of the current point of execution it prefetches
instructions. This can be either a fixed or a dynamically varying number of instructions. As well as choosing
how many instructions to prefetch, an implementation can choose which possible future execution path to
prefetch along. For example, after a branch instruction, it can prefetch either the instruction appearing in
program order after the branch or the instruction at the branch target. This is known as branch prediction.

A potential problem with all forms of instruction prefetching is that the instruction in memory might be
changed after it was prefetched but before it is executed. If this happens, the modification to the instruction
in memory does not normally prevent the already prefetched copy of the instruction from executing to
completion. The memory barrier instructions, ISB, DMB or DSB as appropriate, are used to force execution
ordering where necessary.

For details of the ISB instruction see ISB on page A6-76.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-37
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3.8 Caches and memory hierarchy

Support for caches in ARMv7-M is limited to memory attributes. These can be exported on a supporting bus
protocol such as AMBA (AHB or AXI protocols) to support system caches.

In situations where a breakdown in coherency can occur, software must manage the caches using cache
maintenance operations which are memory mapped and IMPLEMENTATION DEFINED.

A3.8.1 Introduction to caches

A cache is a block of high-speed memory locations containing both address information (commonly known
as a TAG) and the associated data. The purpose is to increase the average speed of a memory access. Caches
operate on two principles of locality:

Spatial locality an access to one location is likely to be followed by accesses from adjacent
locations, for example, sequential instruction execution or usage of a data structure

Temporal locality an access to an area of memory is likely to be repeated within a short time period,
for example, execution of a code loop

To minimize the quantity of control information stored, the spatial locality property is used to group several
locations together under the same TAG. This logical block is commonly known as a cache line. When data
is loaded into a cache, access times for subsequent loads and stores are reduced, resulting in overall
performance benefits. An access to information already in a cache is known as a cache hit, and other
accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor
wants to access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs
immediately, otherwise a location is allocated and the cache line loaded from memory. Different cache
topologies and access policies are possible, however they must comply with the memory coherency model
of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:

• memory accesses occurring at times other than when the programmer would normally expect them

• the existence of multiple physical locations where a data item can be held.

A3.8.2 Implication of caches to the application programmer

Caches are largely invisible to the application programmer, but can become visible due to a breakdown in
coherency. Such a breakdown can occur when:

• memory locations are updated by other agents in the systems

• memory updates made from the application code must be made visible to other agents in the system.

For example:

In systems with a DMA that reads memory locations which are held in the data cache of a processor, a
breakdown of coherency occurs when the processor has written new data in the data cache, but the DMA
reads the old data held in memory.
A3-38 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM Architecture Memory Model
In a Harvard architecture of caches, a breakdown of coherency occurs when new instruction data has been
written into the data cache and/or to memory, but the instruction cache still contains the old instruction data.

A3.8.3 Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload instruction) to
permit software to communicate the expected use of memory locations to the hardware. The memory system
can respond by taking actions that are expected to speed up the memory accesses if and when they do occur.
The effect of these memory system hints is IMPLEMENTATION DEFINED. Typically, implementations will use
this information to bring the data or instruction locations into caches that have faster access times than
Normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the
functional behavior of the device. The instructions do not generate exceptions, but the memory system
operations might generate an imprecise fault (asynchronous exception) due to the memory access.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A3-39
Restricted Access Non-Confidential

ARM Architecture Memory Model
A3-40 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter A4
The ARMv7-M Instruction Set

This chapter describes the Thumb instruction set as it applies to ARMv7-M. It contains the following
sections:

• About the instruction set on page A4-2

• Unified Assembler Language on page A4-4

• Branch instructions on page A4-7

• Data-processing instructions on page A4-8

• Status register access instructions on page A4-15

• Load and store instructions on page A4-16

• Load/store multiple instructions on page A4-19

• Miscellaneous instructions on page A4-20

• Exception-generating instructions on page A4-21

• Coprocessor instructions on page A4-22
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-1
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.1 About the instruction set

ARMv7-M supports a large number of 32-bit instructions that were introduced as Thumb-2 technology into
the Thumb instruction set. Much of the functionality available is identical to the ARM instruction set
supported alongside the Thumb instruction set in ARMv6T2 and other ARMv7 profiles. This chapter
describes the functionality available in the ARMv7-M Thumb instruction set, and the Unified Assembler
Language (UAL) that can be assembled to either the Thumb or ARM instruction sets.

Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and 32-bit
instructions can be intermixed freely. Many common operations are most efficiently executed using 16-bit
instructions. However:

• Most 16-bit instructions can only access eight of the general purpose registers, R0-R7. These are
known as the low registers. A small number of 16-bit instructions can access the high registers,
R8-R15.

• Many operations that would require two or more 16-bit instructions can be more efficiently executed
with a single 32-bit instruction.

The ARM and Thumb instruction sets are designed to interwork freely. Because ARMv7-M only supports
Thumb instructions, interworking instructions in ARMv7-M must only reference Thumb state execution,
see ARMv7-M and interworking support for more details.

In addition, see:

• Chapter A5 Thumb Instruction Set Encoding for encoding details of the Thumb instruction set

• Chapter A6 Thumb Instruction Details for detailed descriptions of the instructions.

A4.1.1 ARMv7-M and interworking support

Thumb interworking is held as bit [0] of an interworking address. Interworking addresses are used in the
following instructions: BX, BLX, or an LDR or LDM that loads the PC.

ARMv7-M only supports the Thumb instruction execution state, therefore the value of address bit [0] must
be 1 in interworking instructions, otherwise a fault occurs. All instructions ignore bit [0] and write bits
[31:1]:’0’ when updating the PC.

16-bit instructions that update the PC behave as follows:

• ADD (register) and MOV (register) branch within Thumb state without interworking

Note
 The use of Rd as the PC in the ADD (SP plus register) 16-bit instruction is deprecated.

• B, or the B<cond> instruction, branches without interworking

• BLX (register) and BX interwork on the value in Rm

• POP interworks on the value loaded to the PC

• BKPT and SVC cause exceptions and are not considered to be interworking instructions.
A4-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
32-bit instructions that update the PC behave as follows:

• B, or the B instruction, branches without interworking

• BL branches to Thumb state based on the instruction encoding, not due to bit [0] of the value written
to the PC

• LDM and LDR support interworking using the value written to the PC

• TBB and TBH branch without interworking.

For more details, see the description of the BXWritePC() function in Pseudocode details of ARM core register
operations on page A2-11.

A4.1.2 Conditional execution

Conditionally executed means that the instruction only has its normal effect on the programmers’ model
operation, memory and coprocessors if the N, Z, C and V flags in the APSR satisfy a condition specified in
the instruction. If the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution
advances to the next instruction as normal, including any relevant checks for exceptions being taken, but has
no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using
any of the following instructions:

• A 16-bit conditional branch instruction, with a branch range of –256 to +254 bytes. See B on
page A6-40 for details. Before the additional instruction support in ARMv6T2, this was the only
mechanism for conditional execution in Thumb code.

• A 32-bit conditional branch instruction, with a branch range of approximately ± 1MB. See B on
page A6-40 for details.

• 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch
range of +4 to +130 bytes. See CBNZ, CBZ on page A6-52 for details.

• A 16-bit If-Then instruction that makes up to four following instructions conditional. See IT on
page A6-78 for details. The instructions that are made conditional by an IT instruction are called its
IT block. Instructions in an IT block must either all have the same condition, or some can have one
condition, and others can have the inverse condition.

See Conditional execution on page A6-8 for more information about conditional execution.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-3
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.2 Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax
provides a canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes
that instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor
what assembler directives and options are available. See your assembler documentation for these details.

Earlier ARM assembly language mnemonics are still supported as synonyms, as described in the instruction
details.

Note
 Most earlier Thumb assembly language mnemonics are not supported. See Appendix C Legacy Instruction
Mnemonics for details.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than
one can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an
ADD R0,R1,R2 instruction. The most common instruction selection rule is that when both a 16-bit encoding
and a 32-bit encoding are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding
is selected. These are useful when disassembling code, to ensure that subsequent assembly produces the
original code, and in some other situations.

A4.2.1 Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

• IT instructions are written before conditional instructions in the correct way for the Thumb
instruction set.

• When assembling to the ARM instruction set, assemblers check that any IT instructions are correct,
but do not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT
instruction must be written with a condition. These conditions must match the conditions imposed by the IT
instruction. For example, an ITTEE EQ instruction imposes the EQ condition on the first two following
instructions, and the NE condition on the next two. Those four instructions must be written with EQ, EQ, NE
and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if
they are the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT
instruction. If the assembler syntax indicates a conditional branch that correctly matches a preceding IT
instruction, it is assembled using a branch instruction encoding that does not include a condition field.
A4-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.2.2 Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a
fixed offset from the instruction being specified. The assembler must:

1. Calculate the PC or Align(PC,4) value of the instruction. The PC value of an instruction is its address
plus 4 for a Thumb instruction, or plus 8 for an ARM instruction. The Align(PC,4) value of an
instruction is its PC value ANDed with 0xFFFFFFFC to force it to be word-aligned. There is no
difference between the PC and Align(PC,4) values for an ARM instruction, but there can be for a
Thumb instruction.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

3. Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or Align(PC,4) value
and adds the calculated offset to form the required address.

Note
 For instructions that encode a subtraction operation, if the instruction cannot encode the calculated

offset, but can encode minus the calculated offset, the instruction encoding specifies a subtraction of
minus the calculated offset.

The syntax of the following instructions includes a label:

• B, BL, and BLX (immediate). The assembler syntax for these instructions always specifies the label of
the instruction that they branch to. Their encodings specify a sign-extended immediate offset that is
added to the PC value of the instruction to form the target address of the branch.

• CBNZ and CBZ. The assembler syntax for these instructions always specifies the label of the instruction
that they branch to. Their encodings specify a zero-extended immediate offset that is added to the PC
value of the instruction to form the target address of the branch. They do not support backward
branches.

• LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, and PLI. The normal assembler syntax of these load
instructions can specify the label of a literal data item that is to be loaded. The encodings of these
instructions specify a zero-extended immediate offset that is either added to or subtracted from the
Align(PC,4) value of the instruction to form the address of the data item. A few such encodings
perform a fixed addition or a fixed subtraction and must only be used when that operation is required,
but most contain a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must
assemble an encoding that adds 0 to the Align(PC,4) value of the instruction. Encodings that subtract
0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC,4) value,
or - if it is to be subtracted.

<imm> Is the immediate offset.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-5
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
This alternative syntax makes it possible to assemble the encodings that subtract 0 from the
Align(PC,4) value, and to disassemble them to a syntax that can be re-assembled correctly.

• ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal
data item whose address is to be calculated. Its encoding specifies a zero-extended immediate offset
that is either added to or subtracted from the Align(PC,4) value of the instruction to form the address
of the data item, and some opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must
assemble the encoding that adds 0 to the Align(PC,4) value of the instruction. The encoding that
subtracts 0 from the Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the
immediate value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions
SUB <Rd>,PC,#<imm>. This alternative syntax makes it possible to assemble the encoding that subtracts
0 from the Align(PC,4) value, and to disassemble it to a syntax that can be re-assembled correctly.

Note
 ARM recommends that where possible, you avoid using:

• the alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, and PLI
instructions

• the encodings of these instructions that subtract 0 from the Align(PC,4) value.
A4-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.3 Branch instructions

Table A4-1 summarizes the branch instructions in the Thumb instruction set. In addition to providing for
changes in the flow of execution, some branch instructions can change instruction set.

LDR and LDM instructions can also cause a branch. See Load and store instructions on page A4-16 and
Load/store multiple instructions on page A4-19 for details.

Table A4-1 Branch instructions

Instruction Usage Range

B on page A6-40 Branch to target address +/–1 MB

CBNZ, CBZ on page A6-52 Compare and Branch on Nonzero,
Compare and Branch on Zero

0-126 B

BL on page A6-49 Call a subroutine +/–16 MB

BLX (register) on page A6-50 Call a subroutine, optionally change
instruction set

Any

BX on page A6-51 Branch to target address, change
instruction set

Any

TBB, TBH on page A6-258 Table Branch (byte offsets) 0-510 B

Table Branch (halfword offsets) 0-131070 B
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-7
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Core data-processing instructions belong to one of the following groups:

• Standard data-processing instructions. This group perform basic data-processing operations, and
share a common format with some variations.

• Shift instructions on page A4-10.

• Multiply instructions on page A4-11.

• Saturating instructions on page A4-12.

• Packing and unpacking instructions on page A4-13.

• Miscellaneous data-processing instructions on page A4-14.

• Divide instructions on page A4-14.

A4.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second
operand. The second operand can be either another register Rm, or a modified immediate constant.

If the second operand is a modified immediate constant, it is encoded in 12 bits of the instruction. See
Modified immediate constants in Thumb instructions on page A5-15 for details.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. See Shift and rotate operations on page A2-5 for details.

In Thumb code, the amount to shift by is always a constant encoded in the instruction.

In addition to placing a result in the destination register, these instructions can optionally set the condition
code flags, according to the result of the operation. If they do not set the flags, existing flag settings from a
previous instruction are preserved.

Table A4-2 on page A4-9 summarizes the main data-processing instructions in the Thumb instruction set.
Generally, each of these instructions is described in two sections in Chapter A6 Thumb Instruction Details,
one section for each of the following:

• INSTRUCTION (immediate) where the second operand is a modified immediate constant.

• INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.
A4-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
Table A4-2 Standard data-processing instructions

Mnemonic Instruction Notes

ADC Add with Carry -

ADD Add Thumb permits use of a modified immediate constant or a
zero-extended 12-bit immediate constant.

ADR Form PC-relative Address First operand is the PC. Second operand is an immediate constant.
Thumb supports a zero-extended 12-bit immediate constant.
Operation is an addition or a subtraction.

AND Bitwise AND -

BIC Bitwise Bit Clear -

CMN Compare Negative Sets flags. Like ADD but with no destination register.

CMP Compare Sets flags. Like SUB but with no destination register.

EOR Bitwise Exclusive OR -

MOV Copies operand to destination Has only one operand, with the same options as the second
operand in most of these instructions. If the operand is a shifted
register, the instruction is an LSL, LSR, ASR, or ROR instruction
instead. See Shift instructions on page A4-10 for details.

Thumb permits use of a modified immediate constant or a
zero-extended 16-bit immediate constant.

MVN Bitwise NOT Has only one operand, with the same options as the second
operand in most of these instructions.

ORN Bitwise OR NOT -

ORR Bitwise OR -

RSB Reverse Subtract Subtracts first operand from second operand. This permits
subtraction from constants and shifted registers.

SBC Subtract with Carry -

SUB Subtract Thumb permits use of a modified immediate constant or a
zero-extended 12-bit immediate constant.

TEQ Test Equivalence Sets flags. Like EOR but with no destination register.

TST Test Sets flags. Like AND but with no destination register.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-9
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.4.2 Shift instructions

Table A4-3 lists the shift instructions in the Thumb instruction set.

Table A4-3 Shift instructions

Instruction See

Arithmetic Shift Right ASR (immediate) on page A6-36

Arithmetic Shift Right ASR (register) on page A6-38

Logical Shift Left LSL (immediate) on page A6-134

Logical Shift Left LSL (register) on page A6-136

Logical Shift Right LSR (immediate) on page A6-138

Logical Shift Right LSR (register) on page A6-140

Rotate Right ROR (immediate) on page A6-194

Rotate Right ROR (register) on page A6-196

Rotate Right with Extend RRX on page A6-198
A4-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.4.3 Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are
same whether the operands are signed or unsigned.

• Table A4-4 summarizes the multiply instructions where there is no distinction between signed and
unsigned quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.

• Table A4-5 summarizes the signed multiply instructions.

• Table A4-6 summarizes the unsigned multiply instructions.

Table A4-4 General multiply instructions

Instruction Operation (number of bits)

MLA on page A6-146 32 = 32 + 32 x 32

MLS on page A6-147 32 = 32 – 32 x 32

MUL on page A6-160 32 = 32 x 32

Table A4-5 Signed multiply instructions

Instruction Operation (number of bits)

SMLAL on page A6-213 64 = 64 + 32 x 32

SMULL on page A6-214 64 = 32 x 32

Table A4-6 Unsigned multiply instructions

Instruction Operation (number of bits)

UMLAL on page A6-268 64 = 64 + 32 x 32

UMULL on page A6-269 64 = 32 x 32
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-11
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.4.4 Saturating instructions

Table A4-7 lists the saturating instructions in the Thumb instruction set. See Pseudocode details of
saturation on page A2-9 for more information.

Table A4-7 Core saturating instructions

Instruction See Operation

Signed Saturate SSAT on page A6-215 Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate USAT on page A6-270 Saturates optionally shifted 32-bit value to selected range
A4-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.4.5 Packing and unpacking instructions

Table A4-8 lists the packing and upacking instructions in the Thumb instruction set.

Table A4-8 Packing and unpacking instructions

Instruction See Operation

Signed Extend Byte SXTB on page A6-254 Extend 8 bits to 32

Signed Extend Halfword SXTH on page A6-256 Extend 16 bits to 32

Unsigned Extend Byte UXTB on page A6-272 Extend 8 bits to 32

Unsigned Extend Halfword UXTH on page A6-274 Extend 16 bits to 32
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-13
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.4.6 Miscellaneous data-processing instructions

Table A4-9 lists the miscellaneous data-processing instructions in the Thumb instruction set. Immediate
values in these instructions are simple binary numbers.

A4.4.7 Divide instructions

In the ARMv7-M profile, the Thumb instruction set includes signed and unsigned integer divide instructions
that are implemented in hardware. For details of the instructions see:

• SDIV on page A6-210

• UDIV on page A6-267.

In the ARMv7-M profile, the CCR.DIV_0_TRP bit enables divide by zero fault detection:

DZ == 0 Divide-by-zero returns a zero result.

DZ == 1 SDIV and UDIV generate an Undefined Instruction exception on a divide-by-zero.

The CCR.DIV_0_TRP bit is cleared to zero on reset.

Table A4-9 Miscellaneous data-processing instructions

Instruction See Notes

Bit Field Clear BFC on page A6-42 -

Bit Field Insert BFI on page A6-43 -

Count Leading Zeros CLZ on page A6-57 -

Move Top MOVT on page A6-153 Moves 16-bit immediate value to top
halfword. Bottom halfword unaltered.

Reverse Bits RBIT on page A6-190 -

Byte-Reverse Word REV on page A6-191 -

Byte-Reverse Packed Halfword REV16 on page A6-192 -

Byte-Reverse Signed Halfword REVSH on page A6-193 -

Signed Bit Field Extract SBFX on page A6-208 -

Unsigned Bit Field Extract UBFX on page A6-266 -
A4-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.5 Status register access instructions

The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or
from a general-purpose register.

The APSR is described in The Application Program Status Register (APSR) on page A2-13.

The condition flags in the APSR are normally set by executing data-processing instructions, and are
normally used to control the execution of conditional instructions. However, you can set the flags explicitly
using the MSR instruction, and you can read the current state of the flags explicitly using the MRS instruction.

For details of the system level use of status register access instructions CPS, MRS and MSR, see Chapter B4
ARMv7-M System Instructions.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-15
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.6 Load and store instructions

Table A4-10 summarizes the general-purpose register load and store instructions in the Thumb instruction
set. See also Load/store multiple instructions on page A4-19.

Load and store instructions have several options for addressing memory. See Addressing modes on
page A4-18 for more information.

A4.6.1 Loads to the PC

The LDR instruction can be used to load a value into the PC. The value loaded is treated as an interworking
address, as described by the LoadWritePC() pseudocode function in Pseudocode details of ARM core register
operations on page A2-11.

A4.6.2 Halfword and byte loads and stores

Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of
memory respectively. There is no distinction between signed and unsigned stores.

Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a
register. Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to
32 bits.

Table A4-10 Load and store instructions

Data type Load Store
Load
unprivileged

Store
unprivileged

Load
exclusive

Store
exclusive

32-bit word LDR STR LDRT STRT LDREX STREX

16-bit halfword - STRH - STRHT - STREXH

16-bit unsigned halfword LDRH - LDRHT - LDREXH -

16-bit signed halfword LDRSH - LDRSHT - - -

8-bit byte - STRB - STRBT - STREXB

8-bit unsigned byte LDRB - LDRBT - LDREXB -

8-bit signed byte LDRSB - LDRSBT - - -

two 32-bit words LDRD STRD - - - -
A4-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.6.3 Unprivileged loads and stores

In an unprivileged mode, unprivileged loads and stores operate in exactly the same way as the corresponding
ordinary operations. In a privileged mode, unprivileged loads and stores are treated as though they were
executed in an unprivileged mode. See Privilege level access controls for data accesses on page A3-28 for
more information.

A4.6.4 Exclusive loads and stores

Exclusive loads and stores provide for shared memory synchronization. See Synchronization and
semaphores on page A3-8 for more information.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-17
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.6.5 Addressing modes

The address for a load or store is formed from two parts: a value from a base register, and an offset.

The base register can be any one of the general-purpose registers.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent
code. Instructions marked (literal) in their title in Chapter A6 Thumb Instruction Details are PC-relative
loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base
register value. Immediate offset addressing is useful for accessing data elements that
are a fixed distance from the start of the data object, such as structure fields, stack
offsets and input/output registers.

Register The offset is a value from a general-purpose register. This register cannot be the PC.
The value can be added to, or subtracted from, the base register value. Register
offsets are useful for accessing arrays or blocks of data.

Scaled register The offset is a general-purpose register, other than the PC, shifted by an immediate
value, then added to or subtracted from the base register. This means an array index
can be scaled by the size of each array element.

The offset and base register can be used in three different ways to form the memory address. The addressing
modes are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory
address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory
address. The base register is then updated with this new address, to permit automatic
indexing through an array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then
added to or subtracted from the base register. and this value is stored back in the base
register, to permit automatic indexing through an array or memory block.

Note
 Not every variant is available for every instruction, and the range of permitted immediate values and the
options for scaled registers vary from instruction to instruction. See Chapter A6 Thumb Instruction Details
for full details for each instruction.
A4-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

The ARMv7-M Instruction Set
A4.7 Load/store multiple instructions

Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from memory.

Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base
register, and can be either above or below the value in the base register. The base register can optionally be
updated by the total size of the data transferred.

Table A4-11 summarizes the load/store multiple instructions in the Thumb instruction set.

A4.7.1 Loads to the PC

The LDM, LDMDB, and POP instructions can be used to load a value into the PC. The value loaded is treated as
an interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode details of
ARM core register operations on page A2-11.

Table A4-11 Load/store multiple instructions

Instruction Description

Load Multiple, Increment After or Full Descending LDM / LDMIA / LDMFD on page A6-84

Load Multiple, Decrement Before or Empty Ascending LDMDB / LDMEA on page A6-86

Pop multiple registers off the stack a

a. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.

POP on page A6-186

Push multiple registers onto the stack b

b. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register
updating.

PUSH on page A6-188

Store Multiple, Increment After or Empty Ascending STM / STMIA / STMEA on page A6-218

Store Multiple, Decrement Before or Full Descending STMDB / STMFD on page A6-220
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-19
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.8 Miscellaneous instructions

Table A4-12 summarizes the miscellaneous instructions in the Thumb instruction set.

Table A4-12 Miscellaneous instructions

Instruction See

Clear Exclusive CLREX on page A6-56

Debug hint DBG on page A6-67

Data Memory Barrier DMB on page A6-68

Data Synchronization Barrier DSB on page A6-70

Instruction Synchronization Barrier ISB on page A6-76

If Then (makes following instructions conditional) IT on page A6-78

No Operation NOP on page A6-167

Preload Data PLD, PLDW (immediate) on page A6-176

PLD (register) on page A6-180

Preload Instruction PLI (immediate, literal) on page A6-182

PLI (register) on page A6-184

Send Event SEV on page A6-212

Supervisor Call SVC (formerly SWI) on page A6-252

Wait for Event WFE on page A6-276

Wait for Interrupt WFI on page A6-277

Yield YIELD on page A6-278
A4-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

The ARMv7-M Instruction Set
A4.9 Exception-generating instructions

The following instructions are intended specifically to cause a processor exception to occur:

• The Supervisor Call (SVC, formerly SWI) instruction is used to cause an SVC exception to occur. This
is the main mechanism for unprivileged (User) code to make calls to privileged Operating System
code. See Exception model on page B1-14 for details.

• The Breakpoint (BKPT) instruction provides for software breakpoints. It can generate a debug monitor
exception or cause a running system to halt depending on the debug configuration. See Debug event
behavior on page C1-14 for more details.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A4-21
Restricted Access Non-Confidential

The ARMv7-M Instruction Set
A4.10 Coprocessor instructions

There are three types of instruction for communicating with coprocessors. These permit the processor to:

• Initiate a coprocessor data-processing operation. See CDP, CDP2 on page A6-54 for details.

• Transfer general-purpose registers to and from coprocessor registers. For details, see:

— MCR, MCR2 on page A6-142

— MCRR, MCRR2 on page A6-144

— MRC, MRC2 on page A6-154

— MRRC, MRRC2 on page A6-156.

• Generate addresses for the coprocessor load/store instructions. For details, see:

— LDC, LDC2 (immediate) on page A6-80

— LDC, LDC2 (literal) on page A6-82

— STC, STC2 on page A6-216.

The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so
each coprocessor is assigned a particular number.

Note
 One coprocessor can use more than one of the 16 numbers if a large coprocessor instruction set is required.

Coprocessors execute the same instruction stream as the core processor, ignoring non-coprocessor
instructions and coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be
executed by any coprocessor hardware generate a UsageFault exception and record the reason as follows:

• Where access is denied to a coprocessor by the Coprocessor Access Register, the UFSR.NOCP flag
is set to indicate the coprocessor does not exist.

• Where the coprocessor access is allowed but the instruction is unknown, the UFSR.UNDEFINSTR
flag is set to indicate that the instruction is UNDEFINED.
A4-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter A5
Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it uses the ARM programmers’ model.
It contains the following sections:

• Thumb instruction set encoding on page A5-2

• 16-bit Thumb instruction encoding on page A5-5

• 32-bit Thumb instruction encoding on page A5-13.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-1
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.1 Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aligned halfwords. Each Thumb instruction is
either a single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords
in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the halfword is the first
halfword of a 32-bit instruction:

• 0b11101

• 0b11110

• 0b11111.

Otherwise, the halfword is a 16-bit instruction.

See 16-bit Thumb instruction encoding on page A5-5 for details of the encoding of 16-bit Thumb
instructions.

See 32-bit Thumb instruction encoding on page A5-13 for details of the encoding of 32-bit Thumb
instructions.

A5.1.1 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

• Unpredictable behavior. The instruction is described as UNPREDICTABLE.

• An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter

An instruction is UNPREDICTABLE if:

• a bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1 respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

• it is declared as UNPREDICTABLE in an instruction description or in this chapter.

Unless otherwise specified:

• Thumb instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in
earlier architecture variants.

• A Thumb instruction that is provided by one or more of the architecture extensions is either
UNPREDICTABLE or UNDEFINED in an implementation that does not include those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before
ARMv6T2, and UNDEFINED otherwise.
A5-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.1.2 Use of 0b1111 as a register specifier

The use of 0b1111 as a register specifier is not normally permitted in Thumb instructions. When a value of
0b1111 is permitted, a variety of meanings is possible. For register reads, these meanings are:

• Read the PC value, that is, the address of the current instruction + 4. The base register of the table
branch instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory
immediately after the instruction. (Some instructions read the PC value implicitly, without the use of
a register specifier, for example the conditional branch instruction B<cond>.)

Note
 Use of the PC as the base register in the STC instruction is deprecated in ARMv7.

• Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0]
forced to zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no writeback), LDRH, LDRSB, and
LDRSH instructions can be the word-aligned PC. This enables PC-relative data addressing. In addition,
some encodings of the ADD and SUB instructions permit their source registers to be 0b1111 for the same
purpose.

• Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages,
with a special case in the pseudocode for the more general instruction cross-referencing the other
page.

For register writes, these meanings are:

• The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt
as 0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that
address. bit [0] of the loaded value selects the execution state after the branch and must have the value
1.

Some other instructions write the PC in similar ways, either implicitly (for example, B<cond>) or by
using a register mask rather than a register specifier (LDM). The address to branch to can be a loaded
value (for example, LDM), a register value (for example, BX), or the result of a calculation (for example,
TBB or TBH).

• Discard the result of a calculation. This is done in some cases when one instruction is a special case
of another, more general instruction, but with the result discarded. In these cases, the instructions are
listed on separate pages, with a special case in the pseudocode for the more general instruction
cross-referencing the other page.

• If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is 0b1111, the
instruction is a memory hint instead of a load operation.

• If the destination register specifier of an MRC instruction is 0b1111, bits [31:28] of the value
transferred from the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0]
are discarded.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-3
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.1.3 Use of 0b1101 as a register specifier

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer, and R13 is normally
identified as SP in Thumb instructions. In 32-bit Thumb instructions, if you use R13 as a general purpose
register beyond the architecturally defined constraints described in this section, the results are
UNPREDICTABLE.

The restrictions applicable to R13 are described in:

• R13[1:0] definition

• 32-bit Thumb instruction support for R13.

See also 16-bit Thumb instruction support for R13.

R13[1:0] definition

Bits [1:0] of R13 are treated as SBZP (Should Be Zero or Preserved). Writing a non-zero value to bits [1:0]
results in UNPREDICTABLE behavior. Reading bits [1:0] returns zero.

32-bit Thumb instruction support for R13

R13 instruction support is restricted to the following:

• R13 as the source or destination register of a MOV instruction. Only register to register transfers without
shifts are supported, with no flag setting:

MOV SP,Rm
MOV Rn,SP

• Adjusting R13 up or down by a multiple of its alignment:

ADD{W} SP,SP,#N ; For N a multiple of 4
SUB{W} SP,SP,#N ; For N a multiple of 4
ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
SUB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

• R13 as a base register (Rn) of any load or store instruction. This supports SP-based addressing for
load, store, or memory hint instructions, with positive or negative offsets, with and without writeback.

• R13 as the first operand (Rn) in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract
instructions support SP-based address generation, with the address going into a general-purpose
register. CMN and CMP are useful for stack checking in some circumstances.

• R13 as the transferred register (Rt) in any LDR or STR instruction.

• R13 as the address in a POP or PUSH instruction.

16-bit Thumb instruction support for R13

For 16-bit data processing instructions that affect high registers, R13 can only be used as described in 32-bit
Thumb instruction support for R13. Any other use is deprecated. This affects the high register forms of CMP
and ADD, where the use of R13 as Rm is deprecated.
A5-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.2 16-bit Thumb instruction encoding

Table A5-1 shows the allocation of 16-bit instruction encodings.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcode

Table A5-1 16-bit Thumb instruction encoding

opcode Instruction or instruction class

00xxxx Shift (immediate), add, subtract, move, and compare on page A5-6

010000 Data processing on page A5-7

010001 Special data instructions and branch and exchange on page A5-8

01001x Load from Literal Pool, see LDR (literal) on page A6-90

0101xx Load/store single data item on page A5-9

011xxx

100xxx

10100x Generate PC-relative address, see ADR on page A6-30

10101x Generate SP-relative address, see ADD (SP plus immediate) on page A6-26

1011xx Miscellaneous 16-bit instructions on page A5-10

11000x Store multiple registers, see STM / STMIA / STMEA on page A6-218

11001x Load multiple registers, see LDM / LDMIA / LDMFD on page A6-84

1101xx Conditional branch, and supervisor call on page A5-12

11100x Unconditional Branch, see B on page A6-40
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-5
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.2.1 Shift (immediate), add, subtract, move, and compare

Table A5-2 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 opcode

Table A5-2 16-bit shift(immediate), add, subtract, move and compare encoding

opcode Instruction See

000xx Logical Shift Left LSL (immediate) on page A6-134

001xx Logical Shift Right LSR (immediate) on page A6-138

010xx Arithmetic Shift Right ASR (immediate) on page A6-36

01100 Add register ADD (register) on page A6-24

01101 Subtract register SUB (register) on page A6-246

01110 Add 3-bit immediate ADD (immediate) on page A6-22

01111 Subtract 3-bit immediate SUB (immediate) on page A6-244

100xx Move MOV (immediate) on page A6-148

101xx Compare CMP (immediate) on page A6-62

110xx Add 8-bit immediate ADD (immediate) on page A6-22

111xx Subtract 8-bit immediate SUB (immediate) on page A6-244
A5-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.2.2 Data processing

Table A5-3 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 opcode

Table A5-3 16-bit data processing instructions

opcode Instruction See

0000 Bitwise AND AND (register) on page A6-34

0001 Exclusive OR EOR (register) on page A6-74

0010 Logical Shift Left LSL (register) on page A6-136

0011 Logical Shift Right LSR (register) on page A6-140

0100 Arithmetic Shift Right ASR (register) on page A6-38

0101 Add with Carry ADC (register) on page A6-20

0110 Subtract with Carry SBC (register) on page A6-206

0111 Rotate Right ROR (register) on page A6-196

1000 Set flags on bitwise AND TST (register) on page A6-264

1001 Reverse Subtract from 0 RSB (immediate) on page A6-200

1010 Compare Registers CMP (register) on page A6-64

1011 Compare Negative CMN (register) on page A6-60

1100 Logical OR ORR (register) on page A6-174

1101 Multiply Two Registers MUL on page A6-160

1110 Bit Clear BIC (register) on page A6-46

1111 Bitwise NOT MVN (register) on page A6-164
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-7
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.2.3 Special data instructions and branch and exchange

Table A5-4 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 opcode

Table A5-4 Special data instructions and branch and exchange

opcode Instruction See

00xx Add Registers ADD (register) on page A6-24

0100 UNPREDICTABLE

0101 Compare Registers CMP (register) on page A6-64

011x

10xx Move Registers MOV (register) on page A6-150

110x Branch and Exchange BX on page A6-51

111x Branch with Link and Exchange BLX (register) on page A6-50
A5-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.2.4 Load/store single data item

These instructions have one of the following values in opA:

• 0b0101

• 0b011x

• 0b100x.

Table A5-5 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opA opB

Table A5-5 16-bit Load/store instructions

opA opB Instruction See

0101 000 Store Register STR (register) on page A6-224

0101 001 Store Register Halfword STRH (register) on page A6-240

0101 010 Store Register Byte STRB (register) on page A6-228

0101 011 Load Register Signed Byte LDRSB (register) on page A6-122

0101 100 Load Register LDR (register) on page A6-92

0101 101 Load Register Halfword LDRH (register) on page A6-114

0101 110 Load Register Byte LDRB (register) on page A6-98

0101 111 Load Register Signed Halfword LDRSH (register) on page A6-130

0110 0xx Store Register STR (immediate) on page A6-222

0110 1xx Load Register LDR (immediate) on page A6-88

0111 0xx Store Register Byte STRB (immediate) on page A6-226

0111 1xx Load Register Byte LDRB (immediate) on page A6-94

1000 0xx Store Register Halfword STRH (immediate) on page A6-238

1000 1xx Load Register Halfword LDRH (immediate) on page A6-110

1001 0xx Store Register SP relative STR (immediate) on page A6-222

1001 1xx Load Register SP relative LDR (immediate) on page A6-88
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-9
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.2.5 Miscellaneous 16-bit instructions

Table A5-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 opcode

Table A5-6 Miscellaneous 16-bit instructions

opcode Instruction See

0110011 Change Processor State CPS on page B4-2

00000xx Add Immediate to SP ADD (SP plus immediate) on page A6-26

00001xx Subtract Immediate from SP SUB (SP minus immediate) on page A6-248

0001xxx Compare and Branch on Zero CBNZ, CBZ on page A6-52

001000x Signed Extend Halfword SXTH on page A6-256

001001x Signed Extend Byte SXTB on page A6-254

001010x Unsigned Extend Halfword UXTH on page A6-274

001011x Unsigned Extend Byte UXTB on page A6-272

0011xxx Compare and Branch on Zero CBNZ, CBZ on page A6-52

010xxxx Push Multiple Registers PUSH on page A6-188

1001xxx Compare and Branch on Nonzero CBNZ, CBZ on page A6-52

101000x Byte-Reverse Word REV on page A6-191

101001x Byte-Reverse Packed Halfword REV16 on page A6-192

101011x Byte-Reverse Signed Halfword REVSH on page A6-193

1011xxx Compare and Branch on Nonzero CBNZ, CBZ on page A6-52

110xxxx Pop Multiple Registers POP on page A6-186

1110xxx Breakpoint BKPT on page A6-48

1111xxx If-Then, and hints If-Then, and hints on page A5-11
A5-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
If-Then, and hints

Table A5-7 shows the allocation of encodings in this space.

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 opA opB

Table A5-7 If-Then and hint instructions

opA opB Instruction See

xxxx not 0000 If-Then IT on page A6-78

0000 0000 No Operation hint NOP on page A6-167

0001 0000 Yield hint YIELD on page A6-278

0010 0000 Wait for Event hint WFE on page A6-276

0011 0000 Wait for Interrupt hint WFI on page A6-277

0100 0000 Send Event hint SEV on page A6-212
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-11
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.2.6 Conditional branch, and supervisor call

Table A5-8 shows the allocation of encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 opcode

Table A5-8 Branch and supervisor call instructions

opcode Instruction See

not 111x Conditional branch B on page A6-40

1110 Permanently UNDEFINED

1111 Supervisor call SVC (formerly SWI) on page A6-252
A5-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

op1 != 0b00. If op1 == 0b00, a 16-bit instruction is encoded, see 16-bit Thumb instruction encoding on
page A5-5.

Table A5-9 shows the allocation of ARMv7-M Thumb encodings in this space.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 op1 op2 op

Table A5-9 32-bit Thumb encoding

op1 op2 op Instruction class

01 00xx 0xx x Load/store multiple on page A5-20

01 00xx 1xx x Load/store dual or exclusive, table branch on page A5-21

01 01xx xxx x Data processing (shifted register) on page A5-26

01 1xxx xxx x Coprocessor instructions on page A5-32

10 x0xx xxx 0 Data processing (modified immediate) on page A5-14

10 x1xx xxx 0 Data processing (plain binary immediate) on page A5-17

10 xxxx xxx 1 Branches and miscellaneous control on page A5-18

11 000x xx0 x Store single data item on page A5-25

11 00xx 001 x Load byte, memory hints on page A5-24

11 00xx 011 x Load halfword, unallocated memory hints on page A5-23

11 00xx 101 x Load word on page A5-22

11 00xx 111 x UNDEFINED

11 010x xxx x Data processing (register) on page A5-28

11 0110 xxx x Multiply, and multiply accumulate on page A5-30

11 0111 xxx x Long multiply, long multiply accumulate, and divide on page A5-31

11 1xxx xxx x Coprocessor instructions on page A5-32
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-13
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.1 Data processing (modified immediate)

Table A5-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This
provides a more useful range of values. See Modified immediate constants in Thumb instructions on
page A5-15 for details.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 op Rn 0 Rd

Table A5-10 32-bit modified immediate data processing instructions

op Rn Rd Instruction See

0000x not 1111 Bitwise AND AND (immediate) on page A6-32

1111 Test TST (immediate) on page A6-262

0001x Bitwise Clear BIC (immediate) on page A6-44

0010x not 1111 Bitwise Inclusive OR ORR (immediate) on page A6-172

1111 Move MOV (immediate) on page A6-148

0011x not 1111 Bitwise OR NOT ORN (immediate) on page A6-168

1111 Bitwise NOT MVN (immediate) on page A6-162

0100x not 1111 Bitwise Exclusive OR EOR (immediate) on page A6-72

1111 Test Equivalence TEQ (immediate) on page A6-260

1000x not 1111 Add ADD (immediate) on page A6-22

1111 Compare Negative CMN (immediate) on page A6-58

1010x Add with Carry ADC (immediate) on page A6-18

1011x Subtract with Carry SBC (immediate) on page A6-204

1101x not 1111 Subtract SUB (immediate) on page A6-244

1111 Compare CMP (immediate) on page A6-62

1110x Reverse Subtract RSB (immediate) on page A6-200
A5-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3.2 Modified immediate constants in Thumb instructions

Table A5-11 shows the range of modified immediate constants available in Thumb data processing
instructions, and how they are encoded in the a, b, c, d, e, f, g, h, i, and imm3 fields in the instruction.

Carry out

A logical operation with i:imm3:a == ’00xxx’ does not affect the carry flag. Otherwise, a logical operation
that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

i imm3 a b c d e f g h

Table A5-11 Encoding of modified immediates in Thumb data-processing instructions

i:imm3:a <const> a

a. In this table, the immediate constant value is shown in binary form, to relate
abcdefgh to the encoding diagram. In assembly syntax, the immediate value is
specified in the usual way (a decimal number by default).

0000x 00000000 00000000 00000000 abcdefgh

0001x 00000000 abcdefgh 00000000 abcdefgh b

b. UNPREDICTABLE if abcdefgh == 00000000.

0010x abcdefgh 00000000 abcdefgh 00000000 b

0011x abcdefgh abcdefgh abcdefgh abcdefgh b

01000 1bcdefgh 00000000 00000000 00000000

01001 01bcdefg h0000000 00000000 00000000

01010 001bcdef gh000000 00000000 00000000

01011 0001bcde fgh00000 00000000 00000000

.

.

.

.

.

.

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh000

11110 00000000 00000000 0000001b cdefgh00

11111 00000000 00000000 00000001 bcdefgh0
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-15
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
Operation

// ThumbExpandImm()
// ================

bits(32) ThumbExpandImm(bits(12) imm12)

 // APSR.C argument to following function call does not affect the imm32 result.
 (imm32, -) = ThumbExpandImm_C(imm12, APSR.C);

 return imm32;

// ThumbExpandImm_C()
// ==================

(bits(32), bit) ThumbExpandImm_C(bits(12) imm12, bit carry_in)

 if imm12<11:10> == ’00’ then

 case imm12<9:8> of
 when ’00’
 imm32 = ZeroExtend(imm12<7:0>, 32);
 when ’01’
 if imm12<7:0> == ’00000000’ then UNPREDICTABLE;
 imm32 = ’00000000’ : imm12<7:0> : ’00000000’ : imm12<7:0>;
 when ’10’
 if imm12<7:0> == ’00000000’ then UNPREDICTABLE;
 imm32 = imm12<7:0> : ’00000000’ : imm12<7:0> : ’00000000’;
 when ’11’
 if imm12<7:0> == ’00000000’ then UNPREDICTABLE;
 imm32 = imm12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
 carry_out = carry_in;

 else

 unrotated_value = ZeroExtend(’1’:imm12<6:0>, 32);
 (imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

 return (imm32, carry_out);
A5-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3.3 Data processing (plain binary immediate)

Table A5-10 on page A5-14 shows the allocation of encodings in this space. Other encodings in this space
are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 op Rn 0

Table A5-12 32-bit unmodified immediate data processing instructions

op Rn Instruction See

00000 not 1111 Add Wide (12-bit) ADD (immediate) on page A6-22

1111 Form PC-relative Address ADR on page A6-30

00100 Move Wide (16-bit) MOV (immediate) on page A6-148

01010 not 1111 Subtract Wide (12-bit) SUB (immediate) on page A6-244

1111 Form PC-relative Address ADR on page A6-30

01100 Move Top (16-bit) MOVT on page A6-153

100x0 a

a. In the second halfword of the instruction, bits [14:12.7:6] != 0b00000.

Signed Saturate SSAT on page A6-215

10100 Signed Bit Field Extract SBFX on page A6-208

10110 not 1111 Bit Field Insert BFI on page A6-43

1111 Bit Field Clear BFC on page A6-42

110x0 a Unsigned Saturate USAT on page A6-270

11100 Unsigned Bit Field Extract UBFX on page A6-266
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-17
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
10000
10010 a

Note that the footnote applies only to the value 10010.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
11000
11010 a

Note that the footnote applies only to the value 11010.

Thumb Instruction Set Encoding
A5.3.4 Branches and miscellaneous control

Table A5-13 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 op1 1 op2

Table A5-13 Branches and miscellaneous control instructions

op2 op1 Instruction See

0x0 not x111xxx Conditional branch B on page A6-40

0x0 011100x Move to Special Register MSR (register) on page A6-159

0x0 0111010 - Hint instructions on page A5-19

0x0 0111011 - Miscellaneous control instructions
on page A5-19

0x0 011111x Move from Special Register MRS on page A6-158

010 1111111 Permanently UNDEFINED -

0x1 xxxxxxx Branch B on page A6-40

1x0 xxxxxxx

1x1 xxxxxxx Branch with Link BL on page A6-49
A5-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out
This encoding is UNDEFINED in ARMv7-M.

Thumb Instruction Set Encoding
Hint instructions

Table A5-14 shows the allocation of encodings in this space. Other encodings in this space are unallocated
hints that execute as NOPs. These unallocated hint encodings are reserved and software must not use them.

Miscellaneous control instructions

Table A5-15 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED
in ARMv7-M.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 op1 op2

Table A5-14 Change Processor State, and hint instructions

op1 op2 Instruction See

not 000 xxxx xxxx UNDEFINEDa

a. These encodings provide a 32-bit form of the CPS instruction in the ARMv7-A and ARMv7-R
architecture profiles.

000 0000 0000 No Operation hint NOP on page A6-167

000 0000 0001 Yield hint YIELD on page A6-278

000 0000 0010 Wait For Event hint WFE on page A6-276

000 0000 0011 Wait For Interrupt hint WFI on page A6-277

000 0000 0100 Send Event hint SEV on page A6-212

000 1111 xxxx Debug hint DBG on page A6-67

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 1 0 0 op

Table A5-15 Miscellaneous control instructions

op Instruction See

0010 Clear Exclusive CLREX on page A6-56

0100 Data Synchronization Barrier DSB on page A6-70

0101 Data Memory Barrier DMB on page A6-68

0110 Instruction Synchronization Barrier ISB on page A6-76
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-19
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.5 Load/store multiple

Table A5-16 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 op 0 W L Rn

Table A5-16 Load/store multiple instructions

op L W:Rn Instruction See

01 0 Store Multiple (Increment After, Empty Ascending) STM / STMIA / STMEA on page A6-218

01 1 not 11101 Load Multiple (Increment After, Full Descending) LDM / LDMIA / LDMFD on page A6-84

01 1 11101 Pop Multiple Registers from the stack POP on page A6-186

10 0 not 11101 Store Multiple (Decrement Before, Full Descending) STMDB / STMFD on page A6-220

10 0 11101 Push Multiple Registers to the stack. PUSH on page A6-188

10 1 Load Multiple (Decrement Before, Empty Ascending) LDMDB / LDMEA on page A6-86
A5-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3.6 Load/store dual or exclusive, table branch

Table A5-17 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 op1 1 op2 Rn op3

Table A5-17 Load/store dual or exclusive, table branch

op1 op2 op3 Instruction See

00 00 xxxx Store Register Exclusive STREX on page A6-234

00 01 xxxx Load Register Exclusive LDREX on page A6-106

0x 10 xxxx Store Register Dual STRD (immediate) on page A6-232

1x x0 xxxx

0x 11 xxxx Load Register Dual LDRD (immediate) on page A6-102,
LDRD (literal) on page A6-1041x x1 xxxx

01 00 0100 Store Register Exclusive Byte STREXB on page A6-235

01 00 0101 Store Register Exclusive Halfword STREXH on page A6-236

01 01 0000 Table Branch Byte TBB, TBH on page A6-258

01 01 0001 Table Branch Halfword TBB, TBH on page A6-258

01 01 0100 Load Register Exclusive Byte LDREXB on page A6-107

01 01 0101 Load Register Exclusive Halfword LDREXH on page A6-108
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-21
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.7 Load word

Table A5-18 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 1 0 1 Rn op2

Table A5-18 Load word

op1 op2 Rn Instruction See

01 xxxxxx not 1111 Load Register LDR (immediate) on page A6-88

00 1xx1xx not 1111

00 1100xx not 1111

00 1110xx not 1111 Load Register Unprivileged LDRT on page A6-133

00 000000 not 1111 Load Register LDR (register) on page A6-92

0x xxxxxx 1111 Load Register LDR (literal) on page A6-90
A5-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3.8 Load halfword, unallocated memory hints

Table A5-19 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 0 1 1 Rn Rt op2

Table A5-19 Load halfword

op1 op2 Rn Rt Instruction See

01 xxxxxx not 1111 not 1111 Load Register Halfword LDRH (immediate) on
page A6-11000 1xx1xx not 1111 not 1111

00 1100xx not 1111 not 1111

00 1110xx not 1111 not 1111 Load Register Halfword
Unprivileged

LDRHT on page A6-116

0x xxxxxx 1111 not 1111 Load Register Halfword LDRH (literal) on page A6-112

00 000000 not 1111 not 1111 Load Register Halfword LDRH (register) on page A6-114

11 xxxxxx not 1111 not 1111 Load Register Signed Halfword LDRSH (immediate) on
page A6-126

10 1xx1xx not 1111 not 1111

10 1100xx not 1111 not 1111

10 1110xx not 1111 not 1111 Load Register Signed Halfword
Unprivileged

LDRSHT on page A6-132

1x xxxxxx 1111 not 1111 Load Register Signed Halfword LDRSH (literal) on page A6-128

10 000000 not 1111 not 1111 Load Register Signed Halfword LDRSH (register) on page A6-130

xx xxxxxx xxxxxx 1111 Unallocated memory hint a -

a. Unallocated memory hints must be implemented as NOP, and software must not use them.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-23
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
Part of this encoding space is UNPREDICTABLE. The correct encoding is:

--
op1 op2 Rn Rt Instruction See
--
x0 000000 not 1111 1111 Unallocated memory hint, treat as NOP -
x0 1100xx not 1111 1111
01 xxxxxx not 1111 1111
1x xxxxxx 1111 1111
11 xxxxxx not 1111 1111
--
x0 1xx1xx not 1111 1111 UNPREDICTABLE -
x0 1110xx not 1111 1111
11 10xx not 1111 1111
--

The footnote about the Unallocated memory hints applies to all encodings shown as Unallocated memory hint.

Thumb Instruction Set Encoding
A5.3.9 Load byte, memory hints

Table A5-20 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 op1 0 0 1 Rn Rt op2

Table A5-20 Load byte, preload

op1 op2 Rn Rt Instruction See

01 xxxxxx not 1111 not 1111 Load Register Byte LDRB (immediate) on page A6-94

00 1xx1xx not 1111

00 1100xx not 1111 not 1111

00 1110xx not 1111 Load Register Byte
Unprivileged

LDRBT on page A6-100

0x xxxxxx 1111 not 1111 Load Register Byte LDRB (literal) on page A6-96

00 000000 not 1111 not 1111 Load Register Byte LDRB (register) on page A6-98

11 xxxxxx not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A6-118

10 1xx1xx not 1111

10 1100xx not 1111 not 1111

10 1110xx not 1111 Load Register Signed Byte
Unprivileged

LDRSBT on page A6-124

1x xxxxxx 1111 not 1111 Load Register Signed Byte LDRSB (literal) on page A6-120

10 000000 not 1111 not 1111 Load Register Signed Byte LDRSB (register) on page A6-122

01 xxxxxx not 1111 1111 Preload Data PLD, PLDW (immediate) on page A6-176

00 1100xx not 1111 1111

0x xxxxxx 1111 1111

00 000000 not 1111 1111 Preload Data PLD (register) on page A6-180

11 xxxxxx not 1111 1111 Preload Instruction PLI (immediate, literal) on page A6-182

10 1100xx not 1111 1111

1x xxxxxx 1111 1111

10 000000 not 1111 1111 Preload Instruction PLI (register) on page A6-184
A5-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Sticky Note
But see the addition at the end of Table A5-20 that shows encodings in this space that are UNPREDICTABLE.

ARM_2009_Q4
Inserted Text

Table A5-20 fails to identify that part of this encoding space is UNPREDICTABLE. The UNPREDICTABLE encodings are:

--
op1 op2 Rn Rt Instruction See
--
x0 1xx1xx not 1111 1111 UNPREDICTABLE -
x0 1110xx not 1111 1111
--

Thumb Instruction Set Encoding
A5.3.10 Store single data item

Table A5-21 show the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 op1 0 op2

Table A5-21 Store single data item

op1 op2 Instruction See

100 xxxxxx Store Register Byte STRB (immediate) on page A6-226

000 1xxxxx

000 0xxxxx Store Register Byte STRB (register) on page A6-228

101 xxxxxx Store Register Halfword STRH (immediate) on page A6-238

001 1xxxxx

001 0xxxxx Store Register Halfword STRH (register) on page A6-240

110 xxxxxx Store Register STR (immediate) on page A6-222

010 1xxxxx

010 0xxxxx Store Register STR (register) on page A6-224
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-25
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.11 Data processing (shifted register)

Table A5-22 shows the allocation of encodings in this space.

Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 op S Rn Rd

Table A5-22 Data-processing (shifted register)

op Rn Rd S Instruction See

0000 - not 1111 x Bitwise AND AND (register) on page A6-34

1111 0 UNPREDICTABLE -

1 Test TST (register) on page A6-264

0001 - - - Bitwise Bit Clear BIC (register) on page A6-46

0010 not 1111 - - Bitwise OR ORR (register) on page A6-174

1111 - - - Move register and immediate shifts on page A5-27

0011 not 1111 - - Bitwise OR NOT ORN (register) on page A6-170

1111 - - Bitwise NOT MVN (register) on page A6-164

0100 - not 1111 - Bitwise Exclusive OR EOR (register) on page A6-74

1111 0 UNPREDICTABLE -

1 Test Equivalence TEQ (register) on page A6-261

1000 - not 1111 - Add ADD (register) on page A6-24

1111 0 UNPREDICTABLE -

1 Compare Negative CMN (register) on page A6-60

1010 - - - Add with Carry ADC (register) on page A6-20

1011 - - - Subtract with Carry SBC (register) on page A6-206
A5-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
Move register and immediate shifts

Table A5-23 shows the allocation of encodings in this space.

1101 - not 1111 - Subtract SUB (register) on page A6-246

1111 0 UNPREDICTABLE -

1 Compare CMP (register) on page A6-64

1110 - - - Reverse Subtract RSB (register) on page A6-202

Table A5-22 Data-processing (shifted register) (continued)

op Rn Rd S Instruction See

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 1 1 1 1 imm3 imm2 type

Table A5-23 Move register and immediate shifts

type imm3:imm2 Instruction See

00 00000 Move MOV (register) on page A6-150

not 00000 Logical Shift Left LSL (immediate) on page A6-134

01 - Logical Shift Right LSR (immediate) on page A6-138

10 - Arithmetic Shift Right ASR (immediate) on page A6-36

11 00000 Rotate Right with Extend RRX on page A6-198

not 00000 Rotate Right ROR (immediate) on page A6-194
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-27
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.12 Data processing (register)

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A5-24 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 op1 Rn 1 1 1 1 op2

Table A5-24 Data processing (register)

op1 op2 Instruction See

000x 0000 Logical Shift Left LSL (register) on page A6-136

001x 0000 Logical Shift Right LSR (register) on page A6-140

010x 0000 Arithmetic Shift Right ASR (register) on page A6-38

011x 0000 Rotate Right ROR (register) on page A6-196

0000 1xxx Signed Extend Halfword SXTH on page A6-256a

a. where Rn == ’1111’

0001 1xxx Unsigned Extend Halfword UXTH on page A6-274a

0100 1xxx Signed Extend Byte SXTB on page A6-254a

0101 1xxx Unsigned Extend Byte UXTH on page A6-274a

10xx 10xx See Miscellaneous operations on page A5-29
A5-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UXTB on page A6-272 [PDF page 410]

Thumb Instruction Set Encoding
A5.3.13 Miscellaneous operations

If, in the second halfword of the instruction, bits [15:12] != 0b1111, the instruction is UNDEFINED.

Table A5-25 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 op1 1 1 1 1 1 0 op2

Table A5-25 Miscellaneous operations

op1 op2 Instruction See

01 00 Byte-Reverse Word REV on page A6-191

01 01 Byte-Reverse Packed Halfword REV16 on page A6-192

01 10 Reverse Bits RBIT on page A6-190

01 11 Byte-Reverse Signed Halfword REVSH on page A6-193

11 00 Count Leading Zeros CLZ on page A6-57
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-29
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.14 Multiply, and multiply accumulate

If, in the second halfword of the instruction, bits [7:6] != 0b00, the instruction is UNDEFINED.

Table A5-26 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 op1 Ra 0 0 op2

Table A5-26 Multiply, and multiply accumulate operations

op1 op2 Ra Instruction See

000 00 not 1111 Multiply Accumulate MLA on page A6-146

000 00 1111 Multiply MUL on page A6-160

000 01 Multiply and Subtract MLS on page A6-147
A5-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Set Encoding
A5.3.15 Long multiply, long multiply accumulate, and divide

Table A5-27 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 op1 op2

Table A5-27 Long multiply, long multiply accumulate, and divide operations

op1 op2 Instruction See

000 0000 Signed Multiply Long SMULL on page A6-214

001 1111 Signed Divide SDIV on page A6-210

010 0000 Unsigned Multiply Long UMULL on page A6-269

011 1111 Unsigned Divide UDIV on page A6-267

100 0000 Signed Multiply Accumulate Long SMLAL on page A6-213

110 0000 Unsigned Multiply Accumulate Long UMLAL on page A6-268
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A5-31
Restricted Access Non-Confidential

Thumb Instruction Set Encoding
A5.3.16 Coprocessor instructions

Table A5-28 shows the allocation of encodings in this space. Other encodings in this space and where the
target coprocessor does not exist are UNDEFINED.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 op1 coproc op

Table A5-28 Coprocessor instructions

op1 op coproc Instructions See

0xxxx0a x xxxx Store Coprocessor STC, STC2 on page A6-216

0xxxx1a x xxxx Load Coprocessor LDC, LDC2 (immediate) on page A6-80,
LDC, LDC2 (literal) on page A6-82

000100 x xxxx Move to Coprocessor from
two ARM core registers

MCRR, MCRR2 on page A6-144

000101 x xxxx Move to two ARM core
registers from Coprocessor

MRRC, MRRC2 on page A6-156

10xxxx 0 xxxx Coprocessor data operations CDP, CDP2 on page A6-54

10xxx0 1 xxxx Move to Coprocessor from
ARM core register

MCR, MCR2 on page A6-142

10xxx1 1 xxxx Move to ARM core register
from Coprocessor

MRC, MRC2 on page A6-154

a. but not 000x0x
A5-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text

----- Note -----
A coprocessor instruction executes successfully or causes an UNDEFINED instruction UsageFault only if the targeted coprocessor exists and is enabled for accesses at the appropriate privilege level. See Coprocessor Access Control Register on page B3-22 [PDF page 506]. In all other cases, a coprocessor instruction causes a UsageFault exception with the UFSR.NOCP bit set to 1. For more information see Table B3-18 on page B3-20 [PDF page 504].

Chapter A6
Thumb Instruction Details

This chapter describes Thumb® instruction support in ARMv7-M. It contains the following sections:

• Format of instruction descriptions on page A6-2

• Standard assembler syntax fields on page A6-7

• Conditional execution on page A6-8

• Shifts applied to a register on page A6-12

• Memory accesses on page A6-15

• Hint Instructions on page A6-16.

• Alphabetical list of ARMv7-M Thumb instructions on page A6-17.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-1
Restricted Access Non-Confidential

Thumb Instruction Details
A6.1 Format of instruction descriptions

The instruction descriptions in the alphabetical lists of instructions in Alphabetical list of ARMv7-M Thumb
instructions on page A6-17 normally use the following format:

• instruction section title

• introduction to the instruction

• instruction encoding(s) with architecture information

• assembler syntax

• pseudocode describing how the instruction operates

• exception information

• notes (where applicable).

Each of these items is described in more detail in the following subsections.

A few instruction descriptions describe alternative mnemonics for other instructions and use an abbreviated
and modified version of this format.

A6.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instructions described in the section. When one
mnemonic has multiple forms described in separate instruction sections, this is followed by a short
description of the form in parentheses. The most common use of this is to distinguish between forms of an
instruction in which one of the operands is an immediate value and forms in which it is a register.

Parenthesized text is also used to document the former mnemonic in some cases where a mnemonic has been
replaced entirely by another mnemonic in the new assembler syntax.

A6.1.2 Introduction to the instruction

The instruction section title is followed by text that briefly describes the main features of the instruction.
This description is not necessarily complete and is not definitive. If there is any conflict between it and the
more detailed information that follows, the latter takes priority.
A6-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.1.3 Instruction encodings

The Encodings subsection contains a list of one or more instruction encodings. For reference purposes, each
Thumb instruction encoding is labelled, T1, T2, T3...

Each instruction encoding description consists of:

• Information about which architecture variants include the particular encoding of the instruction.
Thumb instructions present since ARMv4T are labelled as all versions of the Thumb ISA, otherwise:

— ARMv5T* means all variants of ARM Architecture version 5 that include Thumb instruction
support.

— ARMv6-M means a Thumb-only variant of the ARM architecture microcontroller profile that
is compatible with ARMv6 Thumb support prior to the introduction of Thumb-2 technology.

— ARMv7-M means a Thumb-only variant of the ARM architecture microcontroller profile that
provides enhanced performance and functionality with respect to ARMv6-M through
Thumb-2 technology and additional system features such as fault handling support.

Note
 This manual does not provide architecture variant information about non-M profile variants of

ARMv6 and ARMv7. For such information, see the ARM Architecture Reference Manual.

• An assembly syntax that ensures that the assembler selects the encoding in preference to any other
encoding. In some cases, multiple syntaxes are given. The correct one to use is sometimes indicated
by annotations to the syntax, such as Inside IT block and Outside IT block. In other cases, the correct
one to use can be determined by looking at the assembler syntax description and using it to determine
which syntax corresponds to the instruction being disassembled.

There is usually more than one syntax that ensures re-assembly to any particular encoding, and the
exact set of syntaxes that do so usually depends on the register numbers, immediate constants and
other operands to the instruction. For example, when assembling to the Thumb instruction set, the
syntax AND R0,R0,R8 ensures selection of a 32-bit encoding but AND R0,R0,R1 selects a 16-bit encoding.

The assembly syntax documented for the encoding is chosen to be the simplest one that ensures
selection of that encoding for all operand combinations supported by that encoding. This often means
that it includes elements that are only necessary for a small subset of operand combinations. For
example, the assembler syntax documented for the 32-bit Thumb AND (register) encoding includes the
.W qualifier to ensure that the 32-bit encoding is selected even for the small proportion of operand
combinations for which the 16-bit encoding is also available.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to
disassemble that encoding to. However, disassemblers may wish to use simpler syntaxes when they
are suitable for the operand combination, in order to produce more readable disassembled code.

• An encoding diagram. This is half-width for 16-bit Thumb encodings and full-width for 32-bit
Thumb encodings. The 32-bit Thumb encodings use a double vertical line between the two halfwords
to act as a reminder that 32-bit Thumb encodings use the byte order of a sequence of two halfwords
rather than of a word, as described in Instruction alignment and byte ordering on page A3-6.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-3
Restricted Access Non-Confidential

Thumb Instruction Details
• Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction
fields into inputs to the encoding-independent pseudocode in the later Operation subsection, and that
picks out any special cases in the encoding. For a detailed description of the pseudocode used and of
the relationship between the encoding diagram, the encoding-specific pseudocode and the
encoding-independent pseudocode, see Appendix G Pseudocode definition.

A6.1.4 Assembler syntax

The Assembly syntax subsection describes the standard UAL syntax for the instruction.

Each syntax description consists of the following elements:

• One or more syntax prototype lines written in a typewriter font, using the conventions described in
Assembler syntax prototype line conventions on page A6-5. Each prototype line documents the
mnemonic and (where appropriate) operand parts of a full line of assembler code. When there is more
than one such line, each prototype line is annotated to indicate required results of the
encoding-specific pseudocode. For each instruction encoding, this information can be used to
determine whether any instructions matching that encoding are available when assembling that
syntax, and if so, which ones.

• The line where: followed by descriptions of all of the variable or optional fields of the prototype
syntax line.

Some syntax fields are standardized across all or most instructions. These fields are described in
Standard assembler syntax fields on page A6-7.

By default, syntax fields that specify registers (such as <Rd>, <Rn>, or <Rt>) are permitted to be any of
R0-R12 or LR in Thumb instructions. These require that the encoding-specific pseudocode should
set the corresponding integer variable (such as d, n, or t) to the corresponding register number (0-12
for R0-R12, 14 for LR). This can normally be done by setting the corresponding bitfield in the
instruction (named Rd, Rn, Rt...) to the binary encoding of that number. In the case of 16-bit Thumb
encodings, this bitfield is normally of length 3 and so the encoding is only available when one of
R0-R7 was specified in the assembler syntax. It is also common for such encodings to use a bitfield
name such as Rdn. This indicates that the encoding is only available if <Rd> and <Rn> specify the same
register, and that the register number of that register is encoded in the bitfield if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted
range of registers or document other differences from the default rules for such fields. Typical
extensions are to allow the use of the SP and/or the PC (using register numbers 13 and 15
respectively).

Note
 The pre-UAL Thumb assembler syntax is incompatible with UAL and is not documented in the instruction
sections.
A6-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax prototype line conventions

The following conventions are used in assembler syntax prototype lines and their subfields:

< > Any item bracketed by < and > is a short description of a type of value to be supplied by the
user in that position. A longer description of the item is normally supplied by subsequent
text. Such items often correspond to a similarly named field in an encoding diagram for an
instruction. When the correspondence simply requires the binary encoding of an integer
value or register number to be substituted into the instruction encoding, it is not described
explicitly. For example, if the assembler syntax for a Thumb instruction contains an item
<Rn> and the instruction encoding diagram contains a 4-bit field named Rn, the number of
the register specified in the assembler syntax is encoded in binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is
more complex than simple binary encoding of an integer or register number, the item
description indicates how it is encoded. This is often done by specifying a required output
from the encoding-specific pseudocode, such as add = TRUE. The assembler must only use
encodings that produce that output.

{ } Any item bracketed by { and } is optional. A description of the item and of how its presence
or absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in
the instruction syntax.

spaces Single spaces are used for clarity, to separate items. When a space is obligatory in the
assembler syntax, two or more consecutive spaces are used.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and },
the special characters described above do not appear in the basic forms of assembler instructions
documented in this manual. The { and } characters need to be encoded in a few places as part of a variable
item. When this happens, the description of the variable item indicates how they must be used.

A6.1.5 Pseudocode describing how the instruction operates

The Operation subsection contains encoding-independent pseudocode that describes the main operation of
the instruction. For a detailed description of the pseudocode used and of the relationship between the
encoding diagram, the encoding-specific pseudocode and the encoding-independent pseudocode, see
Appendix G Pseudocode definition.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-5
Restricted Access Non-Confidential

Thumb Instruction Details
A6.1.6 Exception information

The Exceptions subsection contains a list of the exceptional conditions that can be caused by execution of
the instruction.

Processor exceptions are listed as follows:

• Resets and interrupts (including NMI, PendSV and SysTick) are not listed. They can occur before or
after the execution of any instruction, and in some cases during the execution of an instruction, but
they are not in general caused by the instruction concerned.

• MemManage and BusFault exceptions are listed for all instructions that perform explicit data
memory accesses.

All instruction fetches can cause MemManage and BusFault exceptions. These are not caused by
execution of the instruction and so are not listed.

• UsageFault exceptions can occur for a variety of reasons and are listed against instructions as
appropriate.

UsageFault exceptions also occur when pseudocode indicates that the instruction is UNDEFINED.
These UsageFaults are not listed.

• The SVCall exception is listed for the SVC instruction.

• The DebugMonitor exception is listed for the BKPT instruction.

• HardFault exceptions can arise from escalation of faults listed against an instruction, but are not
themselves listed.

Note
 For a summary of the different types of MemManage, BusFault and UsageFault exceptions see Fault
behavior on page B1-39.

A6.1.7 Notes

Where appropriate, additional notes about the instruction appear under further subheadings.
A6-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<c> Is an optional field. It specifies the condition under which the instruction is executed. If <c>
is omitted, it defaults to always (AL). For details see Conditional execution on page A4-3.

<q> Specifies optional assembler qualifiers on the instruction. The following qualifiers are
defined:

.N Meaning narrow, specifies that the assembler must select a 16-bit encoding for
the instruction. If this is not possible, an assembler error is produced.

.W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings.
If both are available, it must select a 16-bit encoding. In a few cases, more than one encoding
of the same length can be available for an instruction. The rules for selecting between such

encodings are instruction-specific and are part of the instruction description.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-7
Restricted Access Non-Confidential

Thumb Instruction Details
A6.3 Conditional execution

Most Thumb instructions in ARMv7-M can be executed conditionally, based on the values of the APSR
condition flags. The available conditions are listed in Table A6-1.

In Thumb instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction, see
Conditional instructions on page A4-4, ITSTATE on page A6-10 and IT on page A6-78 for details. Some
conditional branch instructions do not require a preceding IT instruction, and include a condition code in
their encoding.

Table A6-1 Condition codes

cond
Mnemonic
extension

Meaning (integer) Meaning (floating-point) ab Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal, or unordered Z == 0

0010 CS c Carry set Greater than, equal, or unordered C == 1

0011 CC d Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Not unordered V == 0

1000 HI Unsigned higher Greater than, or unordered C == 1 and Z == 0

1001 LS Unsigned lower or same Less than or equal C == 0 or Z == 1

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N != V

1100 GT Signed greater than Greater than Z == 0 and N == V

1101 LE Signed less than or equal Less than, equal, or unordered Z == 1 or N != V

1110 None (AL) e Always (unconditional) Always (unconditional) Any

a. Unordered means at least one NaN operand.
b. ARMv7-M does not currently support floating point instructions. This column can be ignored.
c. HS (unsigned higher or same) is a synonym for CS.
d. LO (unsigned lower) is a synonym for CC.
e. AL is an optional mnemonic extension for always, except in IT instructions. See IT on page A6-78 for details.
A6-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.3.1 Pseudocode details of conditional execution

The CurrentCond() pseudocode function has prototype:

bits(4) CurrentCond()

and returns a 4-bit condition specifier as follows:

• For the T1 and T3 encodings of the Branch instruction (see B on page A6-40), it returns the 4-bit
'cond' field of the encoding.

• For all other Thumb instructions, it returns ITSTATE.IT[7:4]. See ITSTATE on page A6-10.

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine
whether the instruction must be executed:

// ConditionPassed()
// =================

boolean ConditionPassed()
 cond = CurrentCond();

 // Evaluate base condition.
 case cond<3:1> of
 when '000' result = (APSR.Z == '1'); // EQ or NE
 when '001' result = (APSR.C == '1'); // CS or CC
 when '010' result = (APSR.N == '1'); // MI or PL
 when '011' result = (APSR.V == '1'); // VS or VC
 when '100' result = (APSR.C == '1') && (APSR.Z == '0'); // HI or LS
 when '101' result = (APSR.N == APSR.V); // GE or LT
 when '110' result = (APSR.N == APSR.V) && (APSR.Z == '0'); // GT or LE
 when '111' result = TRUE; // AL

 // Condition bits in the set "111x" indicate the instruction is always executed.
 // Otherwise, invert condition if necessary.
 if cond<0> == '1' && cond != '1111' then
 result = !result;

 return result;

A6.3.2 Conditional execution of undefined instructions

If an UNDEFINED instruction fails a condition check in ARMv7-M, the instruction behaves as a NOP and
does not cause an exception.

Note
 The Branch (B) instruction with a conditional field of ‘1110’ is UNDEFINED and takes an exception unless
qualified by a condition check failure from an IT instruction.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-9
Restricted Access Non-Confidential

Thumb Instruction Details
A6.3.3 ITSTATE

This field holds the If-Then execution state bits for the Thumb IT instruction. See IT on page A6-78 for a
description of the IT instruction and the associated IT block.

ITSTATE divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

IT[4:0] Encodes:

• The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in
this field, as shown in Table A6-2 on page A6-11.

• The value of the least significant bit of the condition code for each instruction in the
block.

Note
 Changing the value of the least significant bit of a condition code from 0 to 1 has the

effect of inverting the condition code.

This subfield is 0b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the instruction, and the
Then and Else (T and E) parameters in the instruction, see IT on page A6-78 for more information.

An instruction in an IT block is conditional, see Conditional instructions on page A4-4. The condition used
is the current value of IT[7:4]. When an instruction in an IT block completes its execution normally, ITSTATE
is advanced to the next line of Table A6-2 on page A6-11.

See Exception entry behavior on page B1-21 for details of what happens if such an instruction takes an
exception.

Note
 Instructions that can complete their normal execution by branching are only permitted in an IT block as its
last instruction, and so always result in ITSTATE advancing to normal execution.

7 6 5 4 3 2 1 0

IT[7:0]
A6-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Pseudocode details of ITSTATE operation

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance()
pseudocode function:

// ITAdvance()
// ===========

ITAdvance()
 if ITSTATE<2:0> == ’000’ then
 ITSTATE.IT = ’00000000’;
 else
 ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction is in an IT block, and whether it is the last
instruction of an IT block:

// InITBlock()
// ===========

boolean InITBlock()
 return (ITSTATE.IT<3:0> != ’0000’);

// LastInITBlock()
// ===============

boolean LastInITBlock()
 return (ITSTATE.IT<3:0> == ’1000’);

Table A6-2 Effect of IT execution state bits

IT bits a

a. Combinations of the IT bits not shown in this table are reserved.

[7:5] [4] [3] [2] [1] [0]

cond_base P1 P2 P3 P4 1 Entry point for 4-instruction IT block

cond_base P1 P2 P3 1 0 Entry point for 3-instruction IT block

cond_base P1 P2 1 0 0 Entry point for 2-instruction IT block

cond_base P1 1 0 0 0 Entry point for 1-instruction IT block

000 0 0 0 0 0 Normal execution, not in an IT block
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-11
Restricted Access Non-Confidential

Thumb Instruction Details
A6.4 Shifts applied to a register

ARM register offset load/store word and unsigned byte instructions can apply a wide range of different
constant shifts to the offset register. Both Thumb and ARM data-processing instructions can apply the same
range of different constant shifts to the second operand register. See Constant shifts for details.

ARM data-processing instructions can apply a register-controlled shift to the second operand register.

A6.4.1 Constant shifts

These are the same in Thumb and ARM instructions, except that the input bits come from different
positions.

<shift> is an optional shift to be applied to <Rm>. It can be any one of:

(omitted) Equivalent to LSL #0.

LSL #<n> logical shift left <n> bits. 0 <= <n> <= 31.

LSR #<n> logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> arithmetic shift right <n> bits. 1 <= <n> <= 32.

ROR #<n> rotate right <n> bits. 1 <= <n> <= 31.

RRX rotate right one bit, with extend. bit [0] is written to shifter_carry_out, bits [31:1] are
shifted right one bit, and the Carry Flag is shifted into bit [31].

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:

(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.

If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ROR #<n> type = 0b11, immediate = <n>.

RRX type = 0b11, immediate = 0.
A6-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.4.2 Register controlled shifts

These are only available in ARM instructions.

<type> is the type of shift to apply to the value read from <Rm>. It must be one of:

ASR Arithmetic shift right, encoded as type = 0b10

LSL Logical shift left, encoded as type = 0b00

LSR Logical shift right, encoded as type = 0b01

ROR Rotate right, encoded as type = 0b11.

The bottom byte of <Rs> contains the shift amount.

A6.4.3 Shift operations

// DecodeImmShift()
// ================

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

 case type of
 when ’00’
 shift_t = SRType_LSL; shift_n = UInt(imm5);
 when ’01’
 shift_t = SRType_LSR; shift_n = if imm5 == ’00000’ then 32 else UInt(imm5);
 when ’10’
 shift_t = SRType_ASR; shift_n = if imm5 == ’00000’ then 32 else UInt(imm5);
 when ’11’
 if imm5 == ’00000’ then
 shift_t = SRType_RRX; shift_n = 1;
 else
 shift_t = SRType_ROR; shift_n = UInt(imm5);

 return (shift_t, shift_n);

// DecodeRegShift()
// ================

SRType DecodeRegShift(bits(2) type)
 case type of
 when ’00’ shift_t = SRType_LSL;
 when ’01’ shift_t = SRType_LSR;
 when ’10’ shift_t = SRType_ASR;
 when ’11’ shift_t = SRType_ROR;
 return shift_t;

// Shift()
// =======

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
 (result, -) = Shift_C(value, type, amount, carry_in);
 return result;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-13
Restricted Access Non-Confidential

Thumb Instruction Details
// Shift_C()
// =========

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
 assert !(type == SRType_RRX && amount != 1);

 if amount == 0 then
 (result, carry_out) = (value, carry_in);
 else
 case type of
 when SRType_LSL
 (result, carry_out) = LSL_C(value, amount);
 when SRType_LSR
 (result, carry_out) = LSR_C(value, amount);
 when SRType_ASR
 (result, carry_out) = ASR_C(value, amount);
 when SRType_ROR
 (result, carry_out) = ROR_C(value, amount);
 when SRType_RRX
 (result, carry_out) = RRX_C(value, carry_in);

 return (result, carry_out);
A6-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.5 Memory accesses

The following addressing modes are commonly permitted for memory access instructions:

Offset addressing

The offset value is added to or subtracted from an address obtained from the base register.
The result is used as the address for the memory access. The base register is unaltered.

The assembly language syntax for this mode is:

[<Rn>,<offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used
as the address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>,<offset>]!

Post-indexed addressing

The address obtained from the base register is used, unaltered, as the address for the memory
access. The offset value is applied to the address, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>],<offset>

In each case, <Rn> is the base register. <offset> can be:

• an immediate constant, such as <imm8> or <imm12>

• an index register, <Rm>

• a shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:

• Alignment support on page A3-3

• Endian support on page A3-5

• Synchronization and semaphores on page A3-8
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-15
Restricted Access Non-Confidential

Thumb Instruction Details
A6.6 Hint Instructions

Two classes of hint instruction exist within the Thumb ISA:

• memory hints

• NOP-compatible hints.

A6.6.1 Memory hints

Some load instructions with Rt == 0b1111 are memory hints. Memory hints allow you to provide advance
information to memory systems about future memory accesses, without actually loading or storing any data.

PLD, PLDW and PLI are the only memory hint instructions currently defined, see Load byte, memory hints on
page A5-24. For instruction details, see:

• PLD, PLDW (immediate) on page A6-176

• PLD (literal) on page A6-178

• PLD (register) on page A6-180

• PLI (immediate, literal) on page A6-182

• PLI (register) on page A6-184.

Other memory hints are currently unallocated, see Load halfword, unallocated memory hints on
page A5-23. The effect of a memory hint insturction is IMPLEMENTATION DEFINED. Unallocated memory
hints must be implemented as NOP, and software must not use them.

A6.6.2 NOP-compatible hints

Hint instructions which are not associated with memory accesses are part of a separate category of hint
instructions known as NOP-compatible hints. NOP-compatible hints provide IMPLEMENTATION DEFINED
behavior or act as a NOP. Both 16-bit and 32-bit encodings are reserved:

• For information on the 16-bit encodings see If-Then, and hints on page A5-11.

• For information on the 32-bit encodings see Hint instructions on page A5-19.
A6-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

Thumb Instruction Details
A6.7 Alphabetical list of ARMv7-M Thumb instructions

Every ARMv7-M Thumb instruction is listed in this section. See Format of instruction descriptions on
page A6-2 for details of the format used.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-17
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.1 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M

ADC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 0 S Rn 0 imm3 Rd imm8
A6-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-19
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.2 ADC (register)

Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.

ADCS <Rdn>,<Rm> Outside IT block.

ADC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 1 Rm Rdn

Encoding T2 ARMv7-M

ADC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 0 S Rn (0) imm3 Rd imm2 type Rm
A6-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ADC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

A special case is that if ADC<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will
be assembled using encoding T2 as though ADC<c> <Rd>,<Rn> had been written. To prevent this happening,
use the .W qualifier.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-21
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.3 ADD (immediate)

This instruction adds an immediate value to a register value, and writes the result to the destination register.
It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

if Rd == '1111' && S == '1' then SEE CMN (immediate);
if Rn == '1101' then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n == 15 then UNPREDICTABLE;

if Rn == '1111' then SEE ADR;
if Rn == '1101' then SEE ADD (SP plus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ADDS <Rd>,<Rn>,#<imm3> Outside IT block.
ADD<c> <Rd>,<Rn>,#<imm3> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Rn Rd

Encoding T2 All versions of the Thumb ISA.
ADDS <Rdn>,#<imm8> Outside IT block.
ADD<c> <Rdn>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rdn imm8

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S Rn 0 imm3 Rd imm8

Encoding T4 ARMv7-M
ADDW<c> <Rd>,<Rn>,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 Rn 0 imm3 Rd imm8
A6-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand. If the SP is specified for <Rn>, see ADD
(SP plus immediate) on page A6-26. If the PC is specified for <Rn>, see ADR on page A6-30.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. The range of
allowed values is 0-7 for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4.
See Modified immediate constants in Thumb instructions on page A5-15 for the range of
allowed values for encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3
is preferred to encoding T4 (if encoding T4 is required, use the ADDW syntax). Encoding T1
is preferred to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1
if <Rd> is omitted.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, ’0’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

ADD{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-23
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.4 ADD (register)

This instruction adds a register value and an optionally-shifted register value, and writes the result to the
destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if (DN:Rdn) == ’1101’ || Rm == ’1101’ then SEE ADD (SP plus register);
d = UInt(DN:Rdn); n = UInt(DN:Rdn); m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if d == 15 && m == 15 then UNPREDICTABLE;

if Rd == '1111' && S == '1' then SEE CMN (register);
if Rn == '1101' then SEE ADD (SP plus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ADDS <Rd>,<Rn>,<Rm> Outside IT block.
ADD<c> <Rd>,<Rn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rm Rn Rd

Encoding T2 All versions of the Thumb ISA.
ADD<c> <Rdn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DN Rm Rdn

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S Rn (0) imm3 Rd imm2 type Rm
A6-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn> and
encoding T2 is preferred to encoding T1 if both are available (this can only happen inside
an IT block). If <Rd> is specified, encoding T1 is preferred to encoding T2.

<Rn> Specifies the register that contains the first operand. If the SP is specified for <Rn>, see ADD
(SP plus register) on page A6-28.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and all encodings are permitted. If <shift> is specified, only encoding T3 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

Inside an IT block, if ADD<c> <Rd>,<Rn>,<Rd> cannot be assembled using encoding T1, it is assembled using
encoding T2 as though ADD<c> <Rd>,<Rn> had been written. To prevent this happening, use the .W qualifier.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ’0’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-25
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
 If <Rm> is not the PC, the PC can be used in encoding T2.

ARM_2009_Q4
Inserted Text
 If <Rm> is not the PC, the PC can be used in encoding T2.

ARM_2009_Q4
Inserted Text
 The PC can be used in encoding T2.

Thumb Instruction Details
A6.7.5 ADD (SP plus immediate)

This instruction adds an immediate value to the SP value, and writes the result to the destination register.

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:’00’, 32);

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:’00’, 32);

if Rd == ’1111’ && S == ’1’ then SEE CMN (immediate);
d = UInt(Rd); setflags = (S == ’1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if d == 15 then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ADD<c> <Rd>,SP,#<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rd imm8

Encoding T2 All versions of the Thumb ISA.
ADD<c> SP,SP,#<imm7>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,SP,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm8

Encoding T4 ARMv7-M
ADDW<c> <Rd>,SP,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 0 1 0 imm3 Rd imm8
A6-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. Allowed values
are multiples of 4 in the range 0-1020 for encoding T1, multiples of 4 in the range 0-508 for
encoding T2 and any value in the range 0-4095 for encoding T4. See Modified immediate
constants in Thumb instructions on page A5-15 for the range of allowed values for encoding
T3.

When both 32-bit encodings are available for an instruction, encoding T3 is preferred to
encoding T4 (if encoding T4 is required, use the ADDW syntax).

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, imm32, ’0’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

ADD{S}<c><q> {<Rd>,} SP, #<const> All encodings permitted
ADDW<c><q> {<Rd>,} SP, #<const> Only encoding T4 is permitted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-27
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.6 ADD (SP plus register)

This instruction adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rm == ’1101’ then SEE encoding T1;
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ADD<c> <Rdm>, SP, <Rdm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 DM 1 1 0 1 Rdm

Encoding T2 All versions of the Thumb ISA.
ADD<c> SP,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1 Rm 1 0 1

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,SP,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 S 1 1 0 1 0 imm3 Rd imm2 type Rm
A6-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ADD{S}<c><q> {<Rd>,} SP, <Rm>{, <shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is SP.

The use of the PC as <Rd> in encoding T1 is deprecated.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

The use of the SP as <Rm> in encoding T1 is deprecated.

The use of the PC as <Rm> in encoding T1 and encoding T2 is deprecated.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and all encodings are permitted. If <shift> is specified, only encoding T3 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

If <Rd> is SP or omitted, <shift> is only permitted to be LSL #0, LSL #1, LSL #2 or LSL #3.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, shifted, ’0’);
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-29
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.7 ADR

Address to Register adds an immediate value to the PC value, and writes the result to the destination register.

d = UInt(Rd); imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d IN {13,15} then UNPREDICTABLE;

d = UInt(Rd); imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ADR<c> <Rd>,<label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 Rd imm8

Encoding T2 ARMv7-M.
ADR<c>.W <Rd>,<label> <label> before current instruction

SUB <Rd>,PC,#0 Special case for zero offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 1 1 0 imm3 Rd imm8

Encoding T3 ARMv7-M
ADR<c>.W <Rd>,<label> <label> after current instruction

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 0 0 0 1 1 1 1 0 imm3 Rd imm8
A6-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<label> Specifies the label of an instruction or literal data item whose address is to be loaded into
<Rd>. The assembler calculates the required value of the offset from the Align(PC,4) value
of the ADR instruction to this label.

If the offset is positive, encodings T1 and T3 are permitted with imm32 equal to the offset.
Allowed values of the offset are multiples of four in the range 0 to 1020 for encoding T1 and
any value in the range 0 to 4095 for encoding T3.

If the offset is negative, encoding T2 is permitted with imm32 equal to minus the offset.
Allowed values of the offset are -4095 to -1.

In the alternative syntax forms:

<const> Specifies the offset value for the ADD form and minus the offset value for the SUB form.
Allowed values are multiples of four in the range 0 to 1020 for encoding T1 and any value
in the range 0 to 4095 for encodings T2 and T3.

Note
 It is recommended that the alternative syntax forms are avoided where possible. However,

the only possible syntax for encoding T2 with all immediate bits zero is
SUB<c><q> <Rd>,PC,#0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 R[d] = result;

Exceptions

None.

ADR<c><q> <Rd>, <label> Normal syntax
ADD<c><q> <Rd>, PC, #<const> Alternative for encodings T1, T3
SUB<c><q> <Rd>, PC, #<const> Alternative for encoding T2
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-31
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.8 AND (immediate)

This instruction performs a bitwise AND of a register value and an immediate value, and writes the result
to the destination register.

if Rd == '1111' && S == '1' then SEE TST (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
AND{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 S Rn 0 imm3 Rd imm8
A6-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-33
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.9 AND (register)

This instruction performs a bitwise AND of a register value and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == '1111' && S == '1' then SEE TST (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ANDS <Rdn>,<Rm> Outside IT block.
AND<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Rm Rdn

Encoding T2 ARMv7-M
AND{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 S Rn (0) imm3 Rd imm2 type Rm
A6-34 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

AND{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

A special case is that if AND<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will
be assembled using encoding T2 as though AND<c> <Rd>,<Rn> had been written. To prevent this happening,
use the .W qualifier.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-35
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.10 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
copies of its sign bit, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(’10’, imm5);

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(-, shift_n) = DecodeImmShift('10', imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ASRS <Rd>,<Rm>,#<imm5> Outside IT block.
ASR<c> <Rd>,<Rm>,#<imm5> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 imm5 Rm Rd

Encoding T2 ARMv7-M
ASR{S}<c>.W <Rd>,<Rm>,#<imm5>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 1 0 Rm
A6-36 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ASR{S}<c><q> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 1 to 32. See Shifts applied to a register on
page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-37
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.11 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies
of its sign bit, and writes the result to the destination register. The variable number of bits is read from the
bottom byte of a register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ASRS <Rdn>,<Rm> Outside IT block.
ASR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 0 0 Rm Rdn

Encoding T2 ARMv7-M
ASR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 S Rn 1 1 1 1 Rd 0 0 0 0 Rm
A6-38 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ASR{S}<c><q> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_ASR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-39
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.12 B

Branch causes a branch to a target address.

if cond == ’1110’ then UNDEFINED;
if cond == ’1111’ then SEE SVC;
imm32 = SignExtend(imm8:’0’, 32);
if InITBlock() then UNPREDICTABLE;

imm32 = SignExtend(imm11:’0’, 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:’0’, 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
B<c> <label> Not allowed in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond imm8

Encoding T2 All versions of the Thumb ISA.
B<c> <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 imm11

Encoding T3 ARMv7-M
B<c>.W <label> Not allowed in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S cond imm6 1 0 J1 0 J2 imm11

Encoding T4 ARMv7-M
B<c>.W <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 0 J1 1 J2 imm11
A6-40 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

B<c><q> <label>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Note
 Encodings T1 and T3 are conditional in their own right, and do not require an IT instruction

to make them conditional.

For encodings T1 and T3, <c> is not allowed to be AL or omitted. The 4-bit encoding of the
condition is placed in the instruction and not in a preceding IT instruction, and the
instruction is not allowed to be in an IT block. As a result, encodings T1 and T2 are never
both available to the assembler, nor are encodings T3 and T4.

<label> Specifies the label of the instruction that is to be branched to. The assembler calculates the
required value of the offset from the PC value of the B instruction to this label, then selects
an encoding that will set imm32 to that offset.

Allowed offsets are even numbers in the range -256 to 254 for encoding T1, -2048 to 2046
for encoding T2, -1048576 to 1048574 for encoding T3, and -16777216 to 16777214 for
encoding T4.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 BranchWritePC(PC + imm32);

Exceptions

None.

Related encodings

If the cond field of encoding T3 is '1110' or '1111', a different instruction is encoded. To determine which
instruction, see Branches and miscellaneous control on page A5-18.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-41
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.13 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other
bits in the register.

d = UInt(Rd); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if d IN {13,15} then UNPREDICTABLE;

Assembler syntax

BFC<c><q> <Rd>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<lsb> Specifies the least significant bit that is to be cleared, in the range 0 to 31. This determines
the required value of lsbit.

<width> Specifies the number of bits to be cleared, in the range 1 to 32-<lsb>. The required value of
msbit is <lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = Replicate(’0’, msbit-lsbit+1);
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

Exceptions

None.

Encoding T1 ARMv7-M
BFC<c> <Rd>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 1 1 1 1 0 imm3 Rd imm2 (0) msb
A6-42 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.14 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at
any position in the destination register.

if Rn == '1111' then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler syntax

BFI<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the source register.

<lsb> Specifies the least significant destination bit, in the range 0 to 31. This determines the
required value of lsbit.

<width> Specifies the number of bits to be copied, in the range 1-32-<lsb>. The required value of
msbit is <lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

Exceptions

None.

Encoding T1 ARMv7-M
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn 0 imm3 Rd imm2 (0) msb
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-43
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.15 BIC (immediate)

Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate
value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
BIC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 1 S Rn 0 imm3 Rd imm8
A6-44 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-45
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.16 BIC (register)

Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
BICS <Rdn>,<Rm> Outside IT block.
BIC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 0 Rm Rdn

Encoding T2 ARMv7-M
BIC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 1 S Rn (0) imm3 Rd imm2 type Rm
A6-46 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

BIC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-47
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.17 BKPT

Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration of the
debug support.

Note
 BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware.

Assembler syntax

BKPT<q> #<imm8>

where:

<q> See Standard assembler syntax fields on page A6-7.

<imm8> Specifies an 8-bit value that is stored in the instruction. This value is ignored by the ARM
hardware, but can be used by a debugger to store additional information about the
breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

DebugMonitor.

Encoding T1 ARMv5T*, ARMv6-M, ARMv7-M M profile specific behavior
BKPT #<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 0 imm8
A6-48 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.18 BL

Branch with Link (immediate) calls a subroutine at a PC-relative address.

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); imm32 = SignExtend(S:I1:I2:imm10:imm11:'0', 32);
targetInstrSet = CurrentInstrSet();
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

BL<c><q> <label>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<label> Specifies the label of the instruction that is to be branched to.

The assembler calculates the required value of the offset from the PC value of the BL
instruction to this label, then selects an encoding that will set imm32 to that offset. Allowed
offsets are even numbers in the range -16777216 to 16777214.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 next_instr_addr = PC;
 LR = next_instr_addr<31:1> : ’1’;
 BranchWritePC(PC + imm32);

Exceptions

None.

Note

Before the introduction of Thumb-2 technology, J1 and J2 in encodings T1 and T2 were both 1, resulting in
a smaller branch range. The instructions could be executed as two separate 16-bit instructions, with the first
instruction instr1 setting LR to PC + SignExtend(instr1<10:0>:'000000000000', 32) and the second
instruction completing the operation. It is not possible to split the BL instruction into two 16-bit instructions
in ARMv6-M and ARMv7-M.

Encoding T1 All versions of the Thumb ISA.
BL<c> <label> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10 1 1 J1 1 J2 imm11
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-49
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.19 BLX (register)

Branch with Link and Exchange calls a subroutine at an address and instruction set specified by a register.
ARMv7-M only supports the Thumb instruction set. An attempt to change the instruction execution state
causes an exception.

m = UInt(Rm);
if m == 15 then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

BLX<c><q> <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rm> Specifies the register that contains the branch target address and instruction set selection bit.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 target = R[m];
 next_instr_addr = PC - 2;
 LR = next_instr_addr<31:1> : '1';
 BLXWritePC(target);

Exceptions

UsageFault.

Encoding T1 ARMv5T*, ARMv6-M, ARMv7-M
BLX<c> <Rm> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Rm (0) (0) (0)
A6-50 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Inserted Text
 on the instruction at the target address.

Thumb Instruction Details
A6.7.20 BX

Branch and Exchange causes a branch to an address and instruction set specified by a register. ARMv7-M
only supports the Thumb instruction set. An attempt to change the instruction execution state causes an
exception.

m = UInt(Rm);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

BX<c><q> <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rm> Specifies the register that contains the branch target address and instruction set selection bit.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 BXWritePC(R[m]);

Exceptions

UsageFault.

Encoding T1 All versions of the Thumb ISA.
BX<c> <Rm> Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Rm (0) (0) (0)
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-51
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
 on the instruction at the target address.

Software can also use BX for an exception return, see Exception return behavior on page B1-25 [PDF page 443].

Thumb Instruction Details
A6.7.21 CBNZ, CBZ

Compare and Branch on Non-Zero and Compare and Branch on Zero compares the value in a register with
zero, and conditionally branches forward a constant value. They do not affect the condition flags.

n = UInt(Rn); imm32 = ZeroExtend(i:imm5:’0’, 32); nonzero = (op == ’1’);
if InITBlock() then UNPREDICTABLE;

Encoding T1 ARMv7-M
CB{N}Z <Rn>,<label> Not allowed in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 op 0 i 1 imm5 Rn
A6-52 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

CB{N}Z<q> <Rn>, <label>

where:

<q> See Standard assembler syntax fields on page A6-7.

<Rn> The first operand register.

<label> The label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the CB{N}Z instruction to this label, then selects an
encoding that will set imm32 to that offset. Allowed offsets are even numbers in the range 0
to 126.

Operation

EncodingSpecificOperations();
if nonzero ^ IsZero(R[n]) then
 BranchWritePC(PC + imm32);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-53
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.22 CDP, CDP2

Coprocessor Data Processing tells a coprocessor to perform an operation that is independent of ARM
registers and memory.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

cp = UInt(coproc);

cp = UInt(coproc);

Encoding T1 ARMv7-M
CDP<c> <coproc>,<opc1>,<CRd>,<CRn>,<CRm>,<opc2>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm

Encoding T2 ARMv7-M
CDP2<c> <coproc>,<opc1>,<CRd>,<CRn>,<CRm>,<opc2>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 CRn CRd coproc opc2 0 CRm
A6-54 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

CDP{2}<c><q> <coproc>, #<opc1>, <CRd>, <CRn>, <CRm> {,#<opc2>}

where:

2 If specified, selects the opc0 == 1 form of the encoding. If omitted, selects the opc0 == 0
form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to
be placed in the cp_num field of the instruction. The standard generic coprocessor names
are p0, p1, ..., p15.

<opc1> Is a coprocessor-specific opcode, in the range 0 to 15.

<CRd> Specifies the destination coprocessor register for the instruction.

<CRn> Specifies the coprocessor register that contains the first operand.

<CRm> Specifies the coprocessor register that contains the second operand.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is assumed to be
0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_InternalOperation(cp, ThisInstr());

Exceptions

UsageFault.

Notes

Coprocessor fields Only instruction bits<31:24>, bits<11:8>, and bit<4> are architecturally defined.
The remaining fields are recommendations.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-55
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.23 CLREX

Clear Exclusive clears the local record of the executing processor that an address has had a request for an
exclusive access.

// No additional decoding required

Assembler syntax

CLREX<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 ClearExclusiveLocal(ProcessorID());

Exceptions

None.

Encoding T1 ARMv7-M
CLREX<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 0 1 0 (1) (1) (1) (1)
A6-56 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.24 CLZ

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

CLZ<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in
encoding T1, in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = CountLeadingZeroBits(R[m]);
 R[d] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
CLZ<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 1 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-57
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.25 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags
based on the result, and discards the result.

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Encoding T1 ARMv7-M
CMN<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
A6-58 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

CMN<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the operand. This register is allowed to be the SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], imm32, ’0’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-59
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.26 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the
condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
CMN<c> <Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 1 Rm Rn

Encoding T2 ARMv7-M
CMN<c>.W <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
A6-60 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

CMN<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the first operand. This register is allowed to be the SP.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], shifted, ’0’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-61
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.27 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags
based on the result, and discards the result.

n = UInt(Rdn); imm32 = ZeroExtend(imm8, 32);

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
CMP<c> <Rn>,#<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 Rn imm8

Encoding T2 ARMv7-M
CMP<c>.W <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 1 Rn 0 imm3 1 1 1 1 imm8
A6-62 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

CMP<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the operand. This register is allowed to be the SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. The range of
allowed values is 0-255 for encoding T1. See Modified immediate constants in Thumb
instructions on page A5-15 for the range of allowed values for encoding T2.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ’1’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-63
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.28 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the
condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(N:Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);
if n < 8 && m < 8 then UNPREDICTABLE;
if n == 15 || m == 15 then UNPREDICTABLE;

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
CMP<c> <Rn>,<Rm> <Rn> and <Rm> both from R0-R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 1 0 Rm Rn

Encoding T2 All versions of the Thumb ISA.
CMP<c> <Rn>,<Rm> <Rn> and <Rm> not both from R0-R7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 N Rm Rn

Encoding T3 ARMv7-M
CMP<c>.W <Rn>, <Rm> {,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
A6-64 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

CMP<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the first operand. The SP can be used.

<Rm> Specifies the register that is optionally shifted and used as the second operand. The SP can
be used, but use of the SP is deprecated.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and all encodings are permitted. If shift is specified, only encoding T3 is permitted.
The possible shifts and how they are encoded are described in Shifts applied to a register on
page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ’1’);
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-65
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.29 CPS

Change Processor State. The instruction modifies the PRIMASK and FAULTMASK special-purpose
register values.

Note

CPS is a system level instruction with ARMv7-M specific behavior. For the complete instruction definition
see CPS on page B4-2.

A6.7.30 CPY

Copy is a pre-UAL synonym for MOV (register).

Assembler syntax

CPY <Rd>, <Rn>

This is equivalent to:

MOV <Rd>, <Rn>

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
CPS<effect> <iflags> Not allowed in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) (0) I F
A6-66 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.31 DBG

Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture
documentation for what use (if any) is made of this instruction.

This is a NOP-compatible hint. See NOP-compatible hints on page A6-16 for general hint behavior.

// Any decoding of ’option’ is specified by the debug system

Assembler syntax

DBG<c><q> #<option>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<option> Provides extra information about the hint, and is in the range 0 to 15.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Debug(option);

Exceptions

None.

Encoding T1 ARMv7-M
DBG<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 1 1 1 1 option
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-67
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.32 DMB

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in
program order before the DMB instruction are observed before any explicit memory accesses that appear in
program order after the DMB instruction. It does not affect the ordering of any other instructions executing on
the processor.

// No additional decoding required

Encoding T1 ARMv6-M, ARMv7-M
DMB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 1 option
A6-68 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

DMB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<opt> Specifies an optional limitation on the DMB operation.

SY DMB operation ensures ordering of all accesses, encoded as option == '1111'.
Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as
system (SY) DMB operations, but software must not rely on this behavior.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 DataMemoryBarrier(option);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-69
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.33 DSB

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order after
this instruction can execute until this instruction completes. This instruction completes when:

• All explicit memory accesses before this instruction complete.

• All Cache, Branch predictor and TLB maintenance operations before this instruction complete.

// No additional decoding required

Encoding T1 ARMv6-M, ARMv7-M
DSB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 0 0 option
A6-70 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 and

ARM_2009_Q4
Cross-Out

Thumb Instruction Details
Assembler syntax

DSB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<opt> Specifies an optional limitation on the DSB operation. Values are:

SY DSB operation ensures completion of all accesses, encoded as option == '1111'.
Can be omitted.

All other encodings of option are reserved. The corresponding instructions execute as
system (SY) DSB operations, but software must not rely on this behavior.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 DataSynchronizationBarrier(option);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-71
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.34 EOR (immediate)

Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

if Rd == '1111' && S == '1' then SEE TEQ (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
EOR{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 S Rn 0 imm3 Rd imm8
A6-72 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-73
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.35 EOR (register)

Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted
register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == '1111' && S == '1' then SEE TEQ (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
EORS <Rdn>,<Rm> Outside IT block.
EOR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 1 Rm Rdn

Encoding T2 ARMv7-M
EOR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 S Rn (0) imm3 Rd imm2 type Rm
A6-74 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

EOR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

A special case is that if EOR<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will
be assembled using encoding T2 as though EOR<c> <Rd>,<Rn> had been written. To prevent this happening,
use the .W qualifier.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-75
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.36 ISB

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following
the ISB are fetched from cache or memory, after the instruction has been completed. It ensures that the effects
of context altering operations, such as changing the ASID, or completed TLB maintenance operations, or
branch predictor maintenance operations, as well as all changes to the CP15 registers, executed before the
ISB instruction are visible to the instructions fetched after the ISB.

In addition, the ISB instruction ensures that any branches that appear in program order after it are always
written into the branch prediction logic with the context that is visible after the ISB instruction. This is
required to ensure correct execution of the instruction stream.

// No additional decoding required

Encoding T1 ARMv6-M, ARMv7-M
ISB<c> #<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 1 (1) (1) (1) (1) 1 0 (0) 0 (1) (1) (1) (1) 0 1 1 0 option
A6-76 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC or MPU configuration, or branch predictor maintenance operations, as well as all side effects of changes to the System Control Space (SCS)

Thumb Instruction Details
Assembler syntax

ISB<c><q> {<opt>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<opt> Specifies an optional limitation on the ISB operation. Allowed values are:

SY Full system ISB operation, encoded as option == '1111'. Can be omitted.

All other encodings of option are RESERVED. The corresponding instructions execute as full
system ISB operations, but should not be relied upon by software.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 InstructionSynchronizationBarrier(option);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-77
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.37 IT

If Then makes up to four following instructions (the IT block) conditional. The conditions for the
instructions in the IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted,
apart from those performed by exception returns.

16-bit instructions in the IT block, other than CMP, CMN and TST, do not set the condition code flags. The AL
condition can be specified to get this changed behavior without conditional execution.

if mask == '0000' then SEE "Related encodings";
if firstcond == '1111' || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;
if InITBlock() then UNPREDICTABLE;

Assembler syntax

IT{x{y{z}}}<q> <firstcond>

where:

<x> Specifies the condition for the second instruction in the IT block.

<y> Specifies the condition for the third instruction in the IT block.

<z> Specifies the condition for the fourth instruction in the IT block.

<q> See Standard assembler syntax fields on page A6-7.

<firstcond> Specifies the condition for the first instruction in the IT block.

Each of <x>, <y>, and <z> can be either:

T Then. The condition attached to the instruction is <firstcond>.

E Else. The condition attached to the instruction is the inverse of <firstcond>. The condition
code is the same as <firstcond>, except that the least significant bit is inverted. E must not
be specified if <firstcond> is AL.

Encoding T1 ARMv7-M
IT{x{y{z}}} <firstcond> Not allowed in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 firstcond mask
A6-78 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
The values of <x>, <y>, and <z> determine the value of the mask field as shown in Table A6-3.

See also ITSTATE on page A6-10.

Operation

EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;

Exceptions

None.

Related encodings

If the mask field of encoding T1 is '0000', a different instruction is encoded. To determine which instruction,
see If-Then, and hints on page A5-11.

Table A6-3 Determination of mask a field

<x> <y> <z> mask[3] mask[2] mask[1] mask[0]

omitted omitted omitted 1 0 0 0

T omitted omitted firstcond[0] 1 0 0

E omitted omitted NOT firstcond[0] 1 0 0

T T omitted firstcond[0] firstcond[0] 1 0

E T omitted NOT firstcond[0] firstcond[0] 1 0

T E omitted firstcond[0] NOT firstcond[0] 1 0

E E omitted NOT firstcond[0] NOT firstcond[0] 1 0

T T T firstcond[0] firstcond[0] firstcond[0] 1

E T T NOT firstcond[0] firstcond[0] firstcond[0] 1

T E T firstcond[0] NOT firstcond[0] firstcond[0] 1

E E T NOT firstcond[0] NOT firstcond[0] firstcond[0] 1

T T E firstcond[0] firstcond[0] NOT firstcond[0] 1

E T E NOT firstcond[0] firstcond[0] NOT firstcond[0] 1

T E E firstcond[0] NOT firstcond[0] NOT firstcond[0] 1

E E E NOT firstcond[0] NOT firstcond[0] NOT firstcond[0] 1

a. Note that at least one bit is always 1 in mask.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-79
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.38 LDC, LDC2 (immediate)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, an UsageFault exception is generated.

This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture
and are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and
in the Unindexed addressing mode only, the imm8 field.

if Rn == ’1111’ then SEE LDC (literal);
if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);

if Rn == ’1111’ then SEE LDC (literal);
if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);

Encoding T1 ARMv7-M
LDC{L}<c> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}]

LDC{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]!

LDC{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

LDC{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 Rn CRd coproc imm8

Encoding T2 ARMv7-M
LDC2{L}<c> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}]

LDC2{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm>]!

LDC2{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm>

LDC2{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 Rn CRd coproc imm8
A6-80 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, ..., p15.

<CRd> The coprocessor destination register.

<Rn> The base register. This register is allowed to be the SP or PC.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE),
or – if it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset applied to the value of <Rn> to form the address. Allowed values are
multiples of 4 in the range 0-1020. For the offset addressing syntax, <imm> can be omitted,
meaning an offset of +0.

<option> An additional instruction option to the coprocessor. An integer in the range 0-255 enclosed
in { }. Encoded in imm8.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());
 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}] Offset. P = 1, W = 0.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>,#+/-<imm>]! Pre-indexed. P = 1, W = 1.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P = 0, W = 1.
LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],<option> Unindexed. P = 0, W = 0, U = 1.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-81
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.39 LDC, LDC2 (literal)

Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor.
If no coprocessor can execute the instruction, a UsageFault exception is generated.

This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.

if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MRRC, MRRC2;
index = (P == ’1’); // Always TRUE in the Thumb instruction set
add = (U == ’1’); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
if W == ’1’ || P == ’0’ then UNPREDICTABLE;

if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MRRC, MRRC2;
index = (P == ’1’); // Always TRUE in the Thumb instruction set
add = (U == ’1’); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
if W == ’1’ || P == ’0’ then UNPREDICTABLE;

Assembler syntax

where:

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0, p1, ..., p15.

<CRd> The coprocessor destination register.

Encoding T1 ARMv7-M
LDC{L}<c> <coproc>,<CRd>,label

LDC{L}<c> <coproc>,<CRd>,[PC,#-0] Special case LDC{L}<c> <coproc>,<CRd>,[PC],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

Encoding T2 ARMv7-M
LDC2{L}<c> <coproc>,<CRd>,label

LDC2{L}<c> <coproc>,<CRd>,[PC,#-0] Special case LDC{L}<c> <coproc>,<CRd>,[PC],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U D W 1 1 1 1 1 CRd coproc imm8

LDC{2}{L}<c><q> <coproc>,<CRd>,label Normal form with P = 1, W = 0
LDC{2}{L}<c><q> <coproc>,<CRd>,[PC,#-0] Alternative form with P = 1, W = 0
A6-82 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of this instruction to the label. Permitted
values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 address = if index then offset_addr else Align(PC,4);
 repeat
 Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
 until Coproc_DoneLoading(cp, ThisInstr());

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-83
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.40 LDM / LDMIA / LDMFD

Load Multiple Increment After loads multiple registers from consecutive memory locations using an
address from a base register. The sequential memory locations start at this address, and the address just
above the last of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as an address or
exception return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules
for branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

n = UInt(Rn); registers = '00000000':register_list; wback = (registers<n> == '0');
if BitCount(registers) < 1 then UNPREDICTABLE;

if W == ’1’ && Rn == ’1101’ then SEE POP;
n = UInt(Rn); registers = P:M:’0’:register_list; wback = (W == ’1’);
if n == 15 || BitCount(registers) < 2 || (P == ’1’ && M == ’1’) then UNPREDICTABLE;
if registers<15> == ’1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == ’1’ then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDM<c> <Rn>!,<registers> <Rn> not included in <registers>
LDM<c> <Rn>,<registers> <Rn> included in <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 1 Rn register_list

Encoding T2 ARMv7-M
LDM<c>.W <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 1 Rn P M (0) register_list
A6-84 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

Thumb Instruction Details
Assembler syntax

LDM<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. If it is the SP and ! is specified, the instruction is treated as
described in POP on page A6-186.

! Causes the instruction to write a modified value back to <Rn>. If ! is omitted, the
instruction does not change <Rn> in this way.

<registers> Is a list of one or more registers to be loaded, separated by commas and surrounded
by { and }. The lowest-numbered register is loaded from the lowest memory
address, through to the highest-numbered register from the highest memory address.
If the PC is specified in the register list, the instruction causes a branch to the
address (data) loaded into the PC.

Encoding T2 does not support a list containing only one register. If an LDMIA
instruction with just one register <Rt> in the list is assembled to Thumb and encoding
T1 is not available, it is assembled to the equivalent LDR<c><q> <Rt>,[<Rn>]{,#4}
instruction.

The SP cannot be in the list.

If the PC is in the list, the LR must not be in the list and the instruction must either
be outside an IT block or the last instruction in an IT block.

LDMIA and LDMFD are pseudo-instructions for LDM. LDMFD refers to its use for popping data from Full
Descending stacks.

The pre-UAL syntaxes LDM<c>IA and LDM<c>FD are equivalent to LDM<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];

 for i = 0 to 14
 if registers<i> == ’1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ’1’ then
 LoadWritePC(MemA[address,4]);

 if wback && registers<n> == ’0’ then R[n] = R[n] + 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-85
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.41 LDMDB / LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from
sequential memory locations using an address from a base register. The sequential memory locations end
just below this address, and the address of the first of those locations can optionally be written back to the
base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as an address or
exception return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules
for branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

n = UInt(Rn); registers = P:M:’0’:register_list; wback = (W == ’1’);
if n == 15 || BitCount(registers) < 2 || (P == ’1’ && M == ’1’) then UNPREDICTABLE;
if registers<15> == ’1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
if wback && registers<n> == ’1’ then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDMDB<c> <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 1 Rn P M (0) register_list
A6-86 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

Thumb Instruction Details
Assembler syntax

LDMDB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

<registers>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded with the lowest-numbered register
from the lowest memory address, through to the highest-numbered register from the highest
memory address. If the PC is specified in the register list, the instruction causes a branch to
the address (data) loaded into the PC.

Encoding T1 does not support a list containing only one register. If an LDMDB instruction with
just one register <Rt> in the list is assembled to Thumb, it is assembled to the equivalent
LDR<c><q> <Rt>,[<Rn>,#-4]{!} instruction.

The SP cannot be in the list.

If the PC is in the list, the LR must not be in the list and the instruction must either be outside
an IT block or the last instruction in an IT block.

LDMEA is a pseudo-instruction for LDMDB, referring to its use for popping data from Empty Ascending stacks.

The pre-UAL syntaxes LDM<c>DB and LDM<c>EA are equivalent to LDMDB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);

 for i = 0 to 14
 if registers<i> == ’1’ then
 R[i] = MemA[address,4]; address = address + 4;
 if registers<15> == ’1’ then
 LoadWritePC(MemA[address,4]);

 if wback && registers<n> == ’0’ then R[n] = R[n] - 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-87
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.42 LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads
a word from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing.
See Memory accesses on page A6-15 for information about memory accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as an address or exception
return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules for
branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ’1111’ then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if Rn == ’1111’ then SEE LDR (literal);
if P == ’1’ && U == ’1’ && W == ’0’ then SEE LDRT;
if Rn == ’1101’ && P == ’0’ && U == ’1’ && W == ’1’ && imm8 == ’00000100’ then SEE POP;

Encoding T1 All versions of the Thumb ISA.
LDR<c> <Rt>, [<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Rn Rt

Encoding T2 All versions of the Thumb ISA.
LDR<c> <Rt>,[SP{,#<imm8>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rt imm8

Encoding T3 ARMv7-M
LDR<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 1 Rn Rt imm12

Encoding T4 ARMv7-M
LDR<c> <Rt>,[<Rn>,#-<imm8>]

LDR<c> <Rt>,[<Rn>],#+/-<imm8>

LDR<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 P U W imm8
A6-88 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

Thumb Instruction Details
if P == ’0’ && W == ’0’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);
if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register. This register is allowed to be the SP. It is also allowed to
be the PC, provided the instruction is either outside an IT block or the last instruction of an
IT block. If it is the PC, it causes a branch to the address (data) loaded into the PC.

<Rn> Specifies the base register. This register is allowed to be the SP. If this register is the PC, see
LDR (literal) on page A6-90.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 4 in the range 0-124 for encoding T1, multiples of
4 in the range 0-1020 for encoding T2, any value in the range 0-4095 for encoding T3, and
any value in the range 0-255 for encoding T4. For the offset addressing syntax, <imm> can be
omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == ’00’ then LoadWritePC(data); else UNPREDICTABLE;
 else
 R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

LDR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-89
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.43 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from
memory, and writes it to a register. See Memory accesses on page A6-15 for information about memory
accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as an address or exception
return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules for
branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

t = UInt(Rt); imm32 = ZeroExtend(imm8:’00’, 32); add = TRUE;

t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction
is either outside an IT block or the last instruction of an IT block. If the PC is used, the
instruction branches to the address (data) loaded into the PC.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of this instruction to the label. Permitted
values of the offset are:

Encoding T1 multiples of four in the range 0 to 1020

Encoding T2 any value in the range -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

Encoding T1 All versions of the Thumb ISA.
LDR<c> <Rt>,<label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 Rt imm8

Encoding T2 ARMv7-M
LDR<c>.W <Rt>,<label>

LDR<c>.W <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 1 0 1 1 1 1 1 Rt imm12

LDR<c><q> <Rt>, <label> Normal form
LDR<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
A6-90 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

Thumb Instruction Details
If the offset is negative, imm32 is equal to minus the offset and add == FALSE. Negative offset
is not available in encoding T1.

Note
 In code examples in this manual, the syntax =<value> is used for the label of a memory word

whose contents are constant and equal to <value>. The actual syntax for such a label is
assembler-dependent.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,4];
 if t == 15 then
 if address<1:0> == ’00’ then LoadWritePC(data); else UNPREDICTABLE;
 else
 R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-91
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.44 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads
a word from memory, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3
bits. See Memory accesses on page A6-15 for information about memory accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as an address or exception
return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules for
branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;
if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDR<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rm Rn Rt

Encoding T2 ARMv7-M
LDR<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-92 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

Thumb Instruction Details
Assembler syntax

LDR<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register. This register is allowed to be the SP. It is also allowed to
be the PC, provided the instruction is either outside an IT block or the last instruction of an
IT block. If it is the PC, it causes a branch to the address (data) loaded into the PC.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,4];
 if wback then R[n] = offset_addr;
 if t == 15 then
 if address<1:0> == ’00’ then LoadWritePC(data); else UNPREDICTABLE;
 else
 R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-93
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.45 LDRB (immediate)

Load Register Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. See Memory accesses on page A6-15 for information about
memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rt == ’1111’ then SEE PLD;
if Rn == ’1111’ then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLD;
if Rn == '1111' then SEE LDRB (literal);
if P == '1' && U == '1' && W == '0' then SEE LDRBT;
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRB<c> <Rt>,[<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 imm5 Rn Rt

Encoding T2 ARMv7-M
LDRB<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 1 Rn Rt imm12

Encoding T3 ARMv7-M
LDRB<c> <Rt>,[<Rn>,#-<imm8>]

LDRB<c> <Rt>,[<Rn>],#+/-<imm8>

LDRB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 P U W imm8
A6-94 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP. If this register is the PC, see
LDRB (literal) on page A6-96.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. The range of allowed values is 0-31 for encoding T1, 0-4095 for encoding T2, and
0-255 for encoding T3. For the offset addressing syntax, <imm> can be omitted, meaning an
offset of 0.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

MemManage, BusFault.

LDRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-95
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.46 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on
page A6-15 for information about memory accesses.

if Rt == ’1111’ then SEE PLD;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);
if t == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRB<c> <Rt>,<label>

LDRB<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 Rt imm12
A6-96 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of this instruction to the label. Permitted
values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.

LDRB<c><q> <Rt>, <label> Normal form
LDRB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-97
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.47 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A6-15 for information
about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rt == '1111' then SEE PLD;
if Rn == '1111' then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 Rm Rn Rt

Encoding T2 ARMv7-M
LDRB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-98 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRB<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = ZeroExtend(MemU[address,1],32);

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-99
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.48 LDRBT

Load Register Byte Unprivileged calculates an address from a base register value and an immediate offset,
loads a byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory
accesses on page A6-15 for information about memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn Rt 1 1 1 0 imm8
A6-100 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRBT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>BT is equivalent to LDRBT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 R[t] = ZeroExtend(MemU_unpriv[address,1],32);

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-101
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.49 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset,
loads two words from memory, and writes them to two registers. It can use offset, post-indexed, or
pre-indexed addressing. See Memory accesses on page A6-15 for information about memory accesses.

if P == '0' && W == '0' then SEE "Related encodings";
if Rn == '1111' then SEE LDRD (literal);
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm8>}]

LDRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm8>

LDRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 1 Rn Rt Rt2 imm8

Related encodings See Load/store dual or exclusive, table branch on page A5-21
A6-102 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the first destination register.

<Rt2> Specifies the second destination register.

<Rn> Specifies the base register. This register is allowed to be the SP. In the offset addressing form
of the syntax, it is also allowed to be the PC.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 4 in the range 0-1020. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];
 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

LDRD<c><q> <Rt>,<Rt2>,[<Rn>{,#+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRD<c><q> <Rt>,<Rt2>,[<Rn>,#+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRD<c><q> <Rt>,<Rt2>,[<Rn>],#+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-103
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.50 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two
words from memory, and writes them to two registers. See Memory accesses on page A6-15 for information
about memory accesses.

Note
 For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is
UNPREDICTABLE.

if P == '0' && W == '0' then SEE "Related encodings";
t = UInt(Rt); t2 = UInt(Rt2);
imm32 = ZeroExtend(imm8:'00', 32); add = (U == '1');
if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
if W == '1' then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRD<c> <Rt>,<Rt2>,<label>

LDRD<c> <Rt>,<Rt2>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 (0) 1 1 1 1 1 Rt Rt2 imm8

Related encodings See Load/store dual or exclusive, table branch on page A5-21
A6-104 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q4
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
W

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The first destination register.

<Rt2> The second destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of this instruction to the label. Permitted
values of the offset are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if PC<1:0> != '00' then UNPREDICTABLE;
 address = if add then (PC + imm32) else (PC - imm32);
 R[t] = MemA[address,4];
 R[t2] = MemA[address+4,4];

Exceptions

MemManage, BusFault.

LDRD<c><q> <Rt>, <Rt2>, <label> Normal form
LDRD<c><q> <Rt>, <Rt2>, [PC, #+/-<imm>] Alternative form
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-105
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.51 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a
word from memory, writes it to a register and:

• if the address has the Shareable Memory attribute, marks the physical address as exclusive access for
the executing processor in a global monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler syntax

LDREX<c><q> <Rt>, [<Rn> {,#<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. Allowed
values are multiples of 4 in the range 0-1020. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 SetExclusiveMonitors(address,4);
 R[t] = MemA[address,4];

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
LDREX<c> <Rt>,[<Rn>{,#<imm8>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 1 Rn Rt (1) (1) (1) (1) imm8
A6-106 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.52 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory,
zero-extends it to form a 32-bit word, writes it to a register and:

• if the address has the Shareable Memory attribute, marks the physical address as exclusive access for
the executing processor in a global monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler syntax

LDREXB<c><q> <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address,1);
 R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

MemManage, BusFault.

Encoding T1 ARMv7
LDREXB<c> <Rt>, [<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 0 (1) (1) (1) (1)
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-107
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.53 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from
memory, zero-extends it to form a 32-bit word, writes it to a register and:

• if the address has the Shareable Memory attribute, marks the physical address as exclusive access for
the executing processor in a global monitor

• causes the executing processor to indicate an active exclusive access in the local monitor.

See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Encoding T1 ARMv7
LDREXH<c> <Rt>, [<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn Rt (1) (1) (1) (1) 0 1 0 1 (1) (1) (1) (1)
A6-108 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDREXH<c><q> <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 SetExclusiveMonitors(address,2);
 R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-109
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.54 LDRH (immediate)

Load Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It
can use offset, post-indexed, or pre-indexed addressing. See Memory accesses on page A6-15 for
information about memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’0’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rt == ’1111’ then SEE "Unallocated memory hints";
if Rn == ’1111’ then SEE LDRH (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rn == '1111' then SEE LDRH (literal);
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
if P == '1' && U == '1' && W == '0' then SEE LDRHT;
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRH<c> <Rt>,[<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 1 imm5 Rn Rt

Encoding T2 ARMv7-M
LDRH<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 1 Rn Rt imm12

Encoding T3 ARMv7-M
LDRH<c> <Rt>,[<Rn>,#-<imm8>]

LDRH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 P U W imm8
A6-110 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP. If this register is the PC, see
LDRH (literal) on page A6-112.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 2 in the range 0-62 for encoding T1, any value in
the range 0-4095 for encoding T2, and any value in the range 0-255 for encoding T3. For
the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

Unallocated memory hints

If the Rt field is '1111' in encoding T2, or if the Rt field and P, U, and W bits in encoding T3 are '1111', '1',
'0' and '0' respectively, the instruction is an unallocated memory hint.

Unallocated memory hints must be implemented as NOPs. Software must not use them, and they therefore
have no UAL assembler syntax.

LDRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-111
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.55 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory
accesses on page A6-15 for information about memory accesses.

if Rt == ’1111’ then SEE "Unallocated memory hints";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);
if t == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRH<c> <Rt>,<label>

LDRH<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 1 1 1 1 1 1 Rt imm12
A6-112 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of the ADR instruction to this label. Permitted
values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

LDRH<c><q> <Rt>, <label> Normal form
LDRH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-113
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.56 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The
offset register value can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A6-15 for
information about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then SEE LDRH (literal);
if Rt == '1111' then SEE "Unallocated memory hints";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 1 Rm Rn Rt

Encoding T2 ARMv7-M
LDRH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-114 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRH<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-115
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.57 LDRHT

Load Register Halfword Unprivileged calculates an address from a base register value and an immediate
offset, loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. See
Memory accesses on page A6-15 for information about memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then SEE LDRH (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 1 Rn Rt 1 1 1 0 imm8
A6-116 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRHT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,2];
 R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-117
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.58 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate
offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing. See Memory accesses on page A6-15 for information about
memory accesses.

if Rt == ’1111’ then SEE PLI;
if Rn == ’1111’ then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLI;
if Rn == '1111' then SEE LDRSB (literal);
if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRSB<c> <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn Rt imm12

Encoding T2 ARMv7-M
LDRSB<c> <Rt>,[<Rn>,#-<imm8>]

LDRSB<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 P U W imm8
A6-118 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP. If this register is the PC, see
LDRSB (literal) on page A6-120.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. The range of allowed values is 0-4095 for encoding T1, and 0-255 for encoding T2.
For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);
 if wback then R[n] = offset_addr;

Exceptions

MemManage, BusFault.

LDRSB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRSB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-119
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.59 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads
a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory accesses
on page A6-15 for information about memory accesses.

if Rt == ’1111’ then SEE PLI;
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);
if t == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRSB<c> <Rt>,<label>

LDRSB<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 Rt imm12
A6-120 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of the ADR instruction to this label. Permitted
values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 R[t] = SignExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.

LDRSB<c><q> <Rt>, <label> Normal form
LDRSB<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-121
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.60 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register
value, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A6-15 for information
about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rt == '1111' then SEE PLI;
if Rn == '1111' then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRSB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 1 Rm Rn Rt

Encoding T2 ARMv7-M
LDRSB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-122 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRSB<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 R[t] = SignExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-123
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.61 LDRSBT

Load Register Signed Byte Unprivileged calculates an address from a base register value and an immediate
offset, loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. See
Memory accesses on page A6-15 for information about memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then SEE LDRSB (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRSBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn Rt 1 1 1 0 imm8
A6-124 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRSBT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 R[t] = SignExtend(MemU_unpriv[address,1], 32);

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-125
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.62 LDRSH (immediate)

Load Register Signed Halfword (immediate) calculates an address from a base register value and an
immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. It can use offset, post-indexed, or pre-indexed addressing. See Memory accesses on page A6-15 for
information about memory accesses.

if Rn == ’1111’ then SEE LDRSH (literal);
if Rt == ’1111’ then SEE "Unallocated memory hints";
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;

if Rn == '1111' then SEE LDRSH (literal);
if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE "Unallocated memory hints";
if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
if P == '0' && W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 ARMv7-M
LDRSH<c> <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 1 1 Rn Rt imm12

Encoding T2 ARMv7-M
LDRSH<c> <Rt>,[<Rn>,#-<imm8>]

LDRSH<c> <Rt>,[<Rn>],#+/-<imm8>

LDRSH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 P U W imm8
A6-126 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP. If this register is the PC, see
LDRSH (literal) on page A6-128.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. The range of allowed values is 0-4095 for encoding T1, and 0-255 for encoding T2.
For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

LDRSH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
LDRSH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
LDRSH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-127
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.63 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset,
loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory
accesses on page A6-15 for information about memory accesses.

if Rt == ’1111’ then SEE "Unallocated memory hints";
t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);
if t == 13 then UNPREDICTABLE;

Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the
required value of the offset from the PC value of the ADR instruction to this label. Permitted
values of the offset are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = Align(PC,4);
 address = if add then (base + imm32) else (base - imm32);
 data = MemU[address,2];
 R[t] = SignExtend(data, 32);

Encoding T1 ARMv7-M
LDRSH<c> <Rt>,<label>

LDRSH<c> <Rt>,[PC,#-0] Special case

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 1 1 1 1 1 1 Rt imm12

LDRSH<c><q> <Rt>, <label> Normal form
LDRSH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
A6-128 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Exceptions

UsageFault, MemManage, BusFault.

Unallocated memory hints

If the Rt field is '1111' in encoding T1, the instruction is an unallocated memory hint.

Unallocated memory hints must be implemented as NOPs. Software must not use them, and they therefore
have no UAL assembler syntax.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-129
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.64 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset
register value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A6-15
for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then SEE LDRSH (literal);
if Rt == '1111' then SEE "Unallocated memory hints";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LDRSH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 1 Rm Rn Rt

Encoding T2 ARMv7-M
LDRSH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-130 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LDRSH<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 offset_addr = if add then (R[n] + offset) else (R[n] - offset);
 address = if index then offset_addr else R[n];
 data = MemU[address,2];
 if wback then R[n] = offset_addr;
 R[t] = SignExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-131
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.65 LDRSHT

Load Register Signed Halfword Unprivileged calculates an address from a base register value and an
immediate offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a
register. See Memory accesses on page A6-15 for information about memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then SEE LDRSH (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler syntax

LDRSHT<c><q> <Rt>, [<Rn>, {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rm> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,2];
 R[t] = SignExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
LDRSHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 1 1 Rn Rt 1 1 1 0 imm8
A6-132 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.66 LDRT

Load Register Unprivileged calculates an address from a base register value and an immediate offset, loads
a word from memory, and writes it to a register. See Memory accesses on page A6-15 for information about
memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler syntax

LDRT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>T is equivalent to LDRT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = MemU_unpriv[address,4];
 R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
LDRT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 1 Rn Rt 1 1 1 0 imm8
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-133
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.67 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros,
and writes the result to the destination register. It can optionally update the condition flags based on the
result.

if imm5 == ’00000’ then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(’00’, imm5);

if (imm3:imm2) == '00000' then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(-, shift_n) = DecodeImmShift('00', imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LSLS <Rd>,<Rm>,#<imm5> Outside IT block.
LSL<c> <Rd>,<Rm>,#<imm5> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 imm5 Rm Rd

Encoding T2 ARMv7-M
LSL{S}<c>.W <Rd>,<Rm>,#<imm5>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 0 0 Rm
A6-134 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LSL{S}<c><q> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 0 to 31. See Shifts applied to a register on
page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-135
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.68 LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LSLS <Rdn>,<Rm> Outside IT block.
LSL<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 0 Rm Rdn

Encoding T2 ARMv7-M
LSL{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 S Rn 1 1 1 1 Rd 0 0 0 0 Rm
A6-136 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LSL{S}<c><q> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_LSL, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-137
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.69 LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in
zeros, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift(’01’, imm5);

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(-, shift_n) = DecodeImmShift('01', imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LSRS <Rd>,<Rm>,#<imm5> Outside IT block.
LSR<c> <Rd>,<Rm>,#<imm5> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 imm5 Rm Rd

Encoding T2 ARMv7-M
LSR{S}<c>.W <Rd>,<Rm>,#<imm5>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 0 1 Rm
A6-138 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LSR{S}<c><q> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 1 to 32. See Shifts applied to a register on
page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-139
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.70 LSR (register)

Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and
writes the result to the destination register. The variable number of bits is read from the bottom byte of a
register. It can optionally update the condition flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
LSRS <Rdn>,<Rm> Outside IT block.
LSR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 1 1 Rm Rdn

Encoding T2 ARMv7-M
LSR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 1 S Rn 1 1 1 1 Rd 0 0 0 0 Rm
A6-140 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

LSR{S}<c><q> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_LSR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-141
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.71 MCR, MCR2

Move to Coprocessor from ARM Register passes the value of an ARM register to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;

t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
MCR<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm

Encoding T2 ARMv7-M
MCR2<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 0 CRn Rt coproc opc2 1 CRm
A6-142 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

MCR{2}<c><q> <coproc>, #<opc1>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0, p1,
..., p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7.

<Rt> Is the ARM register whose value is transferred to the coprocessor.

<CRn> Is the destination coprocessor register.

<CRm> Is an additional destination coprocessor register.

<opc2> Is a coprocessor-specific opcode in the range 0-7. If it is omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

UsageFault.

Notes

Coprocessor fields Only instruction bits<31:24>, bit<20>, bits<15:8>, and bit<4> are defined by the
ARM architecture. The remaining fields are recommendations.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-143
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.72 MCRR, MCRR2

Move to Coprocessor from two ARM Registers passes the values of two ARM registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
MCRR<c> <coproc>,<opc1>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm

Encoding T2 ARMv7-M
MCRR2<c> <coproc>,<opc1>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 0 Rt2 Rt coproc opc1 CRm
A6-144 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

MCRR{2}<c><q> <coproc>, #<opc1>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects the C ==1 form of the encoding. If omitted, selects the C == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor.

The standard generic coprocessor names are p0, p1, ..., p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first ARM register whose value is transferred to the coprocessor.

<Rt2> Is the second ARM register whose value is transferred to the coprocessor.

<CRm> Is the destination coprocessor register.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 Coproc_SendTwoWords(R[t], R[t2], cp, ThisInstr());

Exceptions

UsageFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-145
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.73 MLA

Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32
bits of the result are written to the destination register. These 32 bits do not depend on whether signed or
unsigned calculations are performed.

if Ra == '1111' then SEE MUL;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;

Assembler syntax

MLA<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

<Ra> Specifies the register containing the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = operand1 * operand2 + addend;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 // APSR.C unchanged
 // APSR.V unchanged

Exceptions

None.

Encoding T1 ARMv7-M
MLA<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 0 Rm
A6-146 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.74 MLS

Multiply and Subtract multiplies two register values, and subtracts the least significant 32 bits of the result
from a third register value. These 32 bits do not depend on whether signed or unsigned calculations are
performed. The result is written to the destination register.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler syntax

MLS<c><q> <Rd>, <Rn>, <Rm>, <Ra>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

<Ra> Specifies the register containing the accumulate value.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
 result = addend - operand1 * operand2;
 R[d] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn Ra Rd 0 0 0 1 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-147
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.75 MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the
condition flags based on the value.

d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

d = UInt(Rd); setflags = (S == '1'); (imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
MOVS <Rd>,#<imm8> Outside IT block.
MOV<c> <Rd>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rd imm8

Encoding T2 ARMv7-M
MOV{S}<c>.W <Rd>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S 1 1 1 1 0 imm3 Rd imm8

Encoding T3 ARMv7-M
MOVW<c> <Rd>,#<imm16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8
A6-148 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<const> Specifies the immediate value to be placed in <Rd>. The range of allowed values is 0-255 for
encoding T1 and 0-65535 for encoding T3. See Modified immediate constants in Thumb
instructions on page A5-15 for the range of allowed values for encoding T2.

When both 32-bit encodings are available for an instruction, encoding T2 is preferred to
encoding T3 (if encoding T3 is required, use the MOVW syntax).

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

MOV{S}<c><q> <Rd>, #<const> All encodings permitted
MOVW<c><q> <Rd>, #<const> Only encoding T3 permitted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-149
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.76 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the
condition flags based on the value.

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = TRUE;
if InITBlock() then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
if setflags && (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then UNPREDICTABLE;

Encoding T1 ARMv6-M, ARMv7-M If <Rd> and <Rm> both from R0-R7,

 otherwise all versions of the Thumb ISA.
MOV<c> <Rd>,<Rm> If <Rd> is the PC, must be outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 D Rm Rd

Encoding T2 All versions of the Thumb ISA.
MOVS <Rd>,<Rm> (formerly LSL <Rd>,<Rm>,#0) Not permitted inside IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 Rm Rd

Encoding T3 ARMv7-M
MOV{S}<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) 0 0 0 Rd 0 0 0 0 Rm
A6-150 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out
This statement is inaccurate, and the relation between the current MOV (register) and the pre-UAL LSL instruction is not relevant for ARMv7-M implementations.

Instruction Details

151

Assembler syntax

MOV{S}<c><q> <Rd>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

o
t

if
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-
 Non-Confidential

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> The destination register. This register can be the SP or PC, provided S is not specified.

If <Rd> is the PC, then only encoding T1 is permitted, and the instruction causes a branch t
the address moved to the PC. The instruction must either be outside an IT block or the las
instruction of an IT block.

<Rm> The source register. This register can be the SP or PC.The instruction must not specify S
<Rm> is the SP or PC.

Encoding T3 is not permitted if either:
• <Rd> or <Rm> is the PC
• both <Rd> and <Rm> are the SP.

Note
 ARM deprecates the use of the following MOV (register) instructions:
• ones in which <Rd> is the SP or PC and <Rm> is also the SP or PC is deprecated.
• ones in which S is specified and <Rm> is the SP, or <Rm> is the PC.

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[m];
 if d == 15 then
 ALUWritePC(result); // setflags is always FALSE here
 else
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 // APSR.C unchanged
 // APSR.V unchanged

Exceptions

None.

ARM_2009_Q4
Sticky Note
The <Rd> field definition has been corrected.

ARM_2009_Q4
Highlight
This deprecation has been added in this errata release

ARM_2009_Q2
Highlight

ARM_2009_Q4
Highlight
This condition has been added in this errata release

Thumb Instruction Details
A6.7.77 MOV (shifted register)

Move (shifted register) is a synonym for ASR, LSL, LSR, ROR, and RRX.

See the following sections for details:

• ASR (immediate) on page A6-36

• ASR (register) on page A6-38

• LSL (immediate) on page A6-134

• LSL (register) on page A6-136

• LSR (immediate) on page A6-138

• LSR (register) on page A6-140

• ROR (immediate) on page A6-194

• ROR (register) on page A6-196

• RRX on page A6-198.

Assembler syntax

Table A6-4 shows the equivalences between MOV (shifted register) and other instructions.

The canonical form of the instruction is produced on disassembly.

Exceptions

None.

Table A6-4 MOV (shift, register shift) equivalences)

MOV instruction Canonical form

MOV{S} <Rd>,<Rm>,ASR #<n> ASR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSL #<n> LSL{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,LSR #<n> LSR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ROR #<n> ROR{S} <Rd>,<Rm>,#<n>

MOV{S} <Rd>,<Rm>,ASR <Rs> ASR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSL <Rs> LSL{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,LSR <Rs> LSR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,ROR <Rs> ROR{S} <Rd>,<Rm>,<Rs>

MOV{S} <Rd>,<Rm>,RRX RRX{S} <Rd>,<Rm>
A6-152 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.78 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the
contents of the bottom halfword.

d = UInt(Rd); imm16 = imm4:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;

Assembler syntax

MOVT<c><q> <Rd>, #<imm16>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<imm16> Specifies the immediate value to be written to <Rd>. It must be in the range 0-65535.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 R[d]<31:16> = imm16;
 // R[d]<15:0> unchanged

Exceptions

None.

Encoding T1 ARMv7-M
MOVT<c> <Rd>,#<imm16>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 1 0 0 imm4 0 imm3 Rd imm8
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-153
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.79 MRC, MRC2

Move to ARM Register from Coprocessor causes a coprocessor to transfer a value to an ARM register or to
the condition flags.

t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;

t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Encoding T1 ARMv7-M
MRC<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm

Encoding T2 ARMv7-M
MRC2<c> <coproc>,<opc1>,<Rt>,<CRn>,<CRm>{,<opc2>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 0 opc1 1 CRn Rt coproc opc2 1 CRm
A6-154 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

MRC{2}<c><q> <coproc>, #<opc1>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0, p1,
..., p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 7.

<Rt> Is the destination ARM register. This register is allowed to be R0-R14 or APSR_nzcv. The
last form writes bits<31:28> of the transferred value to the N, Z, C and V condition flags
and is specified by setting the Rt field of the encoding to 0b1111. In pre-UAL assembler
syntax, PC was written instead of APSR_nzcv to select this form.

<CRn> Is the coprocessor register that contains the first operand.

<CRm> Is an additional source or destination coprocessor register.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is assumed to be
0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 value = Coproc_GetOneWord(cp, ThisInstr());
 if t != 15 then
 R[t] = value;
 else
 APSR.N = value<31>;
 APSR.Z = value<30>;
 APSR.C = value<29>;
 APSR.V = value<28>;
 // value<27:0> are not used.

Exceptions

UsageFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-155
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.80 MRRC, MRRC2

Move to two ARM Registers from Coprocessor causes a coprocessor to transfer values to two ARM
registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 || t == t2 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
MRRC<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm

Encoding T2 ARMv7-M
MRRC2<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 0 0 1 0 1 Rt2 Rt coproc opc1 CRm
A6-156 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

MRRC{2}<c><q> <coproc>, #<opc1>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.

<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0, p1,
..., p15.

<opc1> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first destination ARM register.

<Rt2> Is the second destination ARM register.

<CRm> Is the coprocessor register that supplies the data to be transferred.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 (R[t], R[t2]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

UsageFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-157
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.81 MRS

Move to Register from Special register moves the value from the selected special-purpose register into a
general-purpose ARM register.

Note

MRS is a system level instruction except when accessing the APSR (SYSm = 0) or CONTROL register
(SYSm = 0x14). For the complete instruction definition see MRS on page B4-4.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
MRS<c> <Rd>,<spec_reg>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 (0) (1) (1) (1) (1) 1 0 (0) 0 Rd SYSm
A6-158 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.82 MSR (register)

Move to Special Register from ARM Register moves the value of a general-purpose ARM register to the
specified special-purpose register.

Note

MSR(register) is a system level instruction except when accessing the APSR (SYSm = 0). For the complete
instruction definition see MSR (register) on page B4-8.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
MSR<c> <spec_reg>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 (0) Rn 1 0 (0) 0 (1) (0) (0) (0) SYSm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-159
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.83 MUL

Multiply multiplies two register values. The least significant 32 bits of the result are written to the
destination register. These 32 bits do not depend on whether signed or unsigned calculations are performed.

It can optionally update the condition flags based on the result. This option is limited to only a few forms of
the instruction in the Thumb instruction set, and use of it will adversely affect performance on many
processor implementations.

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
MULS <Rdm>,<Rn>,<Rdm> Outside IT block.
MUL<c> <Rdm>,<Rn>,<Rdm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 1 Rn Rdm

Encoding T2 ARMv7-M
MUL<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 0 0 0 0 Rn 1 1 1 1 Rd 0 0 0 0 Rm
A6-160 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

MUL{S}<c><q> {<Rd>,} <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
 operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
 result = operand1 * operand2;
 R[d] = result<31:0>;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 // APSR.C unchanged
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-161
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.84 MVN (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register. It can
optionally update the condition flags based on the value.

d = UInt(Rd); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
MVN{S}<c> <Rd>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S 1 1 1 1 0 imm3 Rd imm8
A6-162 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

MVN{S}<c><q> <Rd>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-163
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.85 MVN (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register. It can
optionally update the condition flags based on the result.

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
MVNS <Rd>,<Rm> Outside IT block.
MVN<c> <Rd>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 1 1 Rm Rd

Encoding T2 ARMv7-M
MVN{S}<c>.W <Rd>,<Rm>{,shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S 1 1 1 1 (0) imm3 Rd imm2 type Rm
A6-164 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

MVN{S}<c><q> <Rd>, <Rm> {, <shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that is optionally shifted and used as the source register.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-165
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.86 NEG

Negate is a pre-UAL synonym for RSB (immediate) with an immediate value of 0. See RSB (immediate) on
page A6-200 for details.

Assembler syntax

NEG<c><q> {<Rd>,} <Rm>

This is equivalent to:

RSBS<c><q> {<Rd>,} <Rm>, #0

Exceptions

None.
A6-166 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.87 NOP

No Operation does nothing.

This is a NOP-compatible hint (the architected NOP), see NOP-compatible hints on page A6-16.

// No additional decoding required

// No additional decoding required

Assembler syntax

NOP<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 // Do nothing

Exceptions

None.

Encoding T1 ARMv7-M
NOP<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Encoding T2 ARMv7-M
NOP<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 0
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-167
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.88 ORN (immediate)

Logical OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of
an immediate value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

if Rn == '1111' then SEE MVN (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
ORN{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 1 S Rn 0 imm3 Rd imm8
A6-168 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ORN{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR NOT(imm32);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-169
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.89 ORN (register)

Logical OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

if Rn == '1111' then SEE MVN (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
ORN{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 1 S Rn (0) imm3 Rd imm2 type Rm
A6-170 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ORN{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR NOT(shifted);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-171
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.90 ORR (immediate)

Logical OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

if Rn == '1111' then SEE MOV (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1');
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Encoding T1 ARMv7-M
ORR{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 1 0 S Rn 0 imm3 Rd imm8
A6-172 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] OR imm32;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-173
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.91 ORR (register)

Logical OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on
the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then SEE MOV (register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
ORRS <Rdn>,<Rm> Outside IT block.
ORR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 0 0 Rm Rdn

Encoding T2 ARMv7-M
ORR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S Rn (0) imm3 Rd imm2 type Rm
A6-174 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ORR{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

A special case is that if ORR<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will
be assembled using encoding T2 as though ORR<c> <Rd>,<Rn> had been written. To prevent this happening,
use the .W qualifier.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] OR shifted;
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-175
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.92 PLD, PLDW (immediate)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. See Preloading caches on page A3-39 and Memory hints on page A6-16 for additional
information.

Where both the PLD and PLDW instructions are implemented, the PLD instruction signals that the likely memory
access is a read, and the PLDW instruction signals that it is a write.

if Rn == '1111' then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE; is_pldw = (W == '1');

if Rn == '1111' then SEE PLD (literal);
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE; is_pldw = (W == '1');

Encoding T1 ARMv7-M
PLD{W}<c> [<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 W 1 Rn 1 1 1 1 imm12

Encoding T2 ARMv7-M
PLD{W}<c> [<Rn>,#-<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 W 1 Rn 1 1 1 1 1 1 0 0 imm8
A6-176 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
0

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
0

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Sticky Note
The ARMv7-M profile does not support PLDW. This is indicated correctly in section A5.3.9 Load byte, memory hints on page A5-24 [PDF page 130]. This shows bit [5] of the most significant halfword of the encoding as 0. In ARMv7-M, the encodings with this bit set to 1 are unallocated NOP hints.

Thumb Instruction Details
Assembler syntax

PLD{W}<c><q> [<Rn> {, #+/-<imm>}]

where:

W If specified, selects PLDW, encoded as W = 1. If omitted, selects PLD, encoded as W = 0.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. The SP can be used. For PC use in the PLD instruction, see PLD (literal)
on page A6-178.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. This offset can be omitted, meaning an offset
of 0. Values are:

Encoding T1 any value in the range 0-4095

Encoding T2 any value in the range 0-255.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (R[n] + imm32) else (R[n] - imm32);
 if is_pldw then
 Hint_PreloadDataForWrite(address);
 else
 Hint_PreloadData(address);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-177
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

Thumb Instruction Details
A6.7.93 PLD (literal)

Preload Data signals the memory system that data memory accesses from a specified address are likely in
the near future. The memory system can respond by taking actions that are expected to speed up the memory
accesses when they do occur, such as pre-loading the cache line containing the specified address into the
data cache. See Preloading caches on page A3-39 and Memory hints on page A6-16 for additional
information.

imm32 = ZeroExtend(imm12, 32); add = (U == '1');

Encoding T1 ARMv7-M
PLD<c> <label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 U 0 0 1 1 1 1 1 1 1 1 1 imm12
A6-178 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<label> The label of the literal item that is likely to be accessed in the near future. The assembler
calculates the required value of the offset from the PC value of this instruction to the label.
The offset must be in the range -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE

If the offset is negative, imm32 is equal to minus the offset and add == FALSE

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> The immediate offset used to form the address. Values are in the range 0-4095.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be
specified separately, including permitting a subtraction of 0 that cannot be specified using the normal
syntax. For more information, see Use of labels in UAL instruction syntax on page A4-5.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
 Hint_PreloadData(address);

Exceptions

None.

PLD<c><q> <label> Normal form
PLD<c><q> [PC, #+/-<imm>] Alternative form
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-179
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.94 PLD (register)

Preload Data is a memory hint instruction that can signal the memory system that data memory accesses
from a specified address are likely in the near future. The memory system can respond by taking actions that
are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line
containing the specified address into the data cache. See Preloading caches on page A3-39 and Memory
hints on page A6-16 for additional information.

if Rn == '1111' then SEE PLD (literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE; is_pldw = (W == '1');
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
PLD<c> [<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 1 Rn 1 1 1 1 0 0 0 0 0 0 shift Rm
A6-180 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

Thumb Instruction Details
Assembler syntax

PLD<c><q> [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Is the base register. This register is allowed to be the SP.

<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If this option is
omitted, a shift by 0 is assumed.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadData(address);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-181
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.95 PLI (immediate, literal)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory
accesses from a specified address are likely in the near future. The memory system can respond by taking
actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache
line containing the specified address into the instruction cache. See Preloading caches on page A3-39 and
Memory hints on page A6-16 for additional information.

if Rn == ’1111’ then SEE encoding T3;
n = UInt(Rn); imm32 = ZeroExtend(imm12, 32); add = TRUE;

if Rn == ’1111’ then SEE encoding T3;
n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

n = 15; imm32 = ZeroExtend(imm12, 32); add = (U == ’1’);

Encoding T1 ARMv7
PLI<c> [<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 1 0 0 1 Rn 1 1 1 1 imm12

Encoding T2 ARMv7
PLI<c> [<Rn>,#-<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 1 1 0 0 imm8

Encoding T3 ARMv7
PLI<c> <label>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 U 0 0 1 1 1 1 1 1 1 1 1 imm12
A6-182 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

PLI<c><q> [<Rn>, #+/-<imm>]
PLI<c><q> [PC, #+/-<imm>]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Is the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the offset from the base register. It must be in the range:

• –4095 to 4095 if the base register is the PC

• –255 to 4095 otherwise.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 base = if n == 15 then Align(PC,4) else R[n];
 address = if add then (base + imm32) else (base - imm32);
 Hint_PreloadInstr(address);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-183
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.96 PLI (register)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory
accesses from a specified address are likely in the near future. The memory system can respond by taking
actions that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache
line containing the specified address into the instruction cache. See Preloading caches on page A3-39 and
Memory hints on page A6-16 for additional information.

if Rn == '1111' then SEE PLI (immediate, literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7
PLI<c> [<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 1 0 0 0 1 Rn 1 1 1 1 0 0 0 0 0 0 shift Rm
A6-184 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

PLI<c><q> [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Is the base register. This register is allowed to be the SP.

<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If this option is
omitted, a shift by 0 is assumed.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = if add then (R[n] + offset) else (R[n] - offset);
 Hint_PreloadInstr(address);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-185
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.97 POP

Pop Multiple Registers loads a subset (or possibly all) of the general-purpose registers R0-R12 and the PC
or the LR from the stack.

If the registers loaded include the PC, the word loaded for the PC is treated as an address or an exception
return value and a branch occurs. Bit<0> complies with the ARM architecture interworking rules for
branches to Thumb state execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

registers = P:’0000000’:register_list; if BitCount(registers) < 1 then UNPREDICTABLE;

registers = P:M:’0’:register_list;
if BitCount(registers) < 2 || (P == ’1’ && M == ’1’) then UNPREDICTABLE;
if registers<15> == ’1’ && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
POP<c> <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 0 P register_list

Encoding T2 ARMv7-M
POP<c>.W <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 P M (0) register_list
A6-186 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
a branch address or an exception return value

ARM_2009_Q4
Text Box
Encoding T3 ARMv7-M
POP<c>.W <registers> contains one register, <Rt>

ARM_2009_Q4
Text Box
t = UInt(Rt); registers = Zeros(16); registers<t> = '1';
if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then UNPREDICTABLE;

ARM_2009_Q4
Rectangle
Omitted encoding

ARM_2009_Q4
Inserted Text
 <registers> contains more than one register

ARM_2009_Q4
Inserted instruction encoding

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<registers>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be loaded. The registers are loaded in sequence, the lowest-numbered
register from the lowest memory address, through to the highest-numbered register from the
highest memory address. If the PC is specified in the register list, the instruction causes a
branch to the address (data) loaded into the PC.

Encoding T2 does not support a list containing only one register. If a POP instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent LDR<c><q> <Rt>,[SP],#-4 instruction.

The SP cannot be in the list.

If the PC is in the list, the LR must not be in the list.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = SP;

 for i = 0 to 14
 if registers<i> == ’1’ then
 R[i} = MemA[address,4]; address = address + 4;
 if registers<15> == ’1’ then
 LoadWritePC(MemA[address,4]);

 SP = SP + 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.

POP<c><q> <registers> Standard syntax
LDMIA<c><q> SP!, <registers> Equivalent LDM syntax
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-187
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
If the list contains more than one register, the instruction assembles to encoding T1 or T2. If the list contains exactly one register, the instruction assembles to encoding
T1 or T3.

Thumb Instruction Details
A6.7.98 PUSH

Push Multiple Registers stores a subset (or possibly all) of the general-purpose registers R0-R12 and the LR
to the stack.

registers = ’0’:M:’000000’:register_list;
if BitCount(registers) < 1 then UNPREDICTABLE;

registers = ’0’:M:’0’:register_list;
if BitCount(registers) < 2 then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
PUSH<c> <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 0 M register_list

Encoding T2 ARMv7-M
PUSH<c>.W <registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 (0) M (0) register_list
A6-188 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Text Box
Encoding T3 ARMv7-M
PUSH<c>.W <registers> <registers> contains one register, <Rt>

ARM_2009_Q4
Inserted Text
 <registers> contains more than one register

ARM_2009_Q4
Omitted encoding

ARM_2009_Q4
Text Box
t = UInt(Rt); registers = Zeros(16); registers<t> = '1';
if t == 13 || t == 15 then UNPREDICTABLE;

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<registers>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies
the set of registers to be stored. The registers are stored in sequence, the lowest-numbered
register to the lowest memory address, through to the highest-numbered register to the
highest memory address.

Encoding T2 does not support a list containing only one register. If a PUSH instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent STR<c><q> <Rt>,[SP,#-4]! instruction.

The SP and PC cannot be in the list.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = SP - 4*BitCount(registers);

 for i = 0 to 14
 if registers<i> == ’1’ then
 MemA[address,4] = R[i];
 address = address + 4;

 SP = SP - 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.

PUSH<c><q> <registers> Standard syntax
STMDB<c><q> SP!, <registers> Equivalent STM syntax
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-189
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
If the list contains more than one register, the instruction is assembled to encoding T1 or T2. If the list contains exactly one register, the instruction is assembled to encoding T1 or T3.

Thumb Instruction Details
A6.7.99 RBIT

Reverse Bits reverses the bit order in a 32-bit register.

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

RBIT<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in
encoding T1, in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 for i = 0 to 31 do
 result<31-i> = R[m]<i>;
 R[d] = result;

Exceptions

None.

Encoding T1 ARMv7-M
RBIT<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 0 Rm
A6-190 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.100 REV

Byte-Reverse Word reverses the byte order in a 32-bit register.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

REV<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in
encoding T2, in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<7:0>;
 result<23:16> = R[m]<15:8>;
 result<15:8> = R[m]<23:16>;
 result<7:0> = R[m]<31:24>;
 R[d] = result;

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
REV<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 0 Rm Rd

Encoding T2 ARMv7-M
REV<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 0 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-191
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.101 REV16

Byte-Reverse Packed Halfword reverses the byte order in each 16-bit halfword of a 32-bit register.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

REV16<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in
encoding T2, in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:24> = R[m]<23:16>;
 result<23:16> = R[m]<31:24>;
 result<15:8> = R[m]<7:0>;
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
REV16<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 0 1 Rm Rd

Encoding T2 ARMv7-M
REV16<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 0 1 Rm
A6-192 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.102 REVSH

Byte-Reverse Signed Halfword reverses the byte order in the lower 16-bit halfword of a 32-bit register, and
sign extends the result to 32 bits.

d = UInt(Rd); m = UInt(Rm);

if !Consistent(Rm) then UNPREDICTABLE;
d = UInt(Rd); m = UInt(Rm);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

REVSH<c><q> <Rd>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in
encoding T2, in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 bits(32) result;
 result<31:8> = SignExtend(R[m]<7:0>, 24);
 result<7:0> = R[m]<15:8>;
 R[d] = result;

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
REVSH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 0 1 0 1 1 Rm Rd

Encoding T2 ARMv7-M
REVSH<c>.W <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1 0 0 1 Rm 1 1 1 1 Rd 1 0 1 1 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-193
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.103 ROR (immediate)

Rotate Right (immediate) provides the value of the contents of a register rotated by a constant value. The
bits that are rotated off the right end are inserted into the vacated bit positions on the left. It can optionally
update the condition flags based on the result.

if (imm3:imm2) == '00000' then SEE RRX;
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(-, shift_n) = DecodeImmShift('11', imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
ROR{S}<c> <Rd>,<Rm>,#<imm5>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) imm3 Rd imm2 1 1 Rm
A6-194 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ROR{S}<c><q> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 1 to 31. See Shifts applied to a register on
page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-195
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.104 ROR (register)

Rotate Right (register) provides the value of the contents of a register rotated by a variable number of bits.
The bits that are rotated off the right end are inserted into the vacated bit positions on the left. The variable
number of bits is read from the bottom byte of a register. It can optionally update the condition flags based
on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
RORS <Rdn>,<Rm> Outside IT block.
ROR<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 1 Rm Rdn

Encoding T2 ARMv7-M
ROR{S}<c>.W <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 1 S Rn 1 1 1 1 Rd 0 0 0 0 Rm
A6-196 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

ROR{S}<c><q> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to rotate by.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shift_n = UInt(R[m]<7:0>);
 (result, carry) = Shift_C(R[n], SRType_ROR, shift_n, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-197
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.105 RRX

Rotate Right with Extend provides the value of the contents of a register shifted right by one place, with the
carry flag shifted into bit<31>.

RRX can optionally update the condition flags based on the result. In that case, bit<0> is shifted into the carry
flag.

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
RRX{S}<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 1 0 S 1 1 1 1 (0) 0 0 0 Rd 0 0 1 1 Rm
A6-198 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

RRX{S}<c><q> <Rd>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry) = Shift_C(R[m], SRType_RRX, 1, APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-199
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.106 RSB (immediate)

Reverse Subtract (immediate) subtracts a register value from an immediate value, and writes the result to
the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = Zeros(32); // immediate = #0

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
RSBS <Rd>,<Rn>,#0 Outside IT block.
RSB<c> <Rd>,<Rn>,#0 Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 1 Rn Rd

Encoding T2 ARMv7-M
RSB{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 1 0 S Rn 0 imm3 Rd imm8
A6-200 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

RSB{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. The only allowed
value for encoding T1 is 0. See Modified immediate constants in Thumb instructions on
page A5-15 for the range of allowed values for encoding T2.

The pre-UAL syntax RSB<c>S is equivalent to RSBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-201
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.107 RSB (register)

Reverse Subtract (register) subtracts a register value from an optionally-shifted register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
RSB{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 1 0 S Rn (0) imm3 Rd imm2 type Rm
A6-202 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

RSB{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

The pre-UAL syntax RSB<c>S is equivalent to RSBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-203
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.108 SBC (immediate)

Subtract with Carry (immediate) subtracts an immediate value and the value of NOT(Carry flag) from a
register value, and writes the result to the destination register. It can optionally update the condition flags
based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
SBC{S}<c> <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 0 1 1 S Rn 0 imm3 Rd imm8
A6-204 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SBC{S}<c><q> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

The pre-UAL syntax SBC<c>S is equivalent to SBCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-205
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.109 SBC (register)

Subtract with Carry (register) subtracts an optionally-shifted register value and the value of NOT(Carry flag)
from a register value, and writes the result to the destination register. It can optionally update the condition
flags based on the result.

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
SBCS <Rdn>,<Rm> Outside IT block.
SBC<c> <Rdn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 Rm Rdn

Encoding T2 ARMv7-M
SBC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 0 1 1 S Rn (0) imm3 Rd imm2 type Rm
A6-206 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SBC{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

The pre-UAL syntax SBC<c>S is equivalent to SBCS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-207
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.110 SBFX

Signed Bit Field Extract extracts any number of adjacent bits at any position from one register, sign extends
them to 32 bits, and writes the result to the destination register.

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
SBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
A6-208 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SBFX<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<lsb> is the bit number of the least significant bit in the bitfield, in the range 0-31. This determines
the required value of lsbit.

<width> is the width of the bitfield, in the range 1 to 32-<lsb>. The required value of widthminus1 is
<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = SignExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-209
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.111 SDIV

Signed Divide divides a 32-bit signed integer register value by a 32-bit signed integer register value, and
writes the result to the destination register. The condition code flags are not affected.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
SDIV<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
A6-210 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SDIV<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the dividend.

<Rm> Specifies the register that contains the divisor.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if SInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(SInt(R[n]) / SInt(R[m]));
 R[d] = result<31:0>;

Exceptions

UsageFault.

Notes

Overflow If the signed integer division 0x80000000 / 0xFFFFFFFF is performed, the pseudocode
produces the intermediate integer result +231, which overflows the 32-bit signed integer
range. No indication of this overflow case is produced, and the 32-bit result written to R[d]
is required to be the bottom 32 bits of the binary representation of +231. So the result of the
division is 0x80000000.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-211
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.112 SEV

Send Event is a hint instruction. It causes an event to be signaled to all CPUs within the multiprocessor
system. See Wait For Event and Send Event on page B1-49 for more details.

This is a NOP-compatible hint, see NOP-compatible hints on page A6-16.

// No additional decoding required

// No additional decoding required

Assembler syntax

SEV<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_SendEvent();

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
SEV<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0

Encoding T2 ARMv7-M
SEV<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 1 0 0
A6-212 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.113 SMLAL

Signed Multiply Accumulate Long multiplies two signed 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler syntax

SMLAL<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]) + SInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
SMLAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 0 0 Rn RdLo RdHi 0 0 0 0 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-213
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.114 SMULL

Signed Multiply Long multiplies two 32-bit signed values to produce a 64-bit result.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler syntax

SMULL<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = SInt(R[n]) * SInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
SMULL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 0 0 Rn RdLo RdHi 0 0 0 0 Rm
A6-214 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.115 SSAT

Signed Saturate saturates an optionally-shifted signed value to a selectable signed range.

The Q flag is set if the operation saturates.

if sh == '1' && (imm3:imm2) == '00000' then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm)+1;
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler syntax

SSAT<c><q> <Rd>, #<imm>, <Rn> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<imm> Specifies the bit position for saturation, in the range 1 to 32.

<Rn> Specifies the register that contains the value to be saturated.

<shift> Specifies the optional shift. If <shift> is omitted, LSL #0 is used.

If present, it must be one of:

LSL #N N must be in the range 0 to 31.

ASR #N N must be in the range 1 to 31.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = SignedSatQ(SInt(operand), saturate_to);
 R[d] = SignExtend(result, 32);
 if sat then
 APSR.Q = ’1’;

Exceptions

None.

Encoding T1 ARMv7-M
SSAT<c> <Rd>,#<imm5>,<Rn>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-215
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.116 STC, STC2

Store Coprocessor stores data from a coprocessor to a sequence of consecutive memory addresses.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MCRR, MCRR2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);
if n == 15 then UNPREDICTABLE;

if P == ’0’ && U == ’0’ && D == ’0’ && W == ’0’ then UNDEFINED;
if P == ’0’ && U == ’0’ && D == ’1’ && W == ’0’ then SEE MCRR, MCRR2;
n = UInt(Rn); cp = UInt(coproc); imm32 = ZeroExtend(imm8:’00’, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);
if n == 15 then UNPREDICTABLE;

Assembler syntax

where:

2 If specified, selects encoding T2. If omitted, selects encoding T1.

L If specified, selects the N == 1 form of the encoding. If omitted, selects the N == 0 form.

Encoding T1 ARMv7-M
STC{L}<c> <coproc>,<CRd>,[<Rn>{,#+/-<imm8>}]

STC{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm8>]!

STC{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm8>

STC{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 1 0 P U N W 0 Rn CRd coproc imm8

Encoding T2 ARMv7-M
STC2{L}<c> <coproc>,<CRd>,[<Rn>{,#+/-<imm8>}]

STC2{L}<c> <coproc>,<CRd>,[<Rn>,#+/-<imm8>]!

STC2{L}<c> <coproc>,<CRd>,[<Rn>],#+/-<imm8>

STC2{L}<c> <coproc>,<CRd>,[<Rn>],<option>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 P U N W 0 Rn CRd coproc imm8

STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>{,#+/-<imm>}] Offset. P = 1, W = 0.
STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>,#+/-<imm>]! Pre-indexed. P = 1, W = 1.
STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P = 0, W = 1.

STC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],<option> Unindexed. P = 0, W = 0, U = 1.
A6-216 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
<c><q> See Standard assembler syntax fields on page A6-7.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0, p1,
..., p15.

<CRd> Specifies the coprocessor source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 4 in the range 0-1020. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

<option> Specifies additional instruction options to the coprocessor, as an integer in the range 0-255,
surrounded by { and }. This integer is encoded in the imm8 field of the instruction.

The pre-UAL syntax STC<c>L is equivalent to STCL<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if !Coproc_Accepted(cp, ThisInstr()) then
 GenerateCoprocessorException();
 else
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 repeat
 MemA[address,4] = Coproc_GetWordToStore(cp, ThisInstr()); address = address + 4;
 until Coproc_DoneStoring(cp, ThisInstr());
 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-217
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.117 STM / STMIA / STMEA

Store Multiple Increment After (Store Multiple Empty Ascending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations start at this
address, and the address just above the last of those locations can optionally be written back to the base
register.

n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
if BitCount(registers) < 1 then UNPREDICTABLE;

n = UInt(Rn); registers = ’0’:M:’0’:register_list; wback = (W == ’1’);
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == ’1’ then UNPREDICTABLE;

Assembler syntax

STM<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. The SP can be used.

! Causes the instruction to write a modified value back to <Rn>. If ! is omitted, the instruction
does not change <Rn>.

<registers>

Is a list of one or more registers to be stored, separated by commas and surrounded by { and
}. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address.

Encoding T2 does not support a list containing only one register. If an STM instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent STR<c><q> <Rt>,[<Rn>]{,#4} instruction.

The SP and PC cannot be in the list.

Encoding T1 All versions of the Thumb ISA.
STM<c> <Rn>!,<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 Rn register_list

Encoding T2 ARMv7-M
STM<c>.W <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 0 W 0 Rn (0) M (0) register_list
A6-218 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Encoding T2 is not available for instructions with the base register in the list and ! specified,
and the use of such instructions is deprecated. If the base register is not the lowest-numbered
register in the list, such an instruction stores an UNKNOWN value for the base register.

STMEA and STMIA are pseudo-instructions for STM, STMEA referring to its use for pushing data onto Empty
Ascending stacks.

The pre-UAL syntaxes STM<c>IA and STM<c>EA are equivalent to STM<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];

 for i = 0 to 14
 if registers<i> == '1' then
 if i == n && wback && i != LowestSetBit(registers) then
 MemA[address,4] = bits(32) UNKNOWN; // encoding T1 only
 else
 MemA[address,4] = R[i];
 address = address + 4;

 if wback then R[n] = R[n] + 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-219
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.118 STMDB / STMFD

Store Multiple Decrement Before (Store Multiple Full Descending) stores multiple registers to consecutive
memory locations using an address from a base register. The consecutive memory locations end just below
this address, and the address of the first of those locations can optionally be written back to the base register.

if W == ’1’ && Rn == ’1101’ then SEE PUSH;
n = UInt(Rn); registers = ’0’:M:’0’:register_list; wback = (W == ’1’);
if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
if wback && registers<n> == ’1’ then UNPREDICTABLE;

Encoding T1 ARMv7-M
STMDB<c> <Rn>{!},<registers>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 1 0 0 W 0 Rn (0) M (0) register_list
A6-220 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

STMDB<c><q> <Rn>{!}, <registers>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. If it is the SP and ! is specified, the instruction is treated as described in
PUSH on page A6-188.

! Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn>. Encoded as W = 0.

<registers>

Is a list of one or more registers to be stored, separated by commas and surrounded by { and
}. The lowest-numbered register is stored to the lowest memory address, through to the
highest-numbered register to the highest memory address.

Encoding T1 does not support a list containing only one register. If an STMDB instruction with
just one register <Rt> in the list is assembled to Thumb, it is assembled to the equivalent
STR<c><q> <Rt>,[<Rn>,#-4]{!} instruction.

The SP and PC cannot be in the list.

STMFD is s synonym for STMDB, referring to its use for pushing data onto Full Descending stacks.

The pre-UAL syntaxes STM<c>DB and STM<c>FD are equivalent to STMDB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] - 4*BitCount(registers);

 for i = 0 to 14
 if registers<i> == ’1’ then
 MemA[address,4] = R[i];
 address = address + 4;

 if wback then R[n] = R[n] - 4*BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-221
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.119 STR (immediate)

Store Register (immediate) calculates an address from a base register value and an immediate offset, and
stores a word from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. See
Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:’00’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == ’1111’ then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 15 then UNPREDICTABLE;

if P == ’1’ && U == ’1’ && W == ’0’ then SEE STRT;
if Rn == ’1101’ && P == ’1’ && U == ’0’ && W == ’1’ && imm8 == ’00000100’ then SEE PUSH;
if Rn == ’1111’ || (P == ’0’ && W == ’0’) then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == ’1’); add = (U == ’1’); wback = (W == ’1’);
if t == 15 || (wback && n == t) then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STR<c> <Rt>, [<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Rn Rt

Encoding T2 All versions of the Thumb ISA.
STR<c> <Rt>,[SP,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rt imm8

Encoding T3 ARMv7-M
STR<c>.W <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 1 0 0 Rn Rt imm12

Encoding T4 ARMv7-M
STR<c> <Rt>,[<Rn>,#-<imm8>]

STR<c> <Rt>,[<Rn>],#+/-<imm8>

STR<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 P U W imm8
A6-222 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register. This register is allowed to be the SP.

<Rn> Specifies the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 4 in the range 0-124 for encoding T1, multiples of
4 in the range 0-1020 for encoding T2, any value in the range 0-4095 for encoding T3, and
any value in the range 0-255 for encoding T4. For the offset addressing syntax, <imm> can be
omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,4] = R[t];
 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

STR<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STR<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-223
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.120 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, stores
a word from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits. See
Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STR<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rm Rn Rt

Encoding T2 ARMv7-M
STR<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-224 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

STR<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register. This register is allowed to be the SP.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 data = R[t];
 MemU[address,4] = data;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-225
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.121 STRB (immediate)

Store Register Byte (immediate) calculates an address from a base register value and an immediate offset,
and stores a byte from a register to memory. It can use offset, post-indexed, or pre-indexed addressing. See
Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t IN {13,15} then UNPREDICTABLE;

if P == '1' && U == '1' && W == '0' then SEE STRBT;
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STRB<c> <Rt>,[<Rn>,#<imm5>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 imm5 Rn Rt

Encoding T2 ARMv7-M
STRB<c>.W <Rt>,[<Rn>,#<imm12>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 0 0 Rn Rt imm12

Encoding T3 ARMv7-M
STRB<c> <Rt>,[<Rn>,#-<imm8>]

STRB<c> <Rt>,[<Rn>],#+/-<imm8>

STRB<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 1 P U W imm8
A6-226 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. The range of allowed values is 0-31 for encoding T1, 0-4095 for encoding T2, and
0-255 for encoding T3. For the offset addressing syntax, <imm> can be omitted, meaning an
offset of 0.

The pre-UAL syntax STR<c>B is equivalent to STRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,1] = R[t]<7:0>;
 if wback then R[n] = offset_addr;

Exceptions

MemManage, BusFault.

STRB<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRB<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRB<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-227
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.122 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value,
and stores a byte from a register to memory. The offset register value can be shifted left by 0, 1, 2, or 3 bits.
See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STRB<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 1 0 Rm Rn Rt

Encoding T2 ARMv7-M
STRB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-228 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

STRB<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax STR<c>B is equivalent to STRB<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 MemU[address,1] = R[t]<7:0>;

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-229
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.123 STRBT

Store Register Byte Unprivileged calculates an address from a base register value and an immediate offset,
and stores a byte from a register to memory. See Memory accesses on page A6-15 for information about
memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
STRBT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 Rn Rt 1 1 1 0 imm8
A6-230 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

STRBT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>BT is equivalent to STRBT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 MemU_unpriv[address,1] = R[t]<7:0>;

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-231
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.124 STRD (immediate)

Store Register Dual (immediate) calculates an address from a base register value and an immediate offset,
and stores two words from two registers to memory. It can use offset, post-indexed, or pre-indexed
addressing. See Memory accesses on page A6-15 for information about memory accesses.

if P == '0' && W == '0' then SEE "Related encodings";
t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if wback && (n == t || n == t2) then UNPREDICTABLE;
if n == 15 || t IN {13,15} || t2 IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
STRD<c> <Rt>,<Rt2>,[<Rn>{,#+/-<imm8>}]

STRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm8>

STRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 P U 1 W 0 Rn Rt Rt2 imm8

Related encodings See Load/store dual or exclusive, table branch on page A5-21
A6-232 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the first source register.

<Rt2> Specifies the second source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 4 in the range 0-1020. For the offset addressing
syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>D is equivalent to STRD<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemA[address,4] = R[t];
 MemA[address+4,4] = R[t2];
 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

STRD<c><q> <Rt>,<Rt2>,[<Rn>{,#+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRD<c><q> <Rt>,<Rt2>,[<Rn>,#+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRD<c><q> <Rt>,<Rt2>,[<Rn>],#+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-233
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.125 STREX

Store Register Exclusive calculates an address from a base register value and an immediate offset, and stores
a word from a register to memory if the executing processor has exclusive access to the memory addressed.

See Memory accesses on page A6-15 for information about memory accesses.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler syntax

STREX<c><q> <Rd>, <Rt>, [<Rn> {,#<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. Allowed
values are multiples of 4 in the range 0-1020. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 if ExclusiveMonitorsPass(address,4) then
 MemA[address,4] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
STREX<c> <Rd>,<Rt>,[<Rn>{,#<imm8>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 0 1 0 0 Rn Rt Rd imm8
A6-234 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.126 STREXB

Store Register Exclusive Byte derives an address from a base register value, and stores a byte from a register
to memory if the executing processor has exclusive access to the memory addressed.

See Memory accesses on page A6-15 for information about memory accesses.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Assembler syntax

STREXB<c><q> <Rd>, <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,1) then
 MemA[address,1] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

MemManage, BusFault.

Encoding T1 ARMv7-M
STREXB<c> <Rd>,<Rt>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 0 Rd
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-235
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.127 STREXH

Store Register Exclusive Halfword derives an address from a base register value, and stores a halfword from
a register to memory if the executing processor has exclusive access to the memory addressed.

See Memory accesses on page A6-15 for information about memory accesses.

d = UInt(Rd); t = UInt(Rt); n = UInt(Rn);
if d IN {13,15} || t IN {13,15} || n == 15 then UNPREDICTABLE;
if d == n || d == t then UNPREDICTABLE;

Encoding T1 ARMv7-M
STREXH<c> <Rd>,<Rt>,[<Rn>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 0 Rn Rt (1) (1) (1) (1) 0 1 0 1 Rd
A6-236 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

STREXH<c><q> <Rd>, <Rt>, [<Rn>]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register for the returned status value. The value returned is:

0 if the operation updates memory

1 if the operation fails to update memory.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n];
 if ExclusiveMonitorsPass(address,2) then
 MemA[address,2] = R[t];
 R[d] = 0;
 else
 R[d] = 1;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-237
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.128 STRH (immediate)

Store Register Halfword (immediate) calculates an address from a base register value and an immediate
offset, and stores a halfword from a register to memory. It can use offset, post-indexed, or pre-indexed
addressing. See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:’0’, 32);
index = TRUE; add = TRUE; wback = FALSE;

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t IN {13,15} then UNPREDICTABLE;

if P == '1' && U == '1' && W == '0' then SEE STRHT;
if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1'); add = (U == '1'); wback = (W == '1');
if t IN {13,15} || (wback && n == t) then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STRH<c> <Rt>,[<Rn>{,#<imm5>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 imm5 Rn Rt

Encoding T2 ARMv7-M
STRH<c>.W <Rt>,[<Rn>{,#<imm12>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 1 0 1 0 Rn Rt imm12

Encoding T3 ARMv7-M
STRH<c> <Rt>,[<Rn>,#-<imm8>]

STRH<c> <Rt>,[<Rn>],#+/-<imm8>

STRH<c> <Rt>,[<Rn>,#+/-<imm8>]!

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 1 P U W imm8
A6-238 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value
(add == TRUE), or – to indicate that the offset is to be subtracted (add == FALSE). Different
instructions are generated for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the
address. Allowed values are multiples of 2 in the range 0-62 for encoding T1, any value in
the range 0-4095 for encoding T2, and any value in the range 0-255 for encoding T3. For
the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>H is equivalent to STRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
 address = if index then offset_addr else R[n];
 MemU[address,2] = R[t]<15:0>;

 if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

STRH<c><q> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
STRH<c><q> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
STRH<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-239
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.129 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register
value, and stores a halfword from a register to memory. The offset register value can be shifted left by 0, 1,
2, or 3 bits. See Memory accesses on page A6-15 for information about memory accesses.

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
STRH<c> <Rt>,[<Rn>,<Rm>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 1 Rm Rn Rt

Encoding T2 ARMv7-M
STRH<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 0 0 0 0 0 0 imm2 Rm
A6-240 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

STRH<c><q> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the base value. This register is allowed to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option
is omitted, a shift by 0 is assumed and both encodings are permitted. If this option is
specified, only encoding T2 is permitted.

The pre-UAL syntax STR<c>H is equivalent to STRH<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 offset = Shift(R[m], shift_t, shift_n, APSR.C);
 address = R[n] + offset;
 MemU[address,2] = R[t]<15:0>;

Exceptions

UsageFault, MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-241
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.130 STRHT

Store Register Halfword Unprivileged calculates an address from a base register value and an immediate
offset, and stores a halfword from a register to memory. See Memory accesses on page A6-15 for
information about memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler syntax

STRHT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 MemU_unpriv[address,2] = R[t]<15:0>;

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
STRHT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 1 0 Rn Rt 1 1 1 0 imm8
A6-242 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.131 STRT

Store Register Unprivileged calculates an address from a base register value and an immediate offset, and
stores a word from a register to memory. See Memory accesses on page A6-15 for information about
memory accesses.

The memory access is restricted as if the processor were running unprivileged. (This makes no difference if
the processor is actually running unprivileged.)

if Rn == '1111' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;

Assembler syntax

STRT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rt> Specifies the source register.

<Rn> Specifies the base register. This register is allowed to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of
allowed values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax STR<c>T is equivalent to STRT<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 address = R[n] + imm32;
 data = R[t];
 MemU_unpriv[address,4] = data;

Exceptions

UsageFault, MemManage, BusFault.

Encoding T1 ARMv7-M
STRT<c> <Rt>,[<Rn>,#<imm8>]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 1 0 0 Rn Rt 1 1 1 0 imm8
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-243
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.132 SUB (immediate)

This instruction subtracts an immediate value from a register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 = ZeroExtend(imm3, 32);

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32);

if Rd == '1111' && setflags then SEE CMP (immediate);
if Rn == '1101' then SEE SUB (SP minus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n == 15 then UNPREDICTABLE;

if Rn == '1111' then SEE ADR;
if Rn == '1101' then SEE SUB (SP minus immediate);
d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
SUBS <Rd>,<Rn>,#<imm3> Outside IT block.
SUB<c> <Rd>,<Rn>,#<imm3> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 imm3 Rn Rd

Encoding T2 All versions of the Thumb ISA.
SUBS <Rdn>,#<imm8> Outside IT block.
SUB<c> <Rdn>,#<imm8> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 Rdn imm8

Encoding T3 ARMv7-M
SUB{S}<c>.W <Rd>,<Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S Rn 0 imm3 Rd imm8

Encoding T4 ARMv7-M
SUBW<c> <Rd>,<Rn>,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 Rn 0 imm3 Rd imm8
A6-244 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand. If the SP is specified for <Rn>, see SUB
(SP minus immediate) on page A6-248. If the PC is specified for <Rn>, see ADR on
page A6-30.

<const> Specifies the immediate value to be subtracted from the value obtained from <Rn>. The range
of allowed values is 0-7 for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding
T4. See Modified immediate constants in Thumb instructions on page A5-15 for the range
of allowed values for encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3
is preferred to encoding T4 (if encoding T4 is required, use the SUBW syntax). Encoding T1
is preferred to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1
if <Rd> is omitted.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

SUB{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted
SUBW<c><q> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-245
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.133 SUB (register)

This instruction subtracts an optionally-shifted register value from a register value, and writes the result to
the destination register. It can optionally update the condition flags based on the result.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

if Rd == '1111' && S == '1' then SEE CMP (register);
if Rn == '1101' then SEE SUB (SP minus register);
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
SUBS <Rd>,<Rn>,<Rm> Outside IT block.
SUB<c> <Rd>,<Rn>,<Rm> Inside IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rm Rn Rd

Encoding T2 ARMv7-M
SUB{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S Rn (0) imm3 Rd imm2 type Rm
A6-246 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SUB{S}<c><q> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand. If the SP is specified for <Rn>, see SUB
(SP minus register) on page A6-250.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-247
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.134 SUB (SP minus immediate)

This instruction subtracts an immediate value from the SP value, and writes the result to the destination
register.

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:’00’, 32);

if Rd == ’1111’ && S == ’1’ then SEE CMP (immediate);
d = UInt(Rd); setflags = (S == ’1’); imm32 = ThumbExpandImm(i:imm3:imm8);
if d == 15 then UNPREDICTABLE;

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
SUB<c> SP,SP,#<imm7>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

Encoding T2 ARMv7-M
SUB{S}<c>.W <Rd>,SP,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 1 1 0 1 S 1 1 0 1 0 imm3 Rd imm8

Encoding T3 ARMv7-M
SUBW<c> <Rd>,SP,#<imm12>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 1 0 1 0 1 0 1 1 0 1 0 imm3 Rd imm8
A6-248 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is SP.

<const> Specifies the immediate value to be added to the value obtained from SP. Allowed values
are multiples of 4 in the range 0-508 for encoding T1 and any value in the range 0-4095 for
encoding T3. See Modified immediate constants in Thumb instructions on page A5-15 for
the range of allowed values for encoding T2.

When both 32-bit encodings are available for an instruction, encoding T2 is preferred to
encoding T3 (if encoding T3 is required, use the SUBW syntax).

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.

SUB{S}<c><q> {<Rd>,} SP, #<const> All encodings permitted
SUBW<c><q> {<Rd>,} SP, #<const> Only encoding T4 permitted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-249
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.135 SUB (SP minus register)

This instruction subtracts an optionally-shifted register value from the SP value, and writes the result to the
destination register.

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if d == 15 || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
SUB{S}<c> <Rd>,SP,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 1 1 0 1 S 1 1 0 1 (0) imm3 Rd imm2 type Rm
A6-250 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SUB{S}<c><q> {<Rd>,} SP, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not
update the flags.

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is SP.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

If <Rd> is SP or omitted, <shift> is only permitted to be LSL #0, LSL #1, LSL #2 or LSL #3.

The pre-UAL syntax SUB<c>S is equivalent to SUBS<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 shifted = Shift(R[m], shift_t, shift_n, APSR.C);
 (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), ’1’);
 R[d] = result;
 if setflags then
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 APSR.V = overflow;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-251
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.136 SVC (formerly SWI)

Generates a supervisor call. See Exceptions in the ARM Architecture Reference Manual.

Use it as a call to an operating system to provide a service.

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly, and is ignored by hardware. SVC handlers in some
// systems interpret imm8 in software, for example to determine the required service.

Encoding T1 All versions of the Thumb ISA.
SVC<c> #<imm8>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 1 1 1 1 imm8
A6-252 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
Assembler syntax

SVC<c><q> #<imm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<imm> Specifies an 8-bit immediate constant.

The pre-UAL syntax SWI<c> is equivalent to SVC<c>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 CallSupervisor();

Exceptions

SVCall.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-253
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.137 SXTB

Signed Extend Byte extracts an 8-bit value from a register, sign extends it to 32 bits, and writes the result to
the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv6-M, ARMv7-M
SXTB<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 1 Rm Rd

Encoding T2 ARMv7-M
SXTB<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
A6-254 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SXTB<c><q> <Rd>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

<rotation>

This can be any one of:

• ROR #8.

• ROR #16.

• ROR #24.

• Omitted.

Note
 If your assembler accepts shifts by #0 and treats them as equivalent to no shift or LSL

#0, then it must accept ROR #0 here. It is equivalent to omitting <rotation>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-255
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.138 SXTH

Signed Extend Halfword extracts a 16-bit value from a register, sign extends it to 32 bits, and writes the
result to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv6-M, ARMv7-M
SXTH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 0 0 Rm Rd

Encoding T2 ARMv7-M
SXTH<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
A6-256 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

SXTH<c><q> <Rd>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand.

<rotation>

This can be any one of:

• ROR #8.

• ROR #16.

• ROR #24.

• Omitted.

Note
 If your assembler accepts shifts by #0 and treats them as equivalent to no shift or LSL

#0, then it must accept ROR #0 here. It is equivalent to omitting <rotation>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = SignExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-257
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.139 TBB, TBH

Table Branch Byte causes a PC-relative forward branch using a table of single byte offsets. A base register
provides a pointer to the table, and a second register supplies an index into the table. The branch length is
twice the value of the byte returned from the table.

Table Branch Halfword causes a PC-relative forward branch using a table of single halfword offsets. A base
register provides a pointer to the table, and a second register supplies an index into the table. The branch
length is twice the value of the halfword returned from the table.

n = UInt(Rn); m = UInt(Rm); is_tbh = (H == '1');
if n == 13 || m IN {13,15} then UNPREDICTABLE;
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T1 ARMv7-M
TBB<c> [<Rn>,<Rm>] Outside or last in IT block
TBH<c> [<Rn>,<Rm>,LSL #1] Outside or last in IT block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 0 0 1 1 0 1 Rn (1) (1) (1) (1) (0) (0) (0) (0) 0 0 0 H Rm
A6-258 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

TBB<c><q> [<Rn>, <Rm>]

TBH<c><q> [<Rn>, <Rm>, LSL #1]

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The base register. This contains the address of the table of branch lengths. This register can
be the PC. If it is, the table immediately follows this instruction.

<Rm> The index register.

For TBB, this contains an integer pointing to a single byte in the table. The offset in the table
is the value of the index.

For TBH, this contains an integer pointing to a halfword in the table. The offset in the table is
twice the value of the index.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if is_tbh then
 halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
 else
 halfwords = UInt(MemU[R[n]+R[m], 1]);
 BranchWritePC(PC + 2*halfwords);

Exceptions

MemManage, BusFault.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-259
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
, UsageFault

Thumb Instruction Details
A6.7.140 TEQ (immediate)

Test Equivalence (immediate) performs an exclusive OR operation on a register value and an immediate
value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if n IN {13,15} then UNPREDICTABLE;

Assembler syntax

TEQ<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> The register that contains the operand.

<const> The immediate value to be tested against the value obtained from <Rn>. See Modified
immediate constants in Thumb instructions on page A5-15 for the range of allowed values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] EOR imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

Encoding T1 ARMv7-M
TEQ<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 1 0 0 1 Rn 0 imm3 1 1 1 1 imm8
A6-260 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.141 TEQ (register)

Test Equivalence (register) performs an exclusive OR operation on a register value and an optionally-shifted
register value. It updates the condition flags based on the result, and discards the result.

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

TEQ<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] EOR shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.

Encoding T1 ARMv7-M
TEQ<c> <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 1 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-261
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.142 TST (immediate)

Test (immediate) performs a logical AND operation on a register value and an immediate value. It updates
the condition flags based on the result, and discards the result.

n = UInt(Rn);
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
TST<c> <Rn>,#<const>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 i 0 0 0 0 0 1 Rn 0 imm3 1 1 1 1 imm8
A6-262 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

TST<c><q> <Rn>, #<const>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be tested against the value obtained from <Rn>. See
Modified immediate constants in Thumb instructions on page A5-15 for the range of
allowed values.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = R[n] AND imm32;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-263
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.143 TST (register)

Test (register) performs a logical AND operation on a register value and an optionally-shifted register value.
It updates the condition flags based on the result, and discards the result.

n = UInt(Rdn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, 0);

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 All versions of the Thumb ISA.
TST<c> <Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 0 0 0 Rm Rn

Encoding T2 ARMv7-M
TST<c>.W <Rn>,<Rm>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 0 1 0 0 0 0 1 Rn (0) imm3 1 1 1 1 imm2 type Rm
A6-264 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

TST<c><q> <Rn>, <Rm> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is
applied and both encodings are permitted. If <shift> is specified, only encoding T2 is
permitted. The possible shifts and how they are encoded are described in Shifts applied to a
register on page A6-12.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
 result = R[n] AND shifted;
 APSR.N = result<31>;
 APSR.Z = IsZeroBit(result);
 APSR.C = carry;
 // APSR.V unchanged

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-265
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.144 UBFX

Unsigned Bit Field Extract extracts any number of adjacent bits at any position from one register, zero
extends them to 32 bits, and writes the result to the destination register.

d = UInt(Rd); n = UInt(Rn);
lsbit = UInt(imm3:imm2); widthminus1 = UInt(widthm1);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Assembler syntax

UBFX<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<lsb> is the bit number of the least significant bit in the bitfield, in the range 0-31. This determines
the required value of lsbit.

<width> is the width of the bitfield, in the range 1 to 32-<lsb>). The required value of widthminus1 is
<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 msbit = lsbit + widthminus1;
 if msbit <= 31 then
 R[d] = ZeroExtend(R[n]<msbit:lsbit>, 32);
 else
 UNPREDICTABLE;

Exceptions

None.

Encoding T1 ARMv7-M
UBFX<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 1 0 0 Rn 0 imm3 Rd imm2 (0) widthm1
A6-266 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.145 UDIV

Unsigned Divide divides a 32-bit unsigned integer register value by a 32-bit unsigned integer register value,
and writes the result to the destination register. The condition code flags are not affected.

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

UDIV<c><q> {<Rd>,} <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the dividend.

<Rm> Specifies the register that contains the divisor.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if UInt(R[m]) == 0 then
 if IntegerZeroDivideTrappingEnabled() then
 GenerateIntegerZeroDivide();
 else
 result = 0;
 else
 result = RoundTowardsZero(UInt(R[n]) / UInt(R[m]));
 R[d] = result<31:0>;

Exceptions

UsageFault.

Encoding T1 ARMv7-M
UDIV<c> <Rd>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 1 Rn (1) (1) (1) (1) Rd 1 1 1 1 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-267
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.146 UMLAL

Unsigned Multiply Accumulate Long multiplies two unsigned 32-bit values to produce a 64-bit value, and
accumulates this with a 64-bit value.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler syntax

UMLAL<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<RdLo> Supplies the lower 32 bits of the accumulate value, and is the destination register for the
lower 32 bits of the result.

<RdHi> Supplies the upper 32 bits of the accumulate value, and is the destination register for the
upper 32 bits of the result.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]) + UInt(R[dHi]:R[dLo]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
UMLAL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 1 1 0 Rn RdLo RdHi 0 0 0 0 Rm
A6-268 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.147 UMULL

Unsigned Multiply Long multiplies two 32-bit unsigned values to produce a 64-bit result.

dLo = UInt(RdLo); dHi = UInt(RdHi); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
if dLo IN {13,15} || dHi IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
if dHi == dLo then UNPREDICTABLE;

Assembler syntax

UMULL<c><q> <RdLo>, <RdHi>, <Rn>, <Rm>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<RdLo> Stores the lower 32 bits of the result.

<RdHi> Stores the upper 32 bits of the result.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 result = UInt(R[n]) * UInt(R[m]);
 R[dHi] = result<63:32>;
 R[dLo] = result<31:0>;

Exceptions

None.

Encoding T1 ARMv7-M
UMULL<c> <RdLo>,<RdHi>,<Rn>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 1 1 0 1 0 Rn RdLo RdHi 0 0 0 0 Rm
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-269
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

Thumb Instruction Details
A6.7.148 USAT

Unsigned Saturate saturates an optionally-shifted signed value to a selected unsigned range.

The Q flag is set if the operation saturates.

if sh == '1' && (imm3:imm2) == '00000' then UNDEFINED;
d = UInt(Rd); n = UInt(Rn); saturate_to = UInt(sat_imm);
(shift_t, shift_n) = DecodeImmShift(sh:'0', imm3:imm2);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv7-M
USAT<c> <Rd>,#<imm5>,<Rn>{,<shift>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 1 0 sh 0 Rn 0 imm3 Rd imm2 (0) sat_imm
A6-270 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

USAT<c><q> <Rd>, #<imm>, <Rn> {,<shift>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<imm> Specifies the bit position for saturation, in the range 0 to 31.

<Rn> Specifies the register that contains the value to be saturated.

<shift> Specifies the optional shift. If present, it must be one of:

LSL #N N must be in the range 0 to 31.

ASR #N N must be in the range 1 to 31.

If <shift> is omitted, LSL #0 is used.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 operand = Shift(R[n], shift_t, shift_n, APSR.C); // APSR.C ignored
 (result, sat) = UnsignedSatQ(SInt(operand), saturate_to);
 R[d] = ZeroExtend(result, 32);
 if sat then
 APSR.Q = ’1’;

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-271
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.149 UXTB

Unsigned Extend Byte extracts an 8-bit value from a register, zero extends it to 32 bits, and writes the result
to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 8-bit value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv6-M, ARMv7
UXTB<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 1 Rm Rd

Encoding T2 ARMv7-M
UXTB<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
A6-272 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

UXTB<c><q> <Rd>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the second operand.

<rotation>

This can be any one of:

• ROR #8.

• ROR #16.

• ROR #24.

• Omitted.

Note
 If your assembler accepts shifts by #0 and treats them as equivalent to no shift or LSL

#0, then it must accept ROR #0 here. It is equivalent to omitting <rotation>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<7:0>, 32);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-273
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.150 UXTH

Unsigned Extend Halfword extracts a 16-bit value from a register, zero extends it to 32 bits, and writes the
result to the destination register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit
value.

d = UInt(Rd); m = UInt(Rm); rotation = 0;

d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Encoding T1 ARMv6-M, ARMv7
UXTH<c> <Rd>,<Rm>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 1 0 1 0 Rm Rd

Encoding T2 ARMv7-M
UXTH<c>.W <Rd>,<Rm>{,<rotation>}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 Rd 1 (0) rotate Rm
A6-274 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

Thumb Instruction Details
Assembler syntax

UXTH<c><q> <Rd>, <Rm> {, <rotation>}

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the second operand.

<rotation>

This can be any one of:

• ROR #8.

• ROR #16.

• ROR #24.

• Omitted.

Note
 If your assembler accepts shifts by #0 and treats them as equivalent to no shift or LSL

#0, then it must accept ROR #0 here. It is equivalent to omitting <rotation>.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 rotated = ROR(R[m], rotation);
 R[d] = ZeroExtend(rotated<15:0>, 32);

Exceptions

None.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-275
Restricted Access Non-Confidential

Thumb Instruction Details
A6.7.151 WFE

Wait For Event is a hint instruction. If the Event Register is clear, it suspends execution in the lowest power
state available consistent with a fast wakeup without the need for software restoration, until a reset,
exception or other event occurs. See Wait For Event and Send Event on page B1-49 for more details.

For general hint behavior, see NOP-compatible hints on page A6-16.

// No additional decoding required

// No additional decoding required

Assembler syntax

WFE<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if EventRegistered() then
 ClearEventRegister();
 else
 WaitForEvent();

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
WFE<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0

Encoding T2 ARMv7-M
WFE<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 0
A6-276 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Thumb Instruction Details
A6.7.152 WFI

Wait For Interrupt is a hint instruction. It suspends execution, in the lowest power state available consistent
with a fast wakeup without the need for software restoration, until a reset, asynchronous exception or other
event occurs. See Wait For Interrupt on page B1-51 for more details.

For general hint behavior, see NOP-compatible hints on page A6-16.

// No additional decoding required

// No additional decoding required

Assembler syntax

WFI<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 WaitForInterrupt();

Exceptions

None.

Notes

PRIMASK If PRIMASK is set and FAULTMASK is clear, an asynchronous exception that has a higher
group priority than any active exception and a higher group priority than BASEPRI results
in a WFI instruction exit. If the group priority of the exception is less than or equal to the
execution group priority, the exception is ignored.

Encoding T1 ARMv6-M, ARMv7-M
WFI<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0

Encoding T2 ARMv7-M
WFI<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 1 1
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. A6-277
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
For the effect of PRIMASK on WFI, see Wait For Interrupt on page B1-56 [PDF page 469].

Thumb Instruction Details
A6.7.153 YIELD

YIELD is a hint instruction. It allows software with a multithreading capability to indicate to the hardware that
it is performing a task, for example a spinlock, that could be swapped out to improve overall system
performance. Hardware can use this hint to suspend and resume multiple code threads if it supports the
capability.

For general hint behavior, see NOP-compatible hints on page A6-16.

// No additional decoding required

// No additional decoding required

Assembler syntax

YIELD<c><q>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 Hint_Yield();

Exceptions

None.

Encoding T1 ARMv6-M, ARMv7-M
YIELD<c>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0

Encoding T2 ARMv7-M
YIELD<c>.W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 1 0 (1) (1) (1) (1) 1 0 (0) 0 (0) 0 0 0 0 0 0 0 0 0 0 1
A6-278 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Part B
System Level Architecture

Chapter B1
System Level Programmers’ Model

This chapter contains information on the system programmers’ model. It covers the registers, exception
model and fault handling capabilities. The chapter is made up of the following sections:

• Introduction to the system level on page B1-2

• ARMv7-M: a memory mapped architecture on page B1-3

• System level operation and terminology overview on page B1-4

• Registers on page B1-8

• Exception model on page B1-14
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-1
Restricted Access Non-Confidential

System Level Programmers’ Model
B1.1 Introduction to the system level

The ARM architecture is defined in a hierarchical manner, where the features are described in Chapter A2
Application Level Programmers’ Model at the application level, with underlying system support. What
features are available and how they are supported is defined in the architecture profiles, making the system
level support profile specific. Deprecated features can be found in an appendix to this manual. See
page AppxD-1.

As stated in Privileged execution on page A2-13, programs can execute in a privileged or unprivileged
manner. System level support requires privileged access, allowing it the access permissions to configure and
control the resources. This is typically supported by an operating system, which provides system services
to the applications, either transparently, or through application initiated service calls. The operating system
is also responsible for servicing interrupts and other system events, making exceptions a key component of
the system level programmers’ model.

In addition, ARMv7-M is a departure from the normal architecture evolution in that it has been designed to
take the ARM architecture to lower cost/performance points than previously supported as well as having a
strong migration path to ARMv7-R and the broad spectrum of embedded processing.

Note
 In deeply embedded systems, particularly at low cost/performance points, the distinction between the
operating system and application is sometimes blurred, resulting in the software developed as a
homogeneous codebase.
B1-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
B1.2 ARMv7-M: a memory mapped architecture

ARMv7-M is a memory-mapped architecture, meaning physical addresses as well as processor registers are
architecturally assigned to provide event entry points (vectors), system control and configuration. Exception
handler entry points are maintained in a table of address pointers.

The address space 0xE0000000 to 0xFFFFFFFF is reserved for system level use. The first 1MB of the system
address space (0xE0000000 to 0xE00FFFFF) is reserved by ARM and known as the Private Peripheral Bus
(PPB), with the rest of the address space (from 0xE0100000) IMPLEMENTATION DEFINED with some memory
attribute restrictions. See The system address map on page B3-2 for more details.

Within the PPB address space, a 4kB block in the range 0xE000E000 to 0xE000EFFF is assigned for system
control and known as the System Control Space (SCS). The SCS supports:

• CPU ID registers

• General control and configuration (including the vector table base address)

• System handler support (for system interrupts and exceptions)

• A SysTick system timer

• A Nested Vectored Interrupt Controller (NVIC), supporting up to 496 discrete external interrupts. All
exceptions and interrupts share a common prioritization model

• Fault status and control registers

• The Protected Memory System Architecture (PMSAv7)

• Processor debug

See System Control Space (SCS) on page B3-6 for more details.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-3
Restricted Access Non-Confidential

System Level Programmers’ Model
B1.3 System level operation and terminology overview

Several concepts are critical to the understanding of the system level architecture support.

B1.3.1 Modes, Privilege and Stacks

Mode, privilege and stack pointer are key concepts used in ARMv7-M.

Mode The microcontroller profile supports two modes (Thread and Handler modes). Handler
mode is entered as a result of an exception. An exception return can only be issued in
Handler mode.

Thread mode is entered on Reset, and can be entered as a result of an exception return.

Privilege Code can execute as privileged or unprivileged. Unprivileged execution limits or excludes
access to some resources. Privileged execution has access to all resources. Handler mode is
always privileged. Thread mode can be privileged or unprivileged.

Stack Pointer Two separate banked stack pointers exist, the Main Stack Pointer, and the Process Stack
pointer. The Main Stack Pointer can be used in either Thread or Handler mode. The Process
Stack Pointer can only be used in Thread mode. See The SP registers on page B1-8 for more
details.

Table B1-1 shows the relationship between mode, privilege and stack pointer usage.

Table B1-1 Mode, privilege and stack relationship

Mode Privilege Stack Pointer Example (typical) usage model

Handler Privileged Main Exception handling

Handler Unprivileged Any Reserved combination (Handler is always
privileged)

Handler Any Process Reserved combination (Handler always uses the
Main stack)

Thread Privileged Main Execution of a privileged process/thread using a
common stack in a system that only supports
privileged access
B1-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
B1.3.2 Exceptions

An exception is a condition that changes the normal flow of control in a program. Exception behavior splits
into two parts:

• Exception recognition when an exception event is generated and presented to the processor

• Exception processing (activation) when the processor is executing an exception entry, exception
return, or exception handler code sequence. Migration from exception recognition to processing can
be instantaneous.

Exceptions can be split into four categories

Reset Reset is a special form of exception which terminates current execution in a potentially
unrecoverable way when reset is asserted. When reset is de-asserted execution is restarted
from a fixed point.

Supervisor call (SVCall)
An exception which is explicitly caused by the SVC instruction. A supervisor call is used by
application code to make a system (service) call to an underlying operating system. The SVC
instruction enables the application to issue a system call that requires privileged access to
the system and will execute in program order with respect to the application. ARMv7-M
also supports an interrupt driven service calling mechanism PendSV (see Interrupts in
Overview of the exceptions supported on page B1-14 for more details).

Fault A fault is an exception which results from an error condition due to instruction execution.
Faults can be reported synchronously or asynchronously to the instruction which caused
them. In general, faults are reported synchronously. The Imprecise BusFault is an
asynchronous fault supported in the ARMv7-M profile.

Thread Privileged Process Execution of a privileged process/thread using a
stack reserved for that process/thread in a system
that only supports privileged access, or where a mix
of privileged and unprivileged threads exist.

Thread Unprivileged Main Execution of an unprivileged process/thread using a
common stack in a system that supports privileged
and unprivileged (User) access

Thread Unprivileged Process Execution of an unprivileged process/thread using a
stack reserved for that process/thread in a system
that supports privileged and unprivileged (User)
access

Table B1-1 Mode, privilege and stack relationship (continued)

Mode Privilege Stack Pointer Example (typical) usage model
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-5
Restricted Access Non-Confidential

System Level Programmers’ Model
A synchronous fault is always reported with the instruction which caused the fault. An
asynchronous fault does not guarantee how it is reported with respect to the instruction
which caused the fault.

Synchronous debug monitor exceptions are classified as faults. Watchpoints are
asynchronous and treated as an interrupt.

Interrupt An interrupt is an exception, other than a reset, fault or a supervisor call. All interrupts are
asynchronous to the instruction stream. Typically interrupts are used by other elements
within the system which wish to communicate with the processor, including software
running on other processors.

Each exception has:

• a priority level

• an exception number

• a vector in memory which defines the entry-point (address) for execution on taking the exception.
The associated code is described as the exception handler or the interrupt service routine (ISR).

Each synchronous exception, other than reset, is in one of three possible states:

• an Inactive exception is one which is not Pending or Active

• a Pending exception is one where the exception event has been generated, and which has not yet
started being processed on the processor

• an Active exception is one whose handler has been started on a processor, but processing is not
complete. An Active exception can be either running or pre-empted by a higher priority exception.

Asynchronous exceptions can be in one of the three possible states or both Pending and Active at the same
time, where one instance of the exception is Active, and a second instance of the exception is Pending.

Priority Levels and Execution Pre-emption

All exceptions are assigned a priority level, the exception priority. Three exceptions have fixed values, while
all others can be altered by privileged software. In addition, the instruction stream executing on the
processor has a priority level associated with it, the execution priority. An exception whose exception
priority is sufficiently1 higher than the execution priority will become active. In this case, the currently
running instruction stream is pre-empted, and the exception that is taken is activated.

When an instruction stream is pre-empted by an exception other than reset, key context information is saved
onto the stack automatically. Execution branches to the code pointed to by the exception vector that has been
activated.

1. The concept of sufficiently higher relates to priority grouping within the exception prioritization model. Priority
grouping is explained in Priority grouping on page B1-18
B1-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
The execution priority can be boosted by software using registers provided for this purpose, otherwise it is
the highest priority of all the exceptions that are active. See Execution priority and priority boosting within
the core on page B1-18 for more details.

Exceptions can occur during the exception activation, for example as a result of a memory fault while
pushing context information. Late-arrival exception optimizations are permissible. The behavior of these
cases is described in Exceptions on exception entry on page B1-33.

Exception Return

When in handler mode, an exception handler can return. If the exception is both Active and Pending (a
second instance of the exception has occurred while it is being serviced), it is re-entered or becomes Pending
according to the prioritization rules. If the exception is Active only, it becomes Inactive. The key information
that was stacked is restored, and execution returns to the code pre-empted by the exception. The target of
the exception return is determined by the Exception Return Link, a value stored in the link register on
exception entry.

On an exception return, there can be a pending exception which is of sufficiently high priority that the
pending exception will pre-empt the execution being returned to. This will result in an exception entry
sequence immediately after an exception return sequence. This condition is referred to as chaining of the
exceptions. Hardware can optimize chaining of exceptions to remove the need to restore and re-save the key
context state; this optimization is referred to as Tail-chaining. See Tail-chaining and exceptions on exception
return on page B1-35 for details.

Faults can occur during the exception return, for example as a result of a memory fault while popping
previous state off the stack. The behavior in this and other cases is explained in Derived exceptions on
page B1-34.

B1.3.3 Execution State

ARMv7-M only executes Thumb instructions, both 16-bit and 32-bit instructions as described in The ARM
Architecture – M profile on page A1-2, and hence is always executing in Thumb state. Thumb state is
indicated by an execution status bit (EPSR.T == 1) within the architecture, see The special-purpose program
status registers (xPSR) on page B1-8. ARMv7-M is consistent with the software programming model and
interworking support of additional execution states in other profiles. Setting EPSR.T to zero in ARMv7-M
causes a fault when the next instruction executes, because all instructions in this state are undefined.

B1.3.4 Debug State

Debug state is entered when a core is configured to halt on a debug event, and a debug event occurs. See
Chapter C1 ARMv7-M Debug for more details.

The alternative debug mechanism (generate a DebugMonitor exception) does not use Debug state.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-7
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

System Level Programmers’ Model
B1.4 Registers

The ARMv7-M profile has the following registers closely coupled to the core:

• general purpose registers R0-R12

• 2 Stack Pointer registers, SP_main and SP_process (banked versions of R13)

• the Link Register, LR (R14)

• the Program Counter, PC

• status registers for flags, exception/interrupt level, and execution state bits

• mask registers associated with managing the prioritization scheme for exceptions and interrupts

• a control register (CONTROL) to identify the current stack and thread mode privilege level.

All other registers described in this specification are memory mapped.

Note
 Register access restrictions where stated apply to normal execution. Debug restrictions can differ, see
General rules applying to debug register access on page C1-6, Debug Core Register Selector Register
(DCRSR) on page C1-22 and Debug Core Register Data Register (DCRDR) on page C1-23.

B1.4.1 The SP registers

There are two stacks supported in ARMv7-M, each with its own (banked) stack pointer register.

• the Main stack – SP_main

• the Process stack – SP_process.

ARMv7-M implementations treat bits [1:0] as RAZ/WI. Software should treat bits [1:0] as SBZP for
maximum portability across ARMv7 profiles.

The SP that is used by instructions which explicitly reference the SP is selected according to the function
LookUpSP() described in Pseudocode details for ARM core register access in the Thumb instruction set on
page B1-12.

The stack pointer that is used in exception entry and exit is described in the pseudocode sequences of the
exception entry and exit, see Exception entry behavior on page B1-21 and Exception return behavior on
page B1-25 for more details. SP_main is selected and initialized on reset, see Reset behavior on page B1-20.

B1.4.2 The special-purpose program status registers (xPSR)

Program status at the system level breaks down into three categories. They can be accessed as individual
registers, a combination of any two from three, or a combination of all three using the MRS and MSR
instructions.

• The Application Program Status Register APSR - User writeable flags. APSR handling of user
writeable flags by the MSR and MRS instructions is consistent across all ARMv7 profiles.

• The Interrupt Program Status Register IPSR – Exception Number (for current execution)
B1-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
• The Execution Program Status Register EPSR - Execution state bits

The APSR, IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR, IPSR and EPSR registers is referred to as the xPSR register.

The APSR is modified by flag setting instructions and used to evaluate conditional execution in IT and
conditional branch instructions. The flags (NZCVQ) are as described in ARM core registers on page A2-11.
The flags are UNPREDICTABLE on reset.

The IPSR is written on exception entry and exit. It can be read using an MRS instruction. Writes to the IPSR
by an MSR instruction are ignored. The IPSR Exception Number field is defined as follows:

• When in Thread mode, the value is 0.

• When in Handler mode, the value reflects the exception number as defined in Exception number
definition on page B1-16.

The exception number is used to determine the currently executing exception and its entry vector (see
Exception number definition on page B1-16 and The vector table on page B1-16).

On reset, the core is in Thread mode and the Exception Number field of the IPSR is cleared. As a result, the
value 1 (the Reset Exception Number) is a transitory value, and not a valid IPSR Exception Number.

The EPSR contains the T-bit and overlaid IT/ICI execution state bits to support the IT instruction or
interrupt-continue load/store instructions. All fields read as zero using an MRS instruction. MSR writes are
ignored.

The EPSR T-bit supports the ARM architecture interworking model, however, as ARMv7-M only supports
execution of Thumb instructions, it must always be maintained with the value T-bit == 1. Updates to the PC
which comply with the Thumb instruction interworking rules must update the T-bit accordingly. The
execution of an instruction with the EPSR T-bit clear will cause an invalid state (INVSTATE) UsageFault.
The T-bit is set and the IT/ICI bits cleared on reset (see Reset behavior on page B1-20 for details).

Table B1-2 The xPSR register layout

31 30 29 28 27 26 25 24 23 16 15 10 9 8 0

APSR N Z C V Q

IPSR 0 or Exception Number

EPSR ICI/IT T ICI/IT a

a. While EPSR[9] is reserved, its associated bit location in memory for stacking xPSR context information is
allocated to stack alignment support, see Stack alignment on exception entry on page B1-24
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-9
Restricted Access Non-Confidential

System Level Programmers’ Model
The ICI/IT bits are used for saved IT state or saved exception-continuable instruction state.

• The IT bits provide context information for the conditional execution of a sequence of instructions
such that it can be interrupted and restarted at the appropriate point. See the IT instruction definition
in Chapter A6 Thumb Instruction Details for more information.

• The ICI bits provide information on the outstanding register list for exception-continuable
multi-cycle load and store instructions.

The IT/ICI bits are assigned according to Table B1-3.

The IT feature takes precedence over the ICI feature if an exception-continuable instruction is used within
an IT construct. In this situation, the multi-cycle load or store instruction is treated as restartable.

All unused bits in the individual or combined registers are reserved.

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
is explained in detail in Execution priority and priority boosting within the core on page B1-18:

• the exception mask register (PRIMASK) which has a 1-bit value

• the base priority mask (BASEPRI) which has an 8-bit value

• the fault mask (FAULTMASK) which has a 1-bit value.

All mask registers are cleared on reset. All unprivileged writes are ignored.

The formats of the mask registers are illustrated in Table B1-4.

Table B1-3 ICI/IT bit allocation in the EPSR

EPSR[26:25] EPSR[15:12] EPSR[11:10] Additional Information

IT[1:0] IT[7:4] IT[3:2] See ITSTATE on page A6-10.

ICI[7:6] (’00’) ICI[5:2] (reg_num) ICI[1:0] (’00’) See Exceptions in LDM and STM
operations on page B1-30.

Table B1-4 The special-purpose mask registers

31 8 7 1 0

PRIMASK RESERVED PM

FAULTMASK RESERVED FM

BASEPRI RESERVED BASEPRI
B1-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
Implementations can support an IMPLEMENTATION DEFINED number of priorities in powers of 2. Where
fewer than 256 priorities are implemented, the low-order bits of the BASEPRI field corresponding to the
unimplemented priority bits are RAZ/WI.

These registers can be accessed using the MSR/MRS instructions. The MSR instruction includes an additional
register mask value BASEPRI_MAX, which updates BASEPRI only where the new value increases the
priority level (decreases BASEPRI to a non-zero value). See MSR (register) on page B4-8 for details.

In addition:

• FAULTMASK is set by the execution of the instruction: CPSID f

• FAULTMASK is cleared by the execution of the instruction: CPSIE f

• PRIMASK is set by the execution of the instruction: CPSID i

• PRIMASK is cleared by the execution of the instruction: CPSIE i.

B1.4.4 The special-purpose control register

The special-purpose CONTROL register is a 2-bit register defined as follows:

• bit [0] defines the Thread mode privilege (Handler mode is always privileged)

— 0: Thread mode has privileged access

— 1: Thread mode has unprivileged access.

• bit [1] defines the stack to be used

— 0: SP_main is used as the current stack

— 1: For Thread mode, SP_process is used for the current stack. For Handler mode, this value is
reserved.

— Software can update bit [1] in Thread mode. Explicit writes from Handler mode are ignored.

— The bit is updated on exception entry and exception return. See the pseudocode in Exception
entry behavior on page B1-21 and Exception return behavior on page B1-25 for more details.

• bits [31:2] reserved.

The CONTROL register is cleared on reset. The MRS instruction is used to read the register, and the MSR
instruction is used to write the register. Unprivileged write accesses are ignored.

An ISB barrier instruction is required to ensure a CONTROL register write access takes effect before the
next instruction is executed.

B1.4.5 Reserved special-purpose register bits

All unused bits in special-purpose registers are reserved. MRS and MSR instructions that access reserved bits
treat them as RAZ/WI. For future software compatibility, the bits are UNK/SBZP. Software should write
them to zero when initializing the register for a new process, otherwise software should restore reserved bits
when updating or restoring a special-purpose register.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-11
Restricted Access Non-Confidential

ARM_2009_Q4
Sticky Note
As part of the architecture extensions added in issue D of this document:
 - CONTROL<0> is named CONTROL.nPRIV
 - CONTROL<1> is named CONTROL.SPSEL

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
CONTROL

System Level Programmers’ Model
B1.4.6 Special-purpose register updates and the memory order model

With the exception of writes to the CONTROL register, all changes to special-purpose registers from a CPS
or MSR instruction are guaranteed:

• not to affect those instructions or preceding instructions in program order

• to be visible to all instructions that appear in program order after those changes.

B1.4.7 Register related definitions for pseudocode

Two register types are used in the system programmers’ model pseudocode:

• 32- bit core registers

• 32-bit memory mapped registers.

See Appendix I Register Index for a list of ARMv7-M registers.

For bit fields associated with registers the convention adopted is to describe them as
<register_name>.<bitfield_name> or by a specific bit reference. For example:

• AIRCR.SYSRESETREQ

• CONTROL [1]

Pseudocode details for ARM core register access in the Thumb instruction set

The following pseudocode supports access to the general-purpose registers for the Thumb instruction set
operations defined in Alphabetical list of ARMv7-M Thumb instructions on page A6-17:

// The M-profile execution modes.

enumeration Mode {Mode_Thread, Mode_Handler};

// The names of the core registers. SP is a banked register.

enumeration RName {RName0, RName1, RName2, RName3, RName4, RName5, RName6,
 RName7, RName8, RName9, RName10, RName11, RName12,
 RNameSP_main, RNameSP_process, RName_LR, RName_PC};

// The physical array of core registers.
//
// _R[RName_PC] is defined to be the address of the current instruction.
// The offset of 4 bytes is applied to it by the register access functions.

array bits(32) _R[RName];

// LookUpSP()
// ==========

RName LookUpSP()
 RName SP;
 Mode CurrentMode;
B1-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

System Level Programmers’ Model
 if CONTROL<1> == 1
 if CurrentMode==Mode_Thread then
 SP is RNameSP_process;
 else
 UNPREDICTABLE;
 else
 SP is RNameSP_main;
 return SP;

// R[] - non-assignment form
// =========================

bits(32) R[integer n]
 assert n >= 0 && n <= 15;
 if n == 15 then
 result = _R[RName_PC] + 4;
 elsif n == 14 then
 result = _R[RName_LR]
 elsif n == 13 then
 LookUpSP();
 result = _R[SP];
 else
 result = _R[RName:n];
 return result;

// R[] - assignment form
// =====================

R[integer n] = bits(32) value
 assert n >= 0 && n <= 14;
 if n == 13 then
 LookUpSP();
 _R[SP] = value;
 else
 _R[RName:n] = value;
 return;

// BranchTo()
// ==========

BranchTo(bits(32) address)
 _R[RName_PC] = address;
 return;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-13
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

System Level Programmers’ Model
B1.5 Exception model

The exception model is central to the architecture and system correctness in the ARMv7-M profile. The
ARMv7-M profile differs from the other ARMv7 profiles in using hardware saving and restoring of key
context state on exception entry and exit, and using a table of vectors to determine the exception entry points.
In addition, the exception categorization in the ARMv7-M profile is different from the other ARMv7
profiles.

B1.5.1 Overview of the exceptions supported

The following exceptions are supported by the ARMv7-M profile.

Reset Two levels of reset are supported by the ARMv7-M profile. The levels of reset control which
register bit fields are forced to their reset values on the de-assertion of reset.

• Power-On Reset (POR) resets the core, System Control Space and debug logic.

• Local Reset resets the core and System Control Space except some fault and
debug-related resources. For more details, see Debug and reset on page C1-13.

The Reset exception is permanently enabled, and has a fixed priority of -3.

NMI – Non Maskable Interrupt Non Maskable Interrupt is the highest priority exception other than reset.
It is permanently enabled and has a fixed priority of -2.

NMI can be set to the Pending state by software (see Interrupt Control State Register (ICSR)
on page B3-12) or hardware.

HardFault HardFault is the generic fault that exists for all classes of fault that cannot be handled by any
of the other exception mechanisms. HardFault will typically be used for unrecoverable
system failure situations, though this is not required, and some uses of HardFault might be
recoverable. HardFault is permanently enabled and has a fixed priority of -1.

HardFault is used for fault escalation, see Priority escalation on page B1-19 for details.

MemManage The MemManage fault handles memory protection related faults which are determined by
the Memory Protection Unit or by fixed memory protection constraints, for both instruction
and data generated memory transactions. The fault can be disabled (in this case, a
MemManage fault will escalate to HardFault). MemManage has a configurable priority.

BusFault The BusFault fault handles memory related faults other than those handled by the
MemManage fault for both instruction and data generated memory transactions. Typically
these faults will arise from errors detected on the system buses. Implementations are
permitted to report synchronous or asynchronous BusFaults according to the circumstances
that trigger the exceptions. The fault can be disabled (in this case, a BusFault will escalate
to HardFault). BusFault has a configurable priority.

UsageFault The UsageFault fault handles non-memory related faults caused by the instruction
execution. A number of different situations will cause usage faults, including:

• UNDEFINED Instructions

• invalid state on instruction execution
B1-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
• errors on exception return

• disabled or unavailable coprocessor access.

The following can cause usage faults when the core is configured to report them:

• unaligned addresses on word and halfword memory accesses

• division by zero.

UsageFault can be disabled (in this case, a UsageFault will escalate to HardFault).
UsageFault has a configurable priority.

Debug Monitor In general, a DebugMonitor exception is a synchronous exception and classified as a fault.
Watchpoints are asynchronous and behave as an interrupt. Debug monitor exceptions occur
when halting debug is disabled, and debug monitor support is enabled. DebugMonitor has
a configurable priority. See Priority escalation on page B1-19 and Debug event behavior on
page C1-14 for more details.

SVCall This supervisor call handles the exception caused by the SVC instruction. SVCall is
permanently enabled and has a configurable priority.

Interrupts The ARMv7-M profile supports two system level interrupts – PendSV for software
generation of asynchronous system calls, and SysTick for a Timer integral to the ARMv7-M
profile – along with up to 496 external interrupts. All interrupts have a configurable priority.

PendSV1 is a permanently enabled interrupt, controlled using ICSR.PENDSVSET and
ICSR.PENDSVCLR (see Interrupt Control State Register (ICSR) on page B3-12). SysTick
can not be disabled.

Note
 While hardware generation of a SysTick event can be suppressed, ICSR.PENDSTSET and

ICSR.PENDSTCLR (see Interrupt Control State Register (ICSR) on page B3-12) are
always available to software.

All other interrupts can be disabled. Interrupts can be set to or cleared from the Pending state
by software, and interrupts other than PendSV can be set to the Pending state by hardware.

See Fault behavior on page B1-39 for a definitive list of all the possible causes of faults, the type of fault
reported, and the fault status register bits used to identify the faults.

1. A service (system) call is used by an application which requires a service from an underlying operating system.
The service call associated with PendSV executes when the interrupt is taken. For a service call which executes
synchronously with respect to program execution use the SVC instruction (the SVCall exception).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-15
Restricted Access Non-Confidential

System Level Programmers’ Model
B1.5.2 Exception number definition

All exceptions have an associated exception number as defined in Table B1-5.

B1.5.3 The vector table

The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses
for all exception handlers. The exception number (see above) defines the order of entries in the vector table
associated with exception handler entry as illustrated in Table B1-6.

Table B1-5 Exception numbers

Exception number Exception

1 Reset

2 NMI

3 HardFault

4 MemManage

5 BusFault

6 UsageFault

7-10 RESERVED

11 SVCall

12 Debug Monitor

13 RESERVED

14 PendSV

15 SysTick

16 External Interrupt(0)

… …

16 + N External Interrupt(N)

Table B1-6 Vector table format

word offset Description – all pointer address values

0 SP_main (reset value of the Main stack pointer)

Exception Number Exception using that Exception Number
B1-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
On reset (power-up and local reset, see Overview of the exceptions supported on page B1-14 and Reset
management on page B1-47), the vector table is initialized to an IMPLEMENTATION DEFINED value in the
CODE or SRAM partition of the ARMv7-M memory map. The table’s current location can be determined
or relocated using the Vector Table Offset Register (VTOR), see Vector Table Offset Register (VTOR) on
page B3-13.

The Vector table must be naturally aligned to a power of two whose alignment value is greater than or equal
to (Number of Exceptions supported x 4), with a minimum alignment of 128 bytes.The entry at offset 0 is
used to initialize the value for SP_main, see The SP registers on page B1-8. All other entries must have bit
[0] set, as the bit is used to define the EPSR T-bit on exception entry (see Reset behavior on page B1-20 and
Exception entry behavior on page B1-21 for details).

On exception entry, if bit [0] of the associated vector table entry is clear, execution of the first instruction
will cause an INVSTATE UsageFault (see The special-purpose program status registers (xPSR) on
page B1-8 and Fault behavior on page B1-39, Table B1-9 on page B1-40). On reset, this will escalate to a
HardFault (see Priority escalation on page B1-19) due to the UsageFault being disabled on reset.

B1.5.4 Exception priorities and pre-emption

The priority algorithm treats lower numbers as taking higher precedence, that is, the lower the assigned
value the higher the priority level. Exceptions assigned the same priority level adopt a fixed priority order
for selection within the architecture according to their exception number.

Reset, non-maskable interrupts (NMI) and HardFault execute at fixed priorities of -3, -2, and -1 respectively.
All other exception priorities can be set under software control and are cleared on reset.

The priorities of all exceptions are set in registers within the System Control Space (specifically, registers
within the system control block and NVIC).

When multiple exceptions have the same priority number, the pending exception with the lowest exception
number takes precedence. Once an exception is active, only exceptions with a higher priority (lower priority
number) can pre-empt it.

The priority field is an 8-bit field. In systems supporting less than 256 priority levels, the most significant
bits are used to define the priority. This aligns the use of the priority field with the priority grouping
mechanism described below.

If the priority of an exception is changed when it is pending or active, this change is guaranteed to take effect
on completion of a subsequent DSB instruction.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-17
Restricted Access Non-Confidential

ARM_2009_Q4
Sticky Note
----- Note -----
Exception priority applies only to exception handling. If no exception is active, and there is no pending exception with sufficient priority to cause exception entry, you can consider software executing in Handler mode as executing at the highest priority value, +1. However, this is only a conceptual value.

System Level Programmers’ Model
Priority grouping

Exception priority is split into two parts, the group priority and the sub-priority. The allocation of bits to the
two parts is controlled by the PRIGROUP field of the Application Interrupt and Reset Control Register
(AIRCR). This is a 3-bit field which indicates how many of the most significant bits within the 8-bit priority
field for a given exception number are allocated to priority grouping as illustrated in Table B1-7.

The priority group bit field is used to define the priority for pre-emption. The priority associated with this
field is referred to as the group priority. Where multiple pending exceptions share the same group priority,
the sub-priority bit field is then used to resolve the priority within a group. Where two pending exceptions
have the same priority the lower pending exception number has priority over the higher pending exception
number.

The group priorities of Reset, NMI and HardFault are -3, -2, and -1 respectively, regardless of the value of
PRIGROUP.

Execution priority and priority boosting within the core

The execution priority is defined to be the highest priority formulated from a set of values:

• the priorities of all Active exceptions (lowest priority number)

• the impact of PRIMASK, FAULTMASK and BASEPRI values (see below)

Table B1-7 Priority grouping

Exception Priority Field [7:0]

PRIGROUP value Priority Group bit field Sub-priority bit field

0 [7:1] [0]

1 [7:2] [1:0]

2 [7:3] [2:0]

3 [7:4] [3:0]

4 [7:5] [4:0]

5 [7:6] [5:0]

6 [7] [6:0]

7 - [7:0]
B1-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
Note
 Note: If the priority of an active exception is changed it can affect the execution priority. Therefore, the
execution priority can be different from the priority of the running exception. This ensures that dynamic
priority management avoids priority inversion from a new exception with respect to the active exception
stack.

The priority can be boosted by the following mechanisms:

• PRIMASK: setting this mask bit raises the execution priority to 0. This prevents all exceptions with
configurable priority from activating, other than through the fault escalation mechanism (see Priority
escalation). This also has a special impact on WFI (see WFI on page A6-277).

• FAULTMASK: setting this mask bit raises the execution priority to -1. FAULTMASK can only be set
when the execution priority is not NMI or HardFault (the priority value is greater than or equal to
zero). Setting the FaultMask raises the priority of the exception handler to the level of a HardFault.
FAULTMASK is cleared automatically on all exception returns except a return from NMI.

• BASEPRI: can be written with a value from N (lowest configurable priority) to 1. When this register
is cleared to 0, it has no effect on the current priority. A non-zero value will act as a priority mask,
affecting the execution priority when the priority defined by BASEPRI is higher than the current
executing priority.

The priority boosting mechanisms only affect the group priority. They have no effect on the sub-priority.
The sub-priority is only used to sort pending exception priorities, and does not affect active exceptions.

Priority escalation

When the currently executing group priority is less than HardFault, the priority of exceptions is escalated
to HardFault in the following cases:

• when the group priority of a pending synchronous fault or supervisor call is lower than or equal to
the currently executing group priority, inhibiting normal pre-emption. This applies to all synchronous
exceptions (a fault or SVCall) including the BKPT instruction but excluding all other DebugMonitor
faults.

• on an occurence of a configurable fault that is not enabled.

A fault which is escalated to a HardFault retains the ReturnAddress() behavior of the original fault. See the
pseudocode definition of ReturnAddress() in Exception entry behavior on page B1-21 for more details. For
the behavior of the affected exceptions occuring when the currently executing group priority is that of a
HardFault or higher, see Unrecoverable exception cases on page B1-44.

The following situations are examples of pending exceptions which give rise to priority escalation:

• a configurable system exception handler causes the same kind of exception as is being serviced. For
example, an undefined instruction is encountered in a UsageFault handler.

• a configurable fault handler generates a different fault and the handler for it is the same or lower
priority
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-19
Restricted Access Non-Confidential

ARM_2009_Q2
Sticky Note
ADD NEW SUBSECTION HERE:

Execution priority

The ExecutionPriority() pseudocode function defines the execution priority.

// ExecutionPriority()
// ============

// Determine the current execution priority

bit ExceptionActive[*]; // exception handler active state
 // SEE TakeReset() for more information

integer ExecutionPriority()

 highestpri = 256; // priority of Thread mode with no active exceptions
 // the value is PriorityMax + 1 = 256
 // (configurable priority maximum bit field is 8 bits)
 boostedpri = 256; // priority influence of BASEPRI, PRIMASK and FAULTMASK

 subgroupshift = UInt(BITS(3) AIRCR.PRIGROUP)
 groupvalue = '000000010' LSL groupshift // used by priority grouping

 for (i=2, i<512, i=i+1) ; IPSR values of the exception handlers
 if ExceptionActive[i] == '1' then
 if ExceptionPriority[i] < highestpri then
 highestpri = ExceptionPriority[i];

 // include the PRIGROUP effect

 subgroupvalue = highestpri MOD groupvalue
 highestpri = highestpri - subgroupvalue

 if Uint(BASEPRI<7:0>) != 0 then
 boostedpri = Uint(BASEPRI<7:0>);

 // include the PRIGROUP effect

 subgroupvalue = boostedpri MOD groupvalue
 boostedpri = boostedpri - subgroupvalue

 if PRIMASK<0> == '1' then
 boostedpri = 0;

 if FAULTMASK<0> == '1' then
 boostedpri = -1;

 if boostedpri < highestpri then
 priority = boostedpri;
 else
 priority = highestpri;

 return (priority);

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
FAULTMASK

ARM_2009_Q4
Inserted Text
, and the HardFault exception taken,

ARM_2009_Q4
Inserted Text
, qualified by the PRIGROUP bitfield,

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Sticky Note
The change from current priority to execution priority is a clarification. The two terms have exactly the same meaning.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
. This affects

System Level Programmers’ Model
• the configurable fault is not enabled

• an SVC instruction when PRIMASK is set to 1.

Note
 Enabled interrupts are not escalated – they are set to the Pending state. Disabled interrupts are ignored.

Asynchronous faults (Imprecise BusFaults) are set to the Pending state and are entered according to normal
priority rules when enabled. They are treated as HardFault exceptions when disabled.

SVCall, PendSV and critical region code avoidance

Context switching typically requires a critical region of code where interrupts must be disabled to avoid
context corruption of key data structures during the change. This can be a severe constraint on system design
and deterministic performance. ARMv7-M can support context switching with no critical region such that
interrupts never need to be disabled.

An example usage model supporting critical region avoidance is to configure both SVCall and PendSV with
the same, lowest exception priority. SVCall can be used for supervisor calls from threads, and PendSV can
be used to handle context critical work offloaded from the exception handlers, including the equal priority
SVCall handler. Because SVCall and PendSV have the same execution priority they will never pre-empt
each other, therefore one will always process to completion before the other starts. SVCall and PendSV
exceptions are always enabled, which means they will each execute at some point once all other exceptions
have been handled. In addition, the associated exception handlers do not need to check whether they are
returning to a process on exit with this usage model, as the PendSV exception will occur when returning to
a process.

The example has all context switch requests issued by setting PendSV to Pending, however, both SVCall
and PendSV exceptions can be used for context switching because they do not interfere with each other.
While not the only usage model, support of critical region software avoidance is a key feature of ARMv7-M,
specifically the support provided by the SVCall and PendSV exception specifications.

B1.5.5 Reset behavior

The assertion of reset causes the current execution state to be abandoned without being saved. On the
de-assertion of reset, all registers controlled by the reset assertion contain their reset values, and the
following actions are performed.

For global declarations see Register related definitions for pseudocode on page B1-12.
For helper functions and procedures see Miscellaneous helper procedures and functions on page AppxG-22.

// TakeReset()
// ============

integer NestedActivation; /* used for Handler => Thread check when value == 1 */
bit ExceptionActive[*]; /* conceptual array of 1-bit values for all exceptions */
bits(32) vectortable = '00':VTOR<29:7>:'0000000';
Mode CurrentMode;
B1-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Cross-Out

System Level Programmers’ Model
TakeReset()
 R[0..12] = bits(32) UNKNOWN;
 SP_main = MemA[vectortable,4] & 0xFFFFFFFC;
 SP_process = ((bits(30) UNKNOWN):’00’);
 LR = 0xFFFFFFFF; /* preset to an illegal exception return value */
 tmp = MemA[vectortable+4,4]
 PC = tmp AND 0xFFFFFFFE; /* address of reset service routine */
 tbit = tmp<0>;
 CurrentMode = Mode_Thread;
 APSR = bits(32) UNKNOWN; /* flags UNPREDICTABLE from reset */
 IPSR<8:0> = 0x0; /* Exception Number cleared */
 EPSR.T = tbit; /* T bit set from vector */
 EPSR.IT<7:0> = 0x0; /* IT/ICI bits cleared */
 PRIMASK<0> = '0'; /* priority mask cleared at reset */
 FAULTMASK<0> = '0'; /* fault mask cleared at reset */
 BASEPRI<7:0> = 0x0; /* base priority disabled at reset */
 CONTROL<1:0> = '00'; /* current stack is Main, thread is privileged */
 ResetSCSRegs(); /* catch-all function for System Control Space reset */
 NestedActivation = 0x0; /* initialised value for base thread */
 ExceptionActive[*] = '0'; /* all exceptions Inactive */
 ClearExclusiveLocal(); /* Synchronization (LDREX*/STREX*) monitor support */
 /* to open access state. */
 ClearEventRegister() /* see WFE instruction for more details */

ExceptionActive[*] is a conceptual array of active flag bits for all exceptions (fixed priority system
exceptions, configurable priority system exceptions, and external interrupts). The fixed priority active flags
are conceptual only, and are not required to exist in a system register.

B1.5.6 Exception entry behavior

On pre-emption of an instruction stream, context state is saved by the hardware onto a stack pointed to by
one of the SP registers (see The SP registers on page B1-8). The stack that is used depends on the mode of
the processor at the time of the exception.

The stacked context supports the ARM Architecture Procedure Calling Standard (AAPCS). The support
allows the exception handler to be an AAPCS-compliant procedure.

A full-descending stack format is used, where the stack pointer is decremented immediately before storing
a 32-bit word (when pushing context) onto the stack, and incremented after reading a 32-bit word (popping
context) from the stack. Eight 32-bit words are saved in descending order, with respect to their address in
memory, as listed:

xPSR, ReturnAddress(), LR (R14), R12, R3, R2, R1, and R0

The exception entry pseudocode is:

// ExceptionEntry()
// ================

// NOTE: PushStack() can abandon memory accesses if a fault occurs during the stacking
// sequence.
// Exception entry is modified according to the behavior of a derived exception,
// see DerivedLateArrival() and associated text.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-21
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Cross-Out

ARM_2009_Q4
Inserted Text
to the end of the new stack frame

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
 data

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
the stacked data

ARM_2009_Q4
Sticky Note
This is a clarification of the intended meaning. The processor does not update the stack pointer for each word transferred to or from the stack. It performs a single update of the stack pointer, moving it by the size of the stack frame.

System Level Programmers’ Model
PushStack();
ExceptionTaken(ExceptionType); // ExceptionType is encoded as its exception number

For global declarations see Register related definitions for pseudocode on page B1-12.
For a definition of ExceptionActive[*] and NestedActivation see Reset behavior on page B1-20.
For helper functons and procedures see Miscellaneous helper procedures and functions on page AppxG-22.

The PushStack() and ExceptionTaken() pseudo-functions are defined as follows:

// PushStack()
// ===========

PushStack()
 if CONTROL<1> == '1' AND CurrentMode == Mode_Thread then
 frameptralign = SP_process<2> AND CCR.STKALIGN;
 SP_process = (SP_process - 0x20) AND NOT(ZeroExtend(CCR.STKALIGN:’00’,32));
 frameptr = SP_process;
 else
 frameptralign = SP_main<2> AND CCR.STKALIGN;
 SP_main = (SP_main - 0x20) AND NOT(ZeroExtend(CCR.STKALIGN:’00’,32));
 frameptr = SP_main;
 /* only the stack locations, not the store order, are architected */
 MemA[frameptr,4] = R[0];
 MemA[frameptr+0x4,4] = R[1];
 MemA[frameptr+0x8,4] = R[2];
 MemA[frameptr+0xC,4] = R[3];
 MemA[frameptr+0x10,4] = R[12];
 MemA[frameptr+0x14,4] = LR;
 MemA[frameptr+0x18,4] = ReturnAddress();
 MemA[frameptr+0x1C,4] = (xPSR<31:10>:frameptralign:xPSR<8:0>);
 // see ReturnAddress() in-line note for information on xPSR.IT bits
 if CurrentMode==Mode_Handler then
 LR = 0xFFFFFFF1;
 else
 if CONTROL<1> == '0' then
 LR = 0xFFFFFFF9;
 else
 LR = 0xFFFFFFFD;
 return;

// ExceptionTaken()
// ================

ExceptionTaken(bits(9) ExceptionNumber)

 bit tbit;
 bits(32) tmp;

 R[0..3] = bits(32) UNKNOWN;
 R[12] = bits(32) UNKNOWN;
 tmp = MemA[VectorTable+4*ExceptionNumber,4];
B1-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

System Level Programmers’ Model
 PC = tmp AND 0xFFFFFFFE;
 tbit = tmp<0>;
 CurrentMode = Mode_Handler;
 APSR = bits(32) UNKNOWN; // Flags UNPREDICTABLE due to other activations
 IPSR<8:0> = ExceptionNumber // ExceptionNumber set in IPSR
 EPSR.T = tbit; // T-bit set from vector
 EPSR.IT<7:0> = 0x0; // IT/ICI bits cleared
 /* PRIMASK, FAULTMASK, BASEPRI unchanged on exception entry*/
 CONTROL<1> = '0'; // current Stack is Main, CONTROL<0> is unchanged
 /* CONTROL<0> unchanged */
 NestedActivation = NestedActivation + 1;
 ExceptionActive[ExceptionNumber]= '1';
 SCS_UpdateStatusRegs(); // update SCS registers as appropriate
 ClearExclusiveLocal();
 SetEventRegister() // see WFE instruction for more details
 InstructionSynchronizationBarrier();

For more details on the registers with UNKNOWN values, see Exceptions on exception entry on page B1-33.
For updates to system status registers, see section System Control Space (SCS) on page B3-6.

ReturnAddress() is the address to which execution will return after handling of the exception:

// ReturnAddress()
// ===============

Bits(32) ReturnAddress() returns the following values based on the exception cause
 // NOTE: ReturnAddress() is always halfword aligned - bit<0> is always zero
 // xPSR.IT bits saved to the stack are consistent with ReturnAddress()

// Exception Type Address returned
// ============== ================

// NMI: Address of Next Instruction to be executed
// HardFault (precise): Address of the Instruction causing fault
// HardFault (imprecise): Address of Next Instruction to be executed
// MemManage: Address of the Instruction causing fault
// BusFault (precise): Address of the Instruction causing fault
// BusFault (imprecise): Address of Next Instruction to be executed
// UsageFault: Address of the Instruction causing fault
// SVC: Address of the Next Instruction after the SVC
// DebugMonitor (precise): Address of the Instruction causing fault
// DebugMonitor (imprecise): Address of Next Instruction to be executed
// IRQ: Address of Next Instruction to be executed after an interrupt

Note
 A fault which is escalated to the priority of a HardFault retains the ReturnAddress() behavior of the original
fault. For a description of priority escalation see Priority escalation on page B1-19.

IRQ includes SysTick and PendSV
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-23
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q2
Cross-Out

System Level Programmers’ Model
B1.5.7 Stack alignment on exception entry

ARMv7-M supports a configuration option to ensure that all exceptions are entered with 8-byte stack
alignment. The stack pointers in ARMv7-M are guaranteed to be at least 4-byte aligned. As exceptions can
occur on any instruction boundary, it is possible that the current stack pointer is not 8-byte aligned when an
exception activates.

The AAPCS requires that the stack-pointer is 8-byte aligned on entry to a conforming function1. Since it is
anticipated that exception handlers will be written as AAPCS conforming functions, the system must ensure
natural alignment of the stack for all arguments passed. The 8-byte alignment requirement is guaranteed in
hardware using a configuration feature.

The STKALIGN bit (see Configuration and Control Register (CCR) on page B3-16) is used to enable the
8-byte stack alignment feature. Whether the bit is programmable in software and its value on reset are
IMPLEMENTATION DEFINED . The bit should be set in the system boot sequence prior to needing 8-byte
alignment support.

Note
 Software must ensure that any exception handler that can activate while CCR.STKALIGN == ’0’ does not
require 8-byte alignment. An example is an NMI exception entered from reset, where the implementation
resets to 4-byte alignment.

If the bit is cleared between the entry to and return from an exception, and if the stack was not 8-byte aligned
on entry to the exception, system corruption can occur. Support of a 4-byte aligned stack (CCR.STKALIGN
== ’0’) in ARMv7-M is deprecated.

Theory of operation

On an exception entry when STKALIGN == 1, the stack pointer (SP_main or SP_process) in use before the
exception entry is forced to have 8-byte alignment by adjusting its alignment as part of the exception entry
sequence. The xPSR that is saved as part of the exception entry sequence records the alignment of this stack
pointer prior to the exception entry sequence. The alignment status is merged and stored to memory as bit
[9] of the xPSR (a reserved bit within the xPSR) in the saved context information.

On an exception exit when STKALIGN == 1, the stack pointer returned to takes its alignment from the value
recovered from bit [9] of the xPSR in the restored context from the exception exit sequence. This reverses
the forced stack alignment performed on the exception entry.

See Exception entry behavior on page B1-21 and Exception return behavior on page B1-25 for pseudocode
details of the effect of the STKALIGN feature on exception entry and exception return.

1. The AAPCS requires conforming functions to preserve the natural alignment of primitive data of size 1, 2, 4,
and 8 bytes. In return, conforming code is permitted to rely on that alignment. To support unqualified reliance
the stack-pointer must in general be 8-byte aligned on entry to a conforming function. If a function is entered
directly from an underlying execution environment, that environment must accept the stack alignment
obligation in order to give an unqualified guarantee that conforming code can execute correctly in all
circumstances.
B1-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
Note
 Stack pointer alignment on exception exit is architecturally defined as an OR function. If the exception exit
sequence is started with a stack pointer which is only 4 byte aligned, then this change has no effect.

In the event that the exception exit causes a derived exception, the derived exception is entered with the same
stack alignment as was in use before the exception exit sequence started.

A side-effect when STKALIGN is enabled is that the amount of stack used on exception entry becomes a
function of the alignment of the stack at the time that the exception is entered. As a result, the average and
worst case stack usage will increase. The worst case increase is 4 bytes per exception entry.

Maintaining the stack alignment information in an unused bit within the saved xPSR makes the feature
transparent to context switch code within operating systems, provided that the reserved status of unused bits
with the xPSR have been respected.

Compatibility

Some operating systems can avoid saving and restoring R14 when switching between different processes in
Thread mode if it is known that the values held in an EXC_RETURN value are invariant between the
different processes. This provides a small improvement in context switch time, but at the cost of future
compatibility. The STKALIGN feature does not affect the EXC_RETURN value. ARM does not guarantee
that this software optimization will be possible in future revisions of the ARMv7-M architecture, and
recommends for future compatibility that the R14 value is always saved and restored on a context switch.

B1.5.8 Exception return behavior

Exception returns occur when one of the following instructions loads a value of 0xFXXXXXXX into the PC while
in Handler mode:

• POP/LDM which includes loading the PC.

• LDR with PC as a destination.

• BX with any register.

When used in this way, the value written to the PC is intercepted and is referred to as the EXC_RETURN
value.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-25
Restricted Access Non-Confidential

System Level Programmers’ Model
EXC_RETURN[28:4] are reserved with the special condition that all bits should be written as one or
preserved. Values other than all 1s are UNPREDICTABLE. EXC_RETURN[3:0] provide return information as
defined in Table B1-8.

RESERVED entries in this table result in a chained exception to a UsageFault.

If an EXC_RETURN value is loaded into the PC when in Thread mode, or from the vector table, or by any
other instruction, the value is treated as an address, not as a special value. This address range is defined to
have eXecute Never (XN) permissions, and will result in a MemManage exception, an INVSTATE
UsageFault1 exception, or the exception will escalate to a HardFault.

Integrity checks on exception returns

The ARMv7-M profile provides a number of integrity checks on an exception return. These exist as a guard
against errors in the system software. Incorrect exception return information could be inconsistent with the
state of execution which must be held in processor hardware or other state stored by the exception
mechanisms.

The hardware related integrity checks ensure that the tracking of exception activation within the interrupt
controller (NVIC) and System Control Block (SCB) hardware is consistent with the exception returns.

Table B1-8 Exception return behavior

EXC_RETURN[3:0]

0bXXX0 RESERVED

0b0001 Return to Handler Mode;
Exception return gets state from the Main stack;
On return execution uses the Main Stack.

0b0011 RESERVED

0b01X1 RESERVED

0b1001 Return to Thread Mode;
Exception return gets state from the Main stack;
On return execution uses the Main Stack.

0b1101 Return to Thread Mode;
Exception return gets state from the Process stack;
On return execution uses the Process Stack.

0b1X11 RESERVED

1. It is IMPLEMENTATION DEFINED whether a MemManage or UsageFault exception occurs when an EXC_RETURN
value is treated as a branch address, and bit [0] of the value is clear.
B1-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
27

System Level Programmers’ Model
Integrity checks are provided to check the following conditions on an exception return:

• The Exception Number being returned from (as held in the IPSR at the start of the return) must be
listed in the SCB as being active.

• If no exceptions other than the returning exception are active, the mode being returned to must be
Thread mode. This checks for a mismatch of the number of exception returns.

• If at least one exception other than the returning exception is active, under normal circumstances the
mode being returned to must be Handler mode. This checks for a mismatch of the number of
exception returns. This check can be disabled using the NONBASETHRDENA control bit in the
SCB.

• On return to Thread mode, the Exception Number restored into the IPSR must be 0.

• On return to Handler mode, the Exception Number restored into the IPSR must not be 0.

• The EXC_RETURN[3:0] must not be listed as reserved in Table B1-8 on page B1-26

An exception return error causes an INVPC UsageFault, with the illegal EXC_RETURN value in the link
register (LR).

Exception return operation

For global declarations see Register related definitions for pseudocode on page B1-12.
For ExceptionTaken() see Exception entry behavior on page B1-21.
For a definition of ExceptionActive[*] and NestedActivation see Reset behavior on page B1-20.
For helper functons and procedures see Miscellaneous helper procedures and functions on page AppxG-22.

// ExceptionReturn()
// =================

ExceptionReturn(bits(28) EXC_RETURN)
 assert CurrentMode == Mode_Handler;
 if !IsOnes(EXC_RETURN<27:4>) then UNPREDICTABLE;

 integer ReturningExceptionNumber = UInt(IPSR<8:0>);

 if ExceptionActive[ReturningExceptionNumber] == '0' then
 DeActivate(ReturningExceptionNumber);
 UFSR.INVPC = '1';
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // returning from an inactive handler
 return;
 else
 case EXC_RETURN<3:0> of
 when '0001' // return to Handler
 if NestedActivation == 1 then
 DeActivate(ReturningExceptionNumber);
 UFSR.INVPC = '1';
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // return to Handler exception mismatch
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-27
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Cross-Out

ARM_2009_Q2
Sticky Note
ADD new lines of pseudocode:

 integer NestedActivation; // used for Handler => Thread check when value == 1

 NestedActivation = ExceptionActiveBitCount(); // Number of active exceptions

ARM_2009_Q2
Inserted Text
i

ARM_2009_Q2
Inserted Text
ExceptionActiveBitCount() is a pseudofunction that returns the number of bits set to '1' in the ExceptionActive[*] array.

integer ExceptionActiveBitCount()

ARM_2009_Q4
Cross-Out
The architecture does not require this check.

ARM_2009_Q4
Inserted Text

System Level Programmers’ Model
 return;
 else
 frameptr = SP_main;
 CurrentMode = Mode_Handler;
 CONTROL<1> = '0';
 when '1001' // returning to Thread using Main stack
 if NestedActivation != 1 && CCR.NONBASETHRDENA == '0' then
 DeActivate(ReturningExceptionNumber);
 UFSR.INVPC = '1';
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // return to Thread exception mismatch
 return;
 else
 frameptr = SP_main;
 CurrentMode = Mode_Thread;
 CONTROL<1> = '0';
 when '1101' // returning to Thread using Process stack
 if NestedActivation != 1 && CCR.NONBASETHRDENA == '0' then
 DeActivate(ReturningExceptionNumber);
 UFSR.INVPC = '1';
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // return to Thread exception mismatch
 return;
 else
 frameptr = SP_process;
 CurrentMode = Mode_Thread;
 CONTROL<1> = '1';
 otherwise
 DeActivate(ReturningExceptionNumber);
 UFSR.INVPC = '1';
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // illegal EXC_RETURN
 return;

 DeActivate(ReturningExceptionNumber);
 PopStack(frameptr);

 if CurrentMode==Mode_Handler AND IPSR<8:0> =='000000000' then
 UFSR.INVPC = '1';
 PushStack(); // to negate PopStack()
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // return IPSR is inconsistent
 return;
 if CurrentMode==Mode_Thread AND IPSR<8:0> !='000000000' then
 UFSR.INVPC = '1';
 PushStack(); // to negate PopStack()
 LR = 0xF0000000 + EXC_RETURN;
 ExceptionTaken(UsageFault); // return IPSR is inconsistent
 return;

 ClearExclusiveLocal();
 SetEventRegister() // see WFE instruction for more details
 InstructionSynchronizationBarrier();
B1-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

System Level Programmers’ Model
 if CurrentMode==Mode_Thread AND NestedActivation == 0 AND SCR.SLEEPONEXIT == '1' then
 PushStack(); // to negate PopStack()
 SleepOnExit(); // IMPLEMENTATION DEFINED

The DeActivate() and PopStack() pseudo-functions are defined as follows:

// DeActivate()
// ============

DeActivate(integer ReturningExceptionNumber)
 ExceptionActive[ReturningExceptionNumber] = '0';
 /* PRIMASK and BASEPRI unchanged on exception exit */
 if IPSR<8:0> != '000000010' then
 FAULTMASK<0> = '0'; // clear FAULTMASK on any return except NMI
 NestedActivation = NestedActivation – 1;
 return;

// PopStack()
// ==========

PopStack(bits(32) frameptr) /* only stack locations, not the load order, are architected */
 R[0] = MemA[frameptr,4];
 R[1] = MemA[frameptr+0x4,4];
 R[2] = MemA[frameptr+0x8,4];
 R[3] = MemA[frameptr+0xC,4];
 R[12] = MemA[frameptr+0x10,4];
 LR = MemA[frameptr+0x14,4];
 PC = MemA[frameptr+0x18,4]; // UNPREDICTABLE if the new PC not halfword aligned
 psr = MemA[frameptr+0x1C,4];
 case EXC_RETURN<3:0> of
 when '0001' // returning to Handler
 SP_main = (SP_main + 0x20) OR ZeroExtend((psr<9> AND CCR.STKALIGN):'00',32);
 when '1001' // returning to Thread using Main stack
 SP_main = (SP_main + 0x20) OR ZeroExtend((psr<9> AND CCR.STKALIGN):'00',32);
 when '1101' // returning to Thread using Process stack
 SP_process = (SP_process + 0x20) OR ZeroExtend((psr<9> AND CCR.STKALIGN):'00',32);
 APSR<31:27> = psr<31:27>; // valid APSR bits loaded from memory
 IPSR<8:0> = psr<8:0>; // valid IPSR bits loaded from memory
 EPSR<26:24,15:10> = psr<26:24,15:10>; // valid EPSR bits loaded from memory
 return;

B1.5.9 Exceptions in single-word load operations

To support instruction replay, single-word load instructions must not update the destination register when a
fault occurs during execution. By example, this allows replay of the following instruction:

LDR R0, [R2, R0];
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-29
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q2
Cross-Out

ARM_2009_Q4
Inserted Text
SleepOnExit() is an IMPLEMENTATION DEFINED pseudocode function that, if the exception from which the processor is returning is the only active exception, and the sleep-on-exit functionality is supported and enabled, puts the processor into a power-saving state on return from the exception. For more information see Power management on page B1-48 [PDF page 466].

System Level Programmers’ Model
B1.5.10 Exceptions in LDM and STM operations

In order to allow implementations to have the best possible interrupt response, an interrupt can be taken
during an LDM or STM and continued after the return from the interrupt. The continuation state of the LDM or
STM is held in the ICI bits in the EPSR (see The special-purpose program status registers (xPSR) on
page B1-8). It is IMPLEMENTATION DEFINED when interrupts are recognized, so the use of the ICI bits is
IMPLEMENTATION DEFINED.

The ARMv7-M architecture supports continuation of, or restarting from the beginning, an abandoned LDM
or STM instruction as outlined below. Where an LDM or STM is abandoned and restarted (ICI bits are not
supported), the instructions should not be used with volatile memory. To support instruction replay, the LDM,
STM, PUSH and POP instructions are required to restore/maintain the base register when a fault occurs (no base
register writeback update) during execution.

Note
 LDM and STM instructions where the ICI bits are not supported are incompatible with the single-copy atomicity
rules for Device and Strongly Ordered memory described in Memory access restrictions on page A3-26.

The ICI bits encode the number of the first register in the register list that must be loaded or stored on return
to an LDM or STM instruction. When the LDM or STM is returned to, all registers of an equal or higher number in
the instruction register list to the value held in the ICI bits are loaded/stored.

The continuation register is encoded as:

Bits [26:25] = '00';

Bits [15:12] = RegisterNumber;

Bits [11:10] = '00';

When Bits [26:25,15:10] are all zero, this does not represent a continuation state. It encodes normal
operation with neither IT nor interrupt continuation active. An abandoned instruction restarts.

If the register number held in the ICI bits is non-zero and is not a register in the register list of the LDM or STM
the result is UNPREDICTABLE.

If the register number held in the ICI bits is non-zero and is the first register in the register list of the LDM or
STM the result is UNPREDICTABLE.

If the ICI bit field is non-zero, and the instruction executed on an exception return is not an LDM, STM or within
an IT block, a UsageFault (INVSTATE, see Fault behavior on page B1-39) is generated.

If a fault (BusFault or MemManage) occurs on any LDM or STM instruction (including PUSH and POP), the
instruction is abandoned, and will be restarted from the beginning on return from the exception. If the
instruction is not within an IT block, the ICI bits are cleared to zero.
B1-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
Note
 The IT feature takes precedence over the ICI feature if an exception-continuable instruction is used within
an IT construct. In this situation, the multi-cycle load or store instruction is treated as restartable, and should
not be used with Device or Strongly Ordered memory.

The following sections describe restrictions that apply to taking an exception during an LDM or STM:

Load multiple and PC in load list

For the ARM architecture in general, the case of LDM with PC in the register list is defined to be unordered,
allowing the registers to be loaded in a different order than the register mask implies. The usual use is to
allow the PC to be loaded first.

For ARMv7-M, however, LDM operations with the PC in the register list can be interrupted during their
operation, and the continuation state held in the ICI bits. On an exception return to an LDM instruction, the
ICI bits indicate which register must be loaded next to continue properly; this can result in an LDM with the
PC in the register list accessing the same location in memory twice.

If the PC was loaded early, the PC presented to the exception entry sequence must be restored such that the
return address from the exception taken is to the LDM instruction address; it is then loaded again when the LDM
is continued.

Load-store multiple, base register update and the ICI bits

The base register can be changed as a result of a load or store multiple under the following situations:

• Base register write-back: see load/store instruction writeback details in Chapter A6 Thumb
Instruction Details for more information.

• Base load: the base register is one of the registers in the register list of an LDM.

The value left in the base register in the case of an exception which occurs during the load or store multiple
instruction is as follows:

Fault condition (BusFault or MemManage):

• Applies to all forms of LDM and STM, including PUSH and POP

— The base register is restored to the original value.

— If the instruction is not within an IT block, the ICI bits are cleared to zero.

— If the instruction is within an IT block, the ICI bits are not used to hold the
continuation state as the IT bits indicate the position in the IT block.

— In all cases, a return from the fault handler will fully restart the instruction.

Base register write-back:

• Interrupt of an LDM or STM in an IT block:

— The base register contains the initial value, whether an IA or DB LDM/STM
instruction.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-31
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
is indicated by ! in the assembler syntax for LDM and STM instructions and is implicit in the PUSH and POP instructions.

System Level Programmers’ Model
— The ICI bits are not used to hold the continuation state, as the IT bits indicate
the position in the IT block.

• Interrupt of an LDM or STM, not in an IT block, using SP as the base register.

— The SP that is presented to the exception entry sequence is lower than any
element pushed (STM) or not yet popped (LDM).

For instructions decrementing before (DB), the SP is set to the final (lowest)
value.

For instructions incrementing after (IA), the SP is set to the initial (lowest)
value. In all cases, the ICI bits hold the continuation state.

• Interrupt of LDM or STM not in an IT block and not using SP as the base register:

— The base register contains the final value, whether an IA or DB LDM/STM
instruction.

— The ICI bits hold the continuation state.

Base register load

• In all cases, the original base address is restored when the instruction is abandoned

• Volatile locations should not be accessed with LDM operations that:

— execute inside an IT block

— load the base register

— load the PC

• Interrupt of an LDM in an IT block:

— If the instruction is in an IT block, the ICI bits cannot be used to hold the
continuation state, as the IT bits indicate the position of the instruction in the
IT block. It is IMPLEMENTATION DEFINED whether the instruction executes to
completion or restarts.

• Interrupt of an LDM not in an IT block:

— If the interrupt activates before the base has been loaded, implementations can
use the ICI bits to hold the continuation state.

— If the interrupt activates after the base register has been loaded,
implementations must restore the base register to its original value. The ICI
bits can be set to an IMPLEMENTATION DEFINED value that will load at least the
base register and subsequent locations again on return.

As a base register load example, if LDM R2, {R0-R4}, not in an IT block, is interrupted:

• after R0 or R1 has been loaded and continuation supported: the continuation bits indicate a restart on
R1 or R2

• after R2 has been loaded and continuation supported: the continuation bits indicate a restart on R1 or
R2

• after R3 has been loaded and continuation supported: the continuation bits indicate a restart on R1 or
R2
B1-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
. Other aspects of the behavior depend on the context of the interrupt.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Interrupt of an LDM in an IT block
 If the instruction is in an IT block, the ICI bits cannot be used to hold the continuation state, because the IT bits indicate the position of the instruction in the IT block. It is IMPLEMENTATION DEFINED whether the instruction executes to completion or restarts.
Interrupt of an LDM not in an IT block
 • If the processor takes the interrupt before it has loaded the base register, an implementation can use the ICI bits to hold the continuation state.
 • If the processor takes the interrupt after it has loaded the base register, the implementation must restore the base register to its original value. The ICI bits can be set to an IMPLEMENTATION DEFINED value that will load at least the base register and subsequent locations again on return.

Software must not use an LDM to access a volatile location if any of the following applies to that LDM:
 • it executes inside an IT block
 • it loads the base register
 • it loads the PC.

ARM_2009_Q4
Sticky Note
This is a clarification of the original description with some simplification. The IMPLEMENTATION DEFINED aspects of the required behavior mean that any implementation that complies with the original requirement also complies with the simplified requirement.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 • If continuation is supported and the interrupt occurs after R0 or R1 has been loaded, the continuation bits indicate a restart on:
 — R1, if R0 has been loaded
 — R2, if R1 has been loaded.
 • If continuation is supported and the interrupt occurs at any point after R2 has been loaded, the processor abandons execution, and restarts execution, with the ICI bits cleared to zero, after it has handled the exception. This means that, in this case, the processor handles the instruction as if it does not support continuation.
 • If continuation is not supported and the instruction is abandoned before loading R4, after the processor handles the interrupt it restarts execution of the instruction, with the ICI bits cleared to zero.

System Level Programmers’ Model
• in all cases where continuation is not supported and the instruction is abandoned prior to loading R4,
the instruction will restart with the ICI bits cleared to zero.

B1.5.11 Exceptions on exception entry

During Exception Entry other exceptions can occur, either because of a fault on the operations involved in
exception entry, or because of the arrival of an asynchronous exception, an interrupt, which is of higher
priority than the exception entry sequence in progress.

Late arriving exceptions

The ARMv7-M profile does not specify the point at which the arrival of an asynchronous exception is
recognized during an exception entry. However, in order to support implementations with very low interrupt
latencies, the ARMv7-M profile provides some facilities to permit high priority interrupts arriving during
an exception entry to activate during the exception entry, and for the entry sequence not to be repeated.

When an asynchronous interrupt activates during the exception entry sequence, the exception that caused
the exception entry sequence is known as the original exception. The exception caused by the interrupt is
known as the secondary exception.

It is permissible in this case for the exception entry sequence that was started by the original exception to
be used by the secondary exception. The original exception is taken after the secondary exception has
returned. This is referred to as late-arrival pre-emption.

For a late arrival pre-emption, the secondary exception (interrupt, fault or supervisor call) is entered and the
original exception is left in the Pending state.

It is IMPLEMENTATION DEFINED what conditions, if any, lead to late arrival pre-emption. Late arrival
pre-emption can only occur when the secondary exception is of higher priority than the original exception.
Where late arrival exceptions are supported:

// LateArrival()
// =============

LateArrival()

 // xEpriority: the lower the value, the higher the priority

 integer OEpriority; // original exception group priority
 integer SEpriority; // secondary exception group priority
 integer OEnumber; // ExceptionNumber for OE
 integer SEnumber; // ExceptionNumber for SE

 if (SEpriority < OEpriority) then
 ExceptionTaken(SEnumber); // secondary exception taken
 else
 ExceptionTaken(OEnumber); // original exception taken

For ExceptionTaken() and PushStack() see Exception entry behavior on page B1-21.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-33
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Where late arriving exceptions are supported, the LateArrival() function changes the ExceptionType argument used in the ExceptionTaken() function, see Exception entry behavior on page B1-21 [PDF page 439].

ARM_2009_Q4
Cross-Out
See the modified description given on the previous page.

ARM_2009_Q4
Sticky Note
This is a further correction to the updated pseudocode in the ARM_2009_Q2 errata release.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
// LateArrival()
// =============

LateArrival()

 // xEpriority: the lower the value, the higher the priority

 integer OEpriority; // original exception group priority
 integer LAEpriority; // late-arriving exception group priority
 integer OEnumber; // ExceptionNumber for OE
 integer LAEnumber; // ExceptionNumber for LAE

 if (LAEpriority < OEpriority) then
 ExceptionTaken(LAEnumber); // late-arriving exception taken
 else
 ExceptionTaken(OEnumber); // original exception taken

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
late-arriving

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
late-arriving

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
late-arriving

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
late-arriving

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
late-arriving

System Level Programmers’ Model
Derived exceptions

Where an exception entry sequence itself causes a fault, the exception that caused the exception entry
sequence is known as the original exception. The fault that is caused by the exception entry sequence is
known as the derived exception. The code stream that was running at the time of the original exception is
known as the pre-empted code whose execution priority is the pre-empted priority.

The following derived exceptions can occur during exception entry:

• a MemManage fault on the writes to the stack memory as part of the exception entry
(this is described as a MSTKERR class of MemManage fault)

• a BusFault on the stack on the writes to the stack memory as part of the exception entry
(this is described as a STKERR class of BusFault)

• a watchpoint can give rise to a DebugMonitor fault on exception entry

• a BusFault on reading the vector (this is always treated as a HardFault).

If the pre-empted group priority is higher than or equal to the group priority of the derived exception then:

• if the Derived Exception was DebugMonitorFault, the exception is ignored

• if the Derived Exception was not DebugMonitorFault, the derived exception is escalated to
HardFault.

Note
 Note: the priority of the original exception is not involved.

Derived exceptions are treated similarly to late arriving exceptions and it is permissible for implementations
to use late arrival pre-emption. Late arrival pre-emption can only occur when the derived exception (after
escalation if appropriate) is of higher priority than the original exception, but it is IMPLEMENTATION
DEFINED exactly what conditions, if any, lead to late arrival pre-emption.

If the late-arrival pre-emption approach is not used, the derived exception is set to Pending, and the
exception will be taken in accordance with the prioritization rules for Pending exceptions.

If late-arrival pre-emption is used, the derived exception (interrupt, fault or Supervisor call) is entered and
the original exception is left in the Pending state.

The behavior can be summarized as follows:

For ExceptionTaken() and PushStack() see Exception entry behavior on page B1-21.

// DerivedLateArrival()
// ====================

DerivedLateArrival()

 // xEpriority: the lower the value, the higher the priority
 // PE: the pre-empted exception - before exception entry
 // OE: the original exception - exception entry
 // DE: the derived exception - fault on exception entry
B1-34 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
cause

ARM_2009_Q4
Inserted Text
derived

ARM_2009_Q4
Inserted Text
 definitions of

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
DerivedLateArrival() pseudocode function shows this operation. This function changes the ExceptionType argument used in the ExceptionTaken() function.

ARM_2009_Q4
Cross-Out
This qualification is not correct. Only faults can become derived exceptions.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
// DerivedLateArrival()
// ====================

DerivedLateArrival()

 // xEpriority: the lower the value, the higher the priority
 // PE: the pre-empted exception - before exception entry
 // OE: the original exception - exception entry
 // DE: the derived exception - fault on exception entry

 integer PEpriority; // pre-empted exception group priority
 integer OEpriority; // group priority of the original exception
 integer DEpriority; // derived exception group priority

 integer PEnumber; // ExceptionNumber for PE
 integer OEnumber; // ExceptionNumber for OE
 integer DEnumber; // ExceptionNumber for DE

 boolean DEisDbgMonFault; // DE is a DebugMonitorFault

 if DEpriority >= PEpriority && DEisDbgMonFault then
 ExceptionTaken(OEnumber); // ignore the DebugMonitor fault
 if DEpriority >= PEpriority && !DEisDbgMonFault then
 DEpriority = -1; // escalate DE to HardFault
 // (incl. BKPT with DebugMonitor disabled)
 SetPending(OEnumber); // OE to Pending state
 ExceptionTaken(HardFault);
 else
 if DEpriority < OEpriority then
 SetPending(OEnumber); // OE to Pending state
 ExceptionTaken(DEnumber); // start execution of the DE
 // tail-chaining IMPLEMENTATION DEFINED
 else
 SetPending(DEnumber); // DE to Pending state
 ExceptionTaken(OEnumber); // start execution of the OE

ARM_2009_Q4
Sticky Note
This is a further correction to the updated pseudocode in the ARM_2009_Q2 errata release.

System Level Programmers’ Model
 integer PEpriority; // pre-empted exception group priority
 integer OEpriority; // group priority of the original exception
 integer DEpriority; // derived exception group priority

 integer PEnumber; // ExceptionNumber for PE
 integer OEnumber; // ExceptionNumber for OE
 integer DEnumber; // ExceptionNumber for DE

 boolean DEisDbgMonFault; // DE is a DebugMonitorFault

 if DEpriority < PEpriority && DEisDbgMonFault then
 ExceptionTaken(OEnumber); // ignore the DebugMonitor fault
 if DEpriority < PEpriority && !DEisDbgMonFault then
 DEpriority = -1; // escalate DE to HardFault
 // (incl. BKPT with DebugMonitor disabled)
 SetPending(OEnumber); // OE to Pending state
 ExceptionTaken(HardFault);
 else
 if DEpriority < OEpriority then
 SetPending(OEnumber); // OE to Pending state
 ExceptionTaken(DEnumber); // start execution of the DE
 // tail-chaining IMPLEMENTATION DEFINED
 else
 SetPending(DEnumber); // DE to Pending state
 ExceptionTaken(OEnumber); // start execution of the OE

Pending state information is maintained in Interrupt Control State Register (ICSR) on page B3-12 and
System Handler Control and State Register (SHCSR) on page B3-18.

Note
 It is IMPLEMENTATION DEFINED whether late-arrival exceptions are supported and can affect derived
exceptions. Where late-arrival exceptions are supported, DE maps to OE and the late-arrival exception maps
to SE in the late-arrival pseudocode (see Late arriving exceptions on page B1-33).

B1.5.12 Tail-chaining and exceptions on exception return

During exception return, other exceptions can affect behavior, either because of a fault on the operations
involved in exception return, or because of an asynchronous exception that is of higher priority than the
priority level being returned to during the exception return. The asynchronous exception can be already
Pending or arrive during the exception return.

The target of the exception return is described by the Exception Return Link. The target priority is the
highest priority active exception, excluding the exception being returned from, or the boosted priority set by
the special-purpose mask registers, whichever is higher.

Derived exceptions

Where an exception return sequence causes a fault exception, the exception caused by the exception return
sequence is known as the derived exception.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-35
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
See corrected DerivedLateArrival() funtion definition on previous page.

System Level Programmers’ Model
The following derived exceptions can occur during exception return:

• a MemManage fault on the reads to the stack memory as part of the exception return
(this is described as a MUNSTKERR class of MemManage fault)

• a BusFault on the stack on the reads to the stack memory as part of the exception return
(this is described as an UNSTKERR class of BusFault)

• a watchpoint can give rise to a DebugMonitorFault on exception return

• an integrity check on the exception return causing a UsageFault.

If the target group priority is higher than or equal to the group priority of the derived exception, then:

• if the derived exception is a DebugMonitorFault, it is ignored

• if the derived exception is not a DebugMonitorFault, the derived exception is escalated to HardFault.

In the event of a derived exception, the derived exception is entered using tail-chaining.

Tail-chaining

Tail-chaining is the optimization of an exception return and an exception entry so that the loads and stores
of the key context state can be eliminated.

Tail-chaining is used for two reasons:

• For handling derived exceptions

• As an optimization that implementations are permitted to use to improve interrupt response when
there is a Pending exception which has a higher group priority than the target group priority. In this
case, the architected behavior is that the Pending exception will be taken immediately on exception
return, and tail-chaining permits the optimization of the return and entry sequences.

In the tail-chaining optimization, the exception return and exception entry sequences are combined to form
the following sequence, where the ReturningExceptionNumber is the number of the exception being
returned from, and the ExceptionNumber is the number of the exception being tail-chained to.
EXC_RETURN is the EXC_RETURN value that caused the original exception return to start.

For ExceptionTaken() see Exception entry behavior on page B1-21.
For DeActivate() see Exception return behavior on page B1-25.

// TailChain()
// ===========

TailChain(bits(28) EXC_RETURN)
 assert CurrentMode == Mode_Handler;
 if !IsOnes(EXC_RETURN<27:4>) then UNPREDICTABLE;

 integer ReturningExceptionNumber = UInt(IPSR<8:0>);
 LR = 0xF0000000 + EXC_RETURN;
 DeActivate(ReturningExceptionNumber);
 ExceptionTaken(ExceptionNumber);
B1-36 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text

----- Note -----
The ExceptionReturn() pseudocode function handles integrity checks that cause UsageFault exceptions, and therefore the list of derived exceptions does not include this case. An implementation can optimize the handling of these exceptions, using a method similar to tail-chaining.

System Level Programmers’ Model
 /* NestedActivation is effectively unchanged by a tail-chain */

Use of tail-chaining as an optimization for pending exceptions

The use of tail-chaining as an optimization for performing exception returns when there are Pending
exceptions has a behavior which is different from simply performing the exception return, followed by the
Pending exception entry. The difference in behavior is that many of the derived exceptions that could occur
as a result of the exception return and the exception entry might not occur. Instead, these derived exceptions
will occur when the pending exception is returned from.

Late arrival pre-emption and tail-chaining during exception returns

The ARMv7-M profile does not specify the point at which arrival of asynchronous exceptions are
recognized during an exception. The ARMv7-M profile permits exceptions of a higher priority than the
priority of the exception to be tail-chained to, to be entered in place of that exception being tail-chained to,
using late-arrival pre-emption. It is IMPLEMENTATION DEFINED what conditions, if any, lead to late arrival
pre-emption.

Late-arrival pre-emption can occur during a tail-chaining execution sequence due to a derived exception on
an exception return. The derived exception is marked as Pending when a late-arrival pre-emption of the
derived exception occurs.

B1.5.13 Exception status and control

The System Control Block within the System Control Space (The System Control Block (SCB) on
page B3-10) provides the register support required to manage the exception model. The registers break
down into the following categories:

• General system configuration, status and control

— Vector Table Offset Register – see The vector table on page B1-16

— Interrupt Control State Register – see Interrupt Control State Register (ICSR) on page B3-12

— Application Interrupt and Reset Control Register – see Application Interrupt and Reset
Control Register (AIRCR) on page B3-14

— System Control Register– see Power management on page B1-48

— Configuration Control Register – see Configuration and Control Register (CCR) on
page B3-16

— System Handler Priority Registers – see System Handler Priority Register 1 (SHPR1) on
page B3-17, System Handler Priority Register 2 (SHPR2) on page B3-17, and System Handler
Priority Register 3 (SHPR3) on page B3-17

— System Handler Control and State Register – see System Handler Control and State Register
(SHCSR) on page B3-18

— Fault handling support – see Fault behavior on page B1-39 and Fault status and address
information on page B1-42 for details
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-37
Restricted Access Non-Confidential

System Level Programmers’ Model
— Software Trigger Interrupt Register – see Software Trigger Interrupt Register (STIR) on
page B3-23

• SysTick support – see System timer - SysTick on page B3-24

• NVIC support – see Nested Vectored Interrupt Controller (NVIC) on page B3-28

The Interrupt Control State Register (Interrupt Control State Register (ICSR) on page B3-12) provides the
ability to set the Pending state in software for NMI, SysTick and PendSV. It also provides the ability to clear
the Pending state in software for SysTick and PendSV, and provides status information of pending and active
exceptions.

The Application Interrupt and Reset Control Register (Application Interrupt and Reset Control Register
(AIRCR) on page B3-14) provides priority grouping control for the exception model, endian status for data
accesses, and reset controls (see Reset management on page B1-47 for more details). Endianness can only
be configured at reset and not under software control. See Control of the Endian Mapping in ARMv7-M on
page A3-6 for more details. The register includes a vector key field that must be written with the key value
0x05FA for a write transaction to be accepted.

The Configuration Control Register (Configuration and Control Register (CCR) on page B3-16) provides
configuration control for:

• Enabling divide by zero faults, alignment faults and some operation controls

• Disabling BusFaults at priority -1 and above

The System Handler Priority Registers (System Handler Priority Register 1 (SHPR1) on page B3-17,
System Handler Priority Register 2 (SHPR2) on page B3-17 and System Handler Priority Register 3
(SHPR3) on page B3-17) provide mechanisms to program the priority of BusFault, MemManage,
UsageFault, Debug Monitor Fault, SVCall, SysTick and PendSV.

The System Handler Control and State Register (System Handler Control and State Register (SHCSR) on
page B3-18) provides access to the Pending and Active status of faults and supervisor calls plus the active
status of the SysTick and PendSV interrupts. This register provides the ability to read and write the state bits
as part of a context switch. The register also provides the ability to enable the UsageFault, BusFault and
MemManage exception handlers. When the fault handlers are disabled, the faults are escalated (see Priority
escalation on page B1-19).

Note
 • There are no explicit active state bits for the fixed priority exceptions (reset, NMI or HardFault).

• The debug monitor is enabled in a debug control register (see Debug Exception and Monitor Control
Register (DEMCR) on page C1-24).

• SysTick is enabled in a SysTick control register (see SysTick Control and Status Register (SYST_CSR)
on page B3-26).

• The active and pending state bits are provided to support the save and restore of information on a
context switch. In particular, for explicit (software) writes to the System Handler Control and State
Register:

— setting an active bit does not cause an exception entry
B1-38 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
— clearing an active bit does not cause an exception return

— setting a pending bit for an exception in this register when the execution group priority is lower
than the group priority of the exception associated with the pending bit is UNPREDICTABLE.

The Software Trigger Interrupt Register (Software Trigger Interrupt Register (STIR) on page B3-23) is a
write only register, which provides a general method for setting a pending register by its exception number.
Only external interrupts can be pended by this method. Attempts to write an exception number in the range
0-15 are ignored. Attempts to trigger an interrupt number not supported by a core are also ignored.

The NVIC registers (NVIC register support in the SCS on page B3-30) provide the following functions for
external interrupts:

• enabling and disabling

• setting and clearing the Pending state

• reading the Active state

• programming the priority.

Note
 Interrupts can become Pending when the associated interrupt is disabled. Enabling an interrupt allows a
Pending interrupt to activate.

B1.5.14 Fault behavior

In accordance with the ARMv7-M exception priority scheme, precise fault exception handlers execute in
one of the following ways:

• taking the specified exception handler

• taking a HardFault exception

• in the case of a fault arising while executing at priority “-1” or above, as described in Unrecoverable
exception cases on page B1-44.

Fault handling by a dedicated handler or HardFault handler can be summarized as follows:

// Fault handling
// ==============

// FaultType is a subset of ExceptionNumber and can be one of the following values:

bits(9) HardFault = 3;
bits(9) MemManage = 4;
bits(9) BusFault = 5;
bits(9) UsageFault = 6;

ExceptionTaken(FaultType);
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-39
Restricted Access Non-Confidential

System Level Programmers’ Model
In all fault handling cases, the corresponding fault status register bit is set, and the fault handler will return
according to the rules defined in ReturnAddress(), see Exception entry behavior on page B1-21 for more
details.

Table B1-9 lists all faults. The information provided includes the cause, exception taken, the name of the
associated fault status bit, and which debug vector catch bit (if any) is used to catch the associated fault.

Table B1-9 List of supported faults

Fault Cause
Fault
exception

Bit Name in
the HFSR or
CFSR
[Note 1]

Notes
Debug
vector
catch bit

Vector Read error HardFault VECTTBL Bus error returned when reading the
vector table entry.

Exception vector reads use the default
address map – see Protected Memory
System Architecture (PMSAv7) on
page B3-35

INTERR

Fault escalation HardFault FORCED Fault or supervisor call occurred, and
the handler group priority is lower or
equal to the execution group priority.

The exception escalates to a
HardFault. Fault address and status
registers (as appropriate) are updated.

HARDERR

Breakpoint (BKPT)
escalated

HardFault DEBUGEVT Occurs when halting debug and the
DebugMonitor are disabled, and a
BKPT associated exception is escalated.

HARDERR

BusFault on
exception entry
stack memory
operations

BusFault STKERR Failure when saving context via
hardware – bus error returned. The
BusFault Address Register is not
written by this fault.

INTERR

MemManage fault
on exception entry
stack memory
operations

MemManage MSTKERR Failure when saving context via
hardware – MPU access violation.
The MemManage Address Register is
not written by this fault.

INTERR

BusFault on
exception return
stack memory
operations

BusFault UNSTKERR Failure when restoring context via
hardware – bus error returned. The
Bus Fault Address Register is not
written by this fault.

INTERR
B1-40 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
MemManage fault
on exception return
stack memory
operations

MemManage MUNSTKERR Failure when restoring context via
hardware – MPU access violation.
The MemManage Address Register is
not written by this fault.

INTERR

MemManage fault
on data access

MemManage DACCVIOL Violation/fault on MPU due to an
explicit memory access. The
MemManage Address Register is
written with the data address of the
load/store.

MMERR

MemManage fault
on instruction
access

MemManage IACCVIOL Violation/fault on MPU due to
instruction fetch. Includes fetches
from XN memory when no MPU.
Faults only if the processor attempts
to execute the instruction.The
MemManage Address Register is not
written by this fault.

MMERR

Bus error on
instruction access
(precise)

BusFault IBUSERR Bus error returned on an instruction
fetch. Faults only if the processor
attempts to execute the instruction.
The Bus Fault Address Register is not
written by this fault.

BUSERR

Precise bus error on
data access

BusFault PRECISERR Precise bus error due to an explicit
memory access. The Bus Fault
Address Register is written with the
data address of the load/store.

BUSERR

Imprecise bus error
on data bus

BusFault IMPRECISERR Imprecise bus error due to an explicit
memory access. The Bus Fault
Address Register is not written by this
fault.

BUSERR

No Coprocessor UsageFault NOCP Does not exist, or access denied (see
Coprocessor Access Control Register
(CPACR) on page B3-22)

NOCPERR

Undefined
Instruction

UsageFault UNDEFINSTR Unknown instruction (including those
associated with an enabled
Coprocessor)

STATERR

Table B1-9 List of supported faults (continued)

Fault Cause
Fault
exception

Bit Name in
the HFSR or
CFSR
[Note 1]

Notes
Debug
vector
catch bit
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-41
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

System Level Programmers’ Model
Fault status and address information

The System Control Space includes the following fault status and fault address registers.

• Configurable Fault Status registers for UsageFault, BusFault and MemManage

• A HardFault Status register – see HardFault Status register (HFSR) on page B3-21 for more details

• A Debug Fault Status register – see Debug Fault Status Register (DFSR) on page B3-21 and Chapter
Chapter C1 ARMv7-M Debug for more details

Attempt to execute
an instruction when
EPSR.T==0

UsageFault INVSTATE Attempt to execute in an invalid EPSR
state (e.g. after a BX type instruction
has changed state). This includes state
change after entry to or return from
exception, as well as from
inter-working instructions.

STATERR

Exception return
integrity check
failures

UsageFault INVPC Any failures of the integrity checks
for exception return listed in Integrity
checks on exception returns on
page B1-26

STATERR

Illegal unaligned
load or store

UsageFault UNALIGNED This will occur when any load-store
multiple instruction attempts to
access a non-word aligned location. It
will also occur for any load-store if it
is not naturally aligned and the
UNALIGN_TRP bit is set. [Note 2]

CHKERR

Divide By 0 UsageFault DIVBYZERO This will occur when SDIV or UDIV is
executed with a divisor of 0, and the
DIV_0_TRP bit is set. [Note 2]

CHKERR

For debug related faults – see Chapter C1 ARMv7-M Debug

Note 1: CFSR = Configurable Fault Status register, HFSR = HardFault Status register (see below)
Note 2: UNALIGN_TRP and DIV_0_TRP are control bits in the Configuration and Control register

Table B1-9 List of supported faults (continued)

Fault Cause
Fault
exception

Bit Name in
the HFSR or
CFSR
[Note 1]

Notes
Debug
vector
catch bit
B1-42 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
• BusFault and MemManage Fault Address registers (BusFault Address Register (BFAR) on
page B3-22 and MemManage Address Register (MMFAR) on page B3-22 respectively). It is
IMPLEMENTATION DEFINED whether the fault address registers are unique registers, or are a shared
resource accessible from two locations in the System Control Space.

The HardFault Status register supports three fault handling status flags, indicating the reason for taking a
HardFault exception. All status flags are write-1-to-clear.

The 32-bit Configurable Fault Status register (Configurable Fault Status Registers (UserFault, BusFault,
and MemManage) on page B3-18) is a concatenation of fault status for the UsageFault, BusFault, and
MemManage status registers. UsageFault, BusFault and MemManage exceptions are known as configurable
faults, as they all support dynamic priority setting. Fault Status register bits are additive – each new fault
sets a bit. All status flags are write-1-to-clear.

The BusFault and MemManage status registers include a valid bit which is set when the associated fault
address register is updated. The MemManage Address register is updated with the faulting address for data
access violations only. The BusFault Address register is updated with the faulting address in the case of
precise data errors only. The address of the faulting instruction for UsageFault, MemManage and Precise
BusFaults can be determined from the stacked ReturnAddress() as defined in Exception entry behavior on
page B1-21.

Note
 • The escalation of BusFault or MemManage to HardFault can cause the associated fault address

register to be overwritten by a derived exception (see Exceptions on exception entry on page B1-33
and Tail-chaining and exceptions on exception return on page B1-35). Fault handlers must ensure that
the valid bit is checked and cleared by the HardFault handler when a derived exception causes this
corruption.

• There are cases where the fault address register will not be valid. Handlers should check address
validity by ensuring its associated VALID bit is set. An invalid address can occur due to pre-emption
of a fault.

The Configuration and Control register (Configuration and Control Register (CCR) on page B3-16)
includes control bits for three fault related features:

• a control bit (BFHFNMIGN) to inhibit data access bus faults when executing at priority -1 or -2.

An example use is to allow autoconfiguration of bridges and devices where probing of disabled or
non-existent elements can cause bus faults. Software must ensure the executing exception handler’s
code and data space are valid for correct operation.

• a control bit (DIV_0_TRP) to enable divide-by-0 traps – see Table B1-9 on page B1-40.

• a control bit (UNALIGN_TRP) to enable unaligned access traps on words and halfwords – see
Table B1-9 on page B1-40.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-43
Restricted Access Non-Confidential

System Level Programmers’ Model
B1.5.15 Unrecoverable exception cases

The ARMv7-M profile generally assumes that when the processor is running at priority -1 or above, any
faults or supervisor calls that occur are fatal and are entirely unexpected.

The standard exception entry mechanism does not apply where a fault or supervisor call occurs at a priority
of -1 or above. ARMv7-M handles most of these cases using a mechanism called lock-up, otherwise the
condition becomes Pending or is ignored. Lock-up suspends normal instruction execution and enters
lock-up state. When in lock-up state, the behavior is:

• The processor repeatedly fetches the same instruction, from a fixed address, determined by the exact
nature of the fault, as described in Table B1-10 on page B1-45.

• The instruction fetched is executed repeatedly if it is a valid instruction. If the lock-up is caused by a
precise memory error on a load or store which has base write-back, the base register is restored by
the fault.

• If the IT bits are non-zero at the time that lock-up occurs, the IT bits are not advanced.

• The S_LOCKUP bit in the Debug Halting Control and Status register is set.

• The Fault Status Register bits consistent with the fault causing the lock-up will be set.

It is strongly recommended that implementations provide an external signal which indicates that the lock-up
state has been entered to allow external mechanisms to react.

The lock-up state can be exited in one of 4 ways:

• If in a HardFault handler an NMI exception occurs, the NMI will be activated as normal. The NMI
return link will be the address used for the lock-up state.

• A System reset occurs. This will exit lock-up state and reset the system as normal.

• A halt command from a halt mode debug agent is issued. The core will enter Debug state with the PC
set to the same value as is used for return context. See Table B1-10 on page B1-45 for details.

• A memory error that can be resolved by the system through specific action(s) or over time (by
example, a resource that requires time to configure).

In most cases, once in lock-up state, the processor will continue in this manner until reset (such as from a
watchdog). However, the reason for the lock-up state can be examined and corrected without a reset by one
of the following mechanisms:

• The system is stopped by a debugger (Halt issued, Debug state entered) with a corresponding fix to
the xPSR, instruction, FaultMask and/or PC.

• If the problem is due to fetch errors (BusFault on read), an external master can correct the problem
or the problem self-corrects if it is transitory.

• If the problem is due to an undefined instruction, an external master can modify the memory contents.
B1-44 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
FAULTMASK

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

System Level Programmers’ Model
• If NMI pre-empts lock-up state in a HardFault exception, the NMI handler can fix the problem before
returning (e.g. changing the return PC, changing the value in the FAULTMASK register and/or fixing
the state bits in the saved xPSR).

In these cases, the processor will leave the lock-up state and continue executing from the lock-up or
modified (PC) address as stated above.

Note
 While the behavior described is architecturally defined, none of the above are suggested as application
approaches, as the lockup conditions are expected to be terminal.

Table B1-10 outlines the behavior of all faults or supervisor calls that can occur during HardFault or NMI
handler execution. Where the system locks up at a priority of -1, it is IMPLEMENTATION DEFINED whether
the EPSR indicates Hardfault and/or if the FAULTMASK bit is set.

Table B1-10 Behavior of faults which occur during NMI or HardFault execution

Fault cause Occurrence Behavior
Lock-up
Address

Notes

VECTABLE
read error at reset

Cannot read vector
table for SP or PC
at reset

Lock-up at priority
-1

0xFFFFFFFF

VECTABLE
read error on
NMI entry

Cannot read NMI
vector

Lock-up at priority
-2

0xFFFFFFFF

VECTABLE
read error on
HardFault entry

Cannot read
HardFault vector

Lock-up at priority
-1

0xFFFFFFFF

BusFault –
Instruction

Priority -1 or -2 Lock-up at priority
of occurrence

Faulting
instruction

Can auto-correct if bus fault is
transitory.

BusFault –
Imprecise Data

Priority -1 or -2 Imprecise Bus
Fault is set to the
Pending state

Does not lock up

BusFault –
Precise Data

Priority -1 or -2 Configurable:

Lock-up at priority
of occurrence or
ignored using
BFHFNMIGN

Faulting
instruction

BFHFNMIGNa == 0: Lock-up
state is entered

BFHFNMIGN == 1: BFSRb bits
will be set but otherwise the
BusFault will be ignored

These errors can auto-correct.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-45
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
IPSR

ARM_2009_Q4
Highlight
For more information about entries shown as 0xFFFFFFFF, see the Note added immediately after this table.

System Level Programmers’ Model
BusFault –
STKERR on NMI
entry

Priority before
NMI was -1.

Lock-up at priority
-1 or -2
 IMPLEMENTATION
DEFINED

0xFFFFFFFF

BusFault –
UNSTKERR

Un-stacking from
an NMI to target
priority of -1

Lock-up at priority
-1

0xFFFFFFFF Continually fetching 0xFFFFFFFF
at priority = -1 (Hard Fault).

MemManage –
Instruction

Priority -1 or -2 Lock-up at priority
of occurrence

Faulting
instruction

HFNMIENAc controls whether
this can occur from the MPU.

HFNMIENA == 0: lock-up can
occur from the default memory
map’s XN partitions.

HFNMIENA == 1: lock-up can
occur when a fetch causes an
MPU Access violation, XN
region violation, or missing
region fault.

MemManage –
Data

Priority -1 or -2 Lock-up at priority
of occurrence

Faulting
instruction

HFNMIENA == 0: lock-up
cannot occur

HFNMIENA == 1: lock-up can
occur from MPU access or
privilege violation

MemManage –
MSTKERR on
NMI entry

Priority before
NMI was -1.

Lock-up at priority
-1 or -2

IMPLEMENTATION
DEFINED

0xFFFFFFFF HFNMIENA == 0: lock-up
cannot occur

HFNMIENA == 1: lock-up can
occur from MPU access or
privilege violation

MemManage –
MUNSTKERR
on NMI return

Un-stacking from
an NMI to target
priority of -1

Lock-up at priority
-1

0xFFFFFFFF HFNMIENA == 0: lock-up
cannot occur

HFNMIENA == 1: lock-up can
occur from MPU access or
privilege violation

Table B1-10 Behavior of faults which occur during NMI or HardFault execution (continued)

Fault cause Occurrence Behavior
Lock-up
Address

Notes
B1-46 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Level Programmers’ Model
B1.5.16 Reset management

The Application Interrupt and Reset Control register (Application Interrupt and Reset Control Register
(AIRCR) on page B3-14) provides two mechanisms for a system reset:

• The control bit SYSRESETREQ requests a reset by an external system resource. The system
components which are reset by this request are IMPLEMENTATION DEFINED. SYSRESETREQ is
required to cause a Local Reset.

• The control bit VECTRESET (a debug feature, see Reset and debug on page B1-48 below) causes a
Local Reset. It is IMPLEMENTATION DEFINED whether other parts of the system are reset as a result of
this control.

Note
 SYSRESETREQ and VECTRESET should not be set (written to 1) in the same write access. Writing

the bits to 1 simultaneously can cause UNPREDICTABLE behavior.

SVC Priority -1 or -2 Lock-up at priority
of occurrence

Faulting
instruction

At priority -1 or -2, SVC is
treated as an UNDEFINED
instruction.

Usage Fault – all,
except INVPC

At Priority -1 or -2 Lock-up at priority
of occurrence

Faulting
instruction

Usage Fault –
INVPC

On un-stacking
from NMI to target
priority of -1.

Lock-up at priority
-2

0xFFFFFFFF

Usage Fault –
INVPC

On return from
Priority -1

Tailchains to
HardFault

N/A The fault on the exception return
causes re-entry to the HardFault
exception handler. This is not a
lock-up condition.

Breakpointd At Priority -1 or -2 Lock-up at priority
of occurrence

Breakpoint
instruction

a. See Configuration and Control Register (CCR) on page B3-16
b. See Configurable Fault Status Registers (UserFault, BusFault, and MemManage) on page B3-18
c. See MPU Control Register (MPU_CTRL) on page B3-40
d. BKPT instruction or FPB (see Flash Patch and Breakpoint (FPB) support on page C1-61) generated

Table B1-10 Behavior of faults which occur during NMI or HardFault execution (continued)

Fault cause Occurrence Behavior
Lock-up
Address

Notes
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-47
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
----- Note -----
When the lockup address is shown as 0xFFFFFFFF, the address issued by the resulting instruction fetches is 0xFFFFFFFE. This is because any instruction fetch is halfword aligned.

System Level Programmers’ Model
For SYSRESETREQ, the reset is not guaranteed to take place immediately. A typical code sequence to
synchronize reset following a write to the relevant control bit is:

 DSB;
Loop B Loop;

In addition the Application Interrupt and Reset Control register provides a mechanism, VECTCLRACTIVE
to reset the active state of all exceptions. Writing 1 to the VECTCLRACTIVE bit clears the Active state of
all exceptions and the Exception Number in the IPSR (see The special-purpose program status registers
(xPSR) on page B1-8). Once complete, the IPSR and Active state of all exceptions will read as zero.

Note
 This applies to Active state only, Pending state is not updated.

Reset and debug

Debug logic is fully reset by a Power-On Reset. Debug logic is only partially reset by a Local Reset. See
Debug and reset on page C1-13 for details. Debuggers must only use VECTRESET when the core is halted,
otherwise the effect is UNPREDICTABLE.

B1.5.17 Power management

ARMv7-M supports the use of Wait for Interrupt (WFI) and Wait for Event (WFE) instructions as part of a
power management policy. Wait for Interrupt provides a mechanism for hardware to support entry to one
or more sleep states. Hardware can suspend execution while waiting for a wakeup event. The levels of
power saving and associated wakeup latency, while execution is suspended, are IMPLEMENTATION DEFINED.

Wait for Event provides a mechanism for software to suspend program execution with minimal or no impact
on wakeup latency until a condition is met. Wait for Event allows some freedom for hardware to instigate
power saving measures. Both WFI and WFE are hint instructions and can have no effect. They are generally
used in software idle loops that resume program execution after an interrupt or event of interest has occurred.

Note
 Code using WFE and WFI must handle spurious wakeup events as a result of a debug halt or other
IMPLEMENTATION DEFINED reasons.

For more information, see:

• Wait For Event and Send Event on page B1-49

• Wait For Interrupt on page B1-51.

Where power management is supported, control and configuration is provided by the System Control
Register, see System Control Register (SCR) on page B3-15. Support for the following features is provided:

• The transition of an interrupt from the Inactive to the Pending state can be configured as a wakeup
event. This allows resumption of a Wait for Event instruction using a masked interrupt as the wakeup
event.
B1-48 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
 The SCR.SEVONPEND bit controls this feature.

System Level Programmers’ Model
• On an exception return, if no exceptions other than the returning exception are Active, there is a
configuration bit to suspend execution. When the feature is enabled, the exception return is not
performed. The subsequent activation of any exception behaves as a chained exception (see
Tail-chaining on page B1-36).

The suspended state can be exited spuriously. ARM recommends that software is written to handle
spurious wakeup events and the associated exception return.

Note
 If PRIMASK is set and FAULTMASK is clear, an asynchronous exception which has a higher group

priority than BASEPRI is not required by the architecture to result in the suspended state caused by
SLEEPONEXIT being left. This is different from the treatment of WFI in this case.

• A qualifier that indicates support of different levels of sleep. The bit indicates that the wakeup time
from the suspended execution can be longer than if the bit is not set. Typically this can be used to
determine whether a PLL or other clock generator can be suspended. The exact behavior is
IMPLEMENTATION DEFINED.

B1.5.18 Wait For Event and Send Event

ARMv7-M can support software-based synchronization with respect to system events using the SEV and WFE
hint instructions. Software can:

• use the WFE instruction to indicate that it is able to suspend execution of a process or thread until an
event occurs, permitting hardware to enter a low power state

• rely on a mechanism that is transparent to software and provides low latency wake up.

The Wait For Event system relies on hardware and software working together to achieve energy saving. For
example, stalling execution of a processor until a device or another processor has set a flag:

• the hardware provides the mechanism to enter the Wait For Event low-power state

• software enters a polling loop to determine when the flag is set:

— the polling processor issues a Wait For Event instruction as part of a polling loop if the flag is
clear

— an event is generated (hardware interrupt or Send Event instruction from another processor)
when the flag is set.

The mechanism depends on the interaction of:

• WFE wake-up events, see WFE wake-up events

• the Event Register, see The Event Register on page B1-50

• the Send Event instruction, see The Send Event instruction on page B1-50

• the Wait For Event instruction, see The Wait For Event instruction on page B1-50.

WFE wake-up events

The following events are WFE wake-up events:

• the execution of an SEV instruction on any processor in the multiprocessor system
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-49
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
 The SCR.SLEEPONEXIT bit controls this sleep-on-exit. Sleep-on-exit functionality is IMPLEMENTATION DEFINED.

ARM_2009_Q4
Inserted Text
 This qualifier is the SCR.DEEPSLEEP bit.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
When a processor enters sleep mode because of the sleep-on-exit functionality:
• NMIs and Debug events can wakeup the processor in the same way as for Wait For Interrupt, see Wait For Interrupt on page B1-51 [PDF page 469].
• Other asynchronous exceptions can wake up the processor only if PRIMASK is set to 1 and FAULTMASK is set to 0. In this case, it is IMPLEMENTATION DEFINED whether an exception with higher priority than the execution priority is a wakeup event.

System Level Programmers’ Model
• any exception entering the Pending state if SEVONPEND in the System Control Register is set

• an asynchronous exception at a priority that pre-empts any currently active exceptions

• a debug event with debug enabled.

The Event Register

The Event Register is a single bit register for each processor in a multiprocessor system. When set, an Event
Register indicates that an event has occurred, since the register was last cleared, that might prevent the
processor needing to suspend operation on issuing a WFE instruction. The following conditions apply to the
Event Register:

• The value of the Event Register at reset is UNKNOWN.

• The Event Register is set by any WFE wake-up event or by the execution of an exception return
instruction. For the definition of exception return instructions see Exception return behavior on
page B1-25.

• The Event Register is only cleared by a WFE instruction.

• Software cannot read or write the value of the Event Register directly.

The Send Event instruction

The Send Event instruction, see SEV on page A6-212, causes a wake up event to be signaled to all processors
in a multiprocessor system. The mechanism used to signal the event to the processors is IMPLEMENTATION
DEFINED.

The Wait For Event instruction

The action of the Wait For Event instruction, see WFE on page A6-276, depends on the state of the Event
Register:

• If the Event Register is set, the instruction clears the register and returns immediately.

• If the Event Register is clear the processor can suspend execution and enter a low-power state. It can
remain in that state until the processor detects a WFE wake-up event or a reset. When the processor
detects a WFE wake-up event, or earlier if the implementation chooses, the WFE instruction completes.

WFE wake up events can occur before a WFE instruction is issued. Software using the Wait For Event
mechanism must be tolerant to spurious wake-up events, including multiple wake ups.

Pseudocode details of the Wait For Event lock mechanism

The SetEventRegister() pseudocode procedure sets the processor Event Register.

The ClearEventRegister() pseudocode procedure clears the processor Event Register.

The EventRegistered() pseudocode function returns TRUE if the processor Event Register is set and FALSE
if it is clear:
B1-50 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
A reset clears the Event register.

System Level Programmers’ Model
boolean EventRegistered()

The WaitForEvent() pseudocode procedure optionally suspends execution until a WFE wake-up event or
reset occurs, or until some earlier time if the implementation chooses. It is IMPLEMENTATION DEFINED
whether restarting execution after the period of suspension causes a ClearEventRegister() to occur.

The SendEvent() pseudocode procedure sets the Event Register of every processor in a multiprocessor
system.

B1.5.19 Wait For Interrupt

In ARMv7-M, Wait For Interrupt is supported through the hint instruction, WFI. For more information, see
WFI on page A6-277.

When a processor issues a WFI instruction it can suspend execution and enter a low-power state. It can remain
in that state until the processor detects a reset or one of the following WFI wake-up events:

• an asynchronous exception at a priority that pre-empts any currently active exceptions

Note
 If PRIMASK is set and FAULTMASK is clear, an asynchronous exception that has a higher group

priority than any active exception and a higher group priority than BASEPRI results in a WFI
instruction exit. If the group priority of the exception is less than or equal to the execution group
priority, the exception is ignored.

• a debug event with debug enabled.

When the hardware detects a WFI wake-up event, or earlier if the implementation chooses, the WFI
instruction completes.

WFI wake-up events are recognized after the WFI instruction is issued.

Note
 Because debug entry is one of the WFI wake-up events, ARM recommends that Wait For Interrupt is used
as part of an idle loop rather than waiting for a single specific interrupt event to occur and then moving
forward. This ensures the intervention of debug while waiting does not significantly change the function of
the program being debugged.

Using WFI to indicate an idle state on bus interfaces

A common implementation practice is to complete any entry into power-down routines with a WFI
instruction. Typically, the WFI instruction:

1. forces the suspension of execution, and of all associated bus activity

2. ceases to execute instructions from the processor.

The control logic required to do this typically tracks the activity of the bus interfaces of the processor. This
means it can signal to an external power controller that there is no ongoing bus activity.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B1-51
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
 • A reset.
 • An asynchronous exception at a priority that, if PRIMASK was set to 0, would preempt any currently active exceptions.
 ----- Note -----
 The processor ignores the value of PRIMASK in determining whether an asynchronous exception is a WFI wakeup event.

 • If debug is enabled, a debug event.
 • An IMPLEMENTATION DEFINED WFI wakeup event.

When the hardware detects a WFI wakeup event, or earlier if the implementation chooses, the WFI instruction completes. The processor then either:
 • takes a pending exception, if, taking account of the value of PRIMASK, there is a pending exception with sufficient priority to preempt execution
 • resumes execution from the instruction immediately following the WFI instruction.

The exception prioritization rules mean that, if the processor executes a WFI instruction at NMI priority, the only guaranteed ways of forcing that instruction to complete are a reset or Debug state entry.

----- Note -----
 • ARM recommends that software always uses the WFI instruction in a loop, and does not assume that the processor either enters low-power state, or remains in low-power state, after any particular execution of the WFI instruction. This is because:
 — the architecture defines WFI as a NOP-compatible hint, that the processor can ignore
 — a processor can exit the low-power state spuriously, or because of debug, or for some IMPLEMENTATION DEFINED reason.
 • Some implementations of Wait For Interrupt drain down any pending memory activity before suspending execution. This increases the power saving, by increasing the area over which clocks can be stopped. The ARM architecture does not require this operation, and software must not rely on Wait For Interrupt operating in this way.

ARM_2009_Q4
Sticky Note
This change corrects some errors in the earlier description and improves the description of WFI.

System Level Programmers’ Model
The exact nature of this interface is IMPLEMENTATION DEFINED, but the use of Wait For Interrupt as the only
architecturally-defined mechanism that completely suspends execution makes it very suitable as the
preferred power-down entry mechanism.

Pseudocode details of Wait For Interrupt

The WaitForInterrupt() pseudocode procedure optionally suspends execution until a WFI wake-up event or
reset occurs, or until some earlier time if the implementation chooses.
B1-52 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter B2
System Memory Model

This chapter contains information on the memory model pseudocode, the pseudocode associated with
memory accesses. The chapter is made up of the following sections:

• Introduction on page B2-2

• Pseudocode details of general memory system operations on page B2-3
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-1
Restricted Access Non-Confidential

System Memory Model
B2.1 Introduction

The pseudocode described in this chapter is associated with instruction fetches from memory and load or
store data accesses.

The pseudocode hierarchy for a load or store instruction is as follows:

• the instruction operation uses the MemA[] or MemU[] helper function

• memory attributes are determined from the default system address map or using an MPU as defined
in The system address map on page B3-2 or Protected Memory System Architecture (PMSAv7) on
page B3-35 respectively.

• the access is governed by whether the access is a read or write, its address alignment, data endianness
and memory attributes.
B2-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Memory Model
B2.2 Pseudocode details of general memory system operations

This section contains pseudocode describing general memory operations, in the subsections:

• Memory data type definitions.

• Basic memory accesses on page B2-4.

• Interfaces to memory system specific pseudocode on page B2-4.

• Aligned memory accesses on page B2-5

• Unaligned memory accesses on page B2-6

• Reverse endianness on page B2-7

• Pseudocode details of operations on exclusive monitors on page B2-8

• Access permission checking on page B2-10

• MPU access control decode on page B2-10

• Default memory access decode on page B2-11

• MemManage fault handling on page B2-13.

Additional pseudocode for memory protection is given in MPU pseudocode on page B3-36.

For a list of register names see Appendix I Register Index.
For a list of helper functions and procedures see Miscellaneous helper procedures and functions on
page AppxG-22.

B2.2.1 Memory data type definitions

The following data type definitions are used by the memory system pseudocode functions:

// Types of memory

enumeration MemType {MemType_Normal, MemType_Device, MemType_StronglyOrdered};

// Memory attributes descriptor

type MemoryAttributes is (
 MemType type,
 bits(2) innerattrs, // ’00’ = Non-cacheable; ’01’ = WBWA; ’10’ = WT; ’11’ = WBnWA
 bits(2) outerattrs, // ’00’ = Non-cacheable; ’01’ = WBWA; ’10’ = WT; ’11’ = WBnWA
 boolean shareable
)

// Descriptor used to access the underlying memory array

type AddressDescriptor is (
 MemoryAttributes memattrs,
 bits(32) physicaladdress
)

ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-3
Restricted Access Non-Confidential

System Memory Model
// Access permissions descriptor

type Permissions is (
 bits(3) ap, // Access Permission bits
 bit xn // Execute Never bit
)

B2.2.2 Basic memory accesses

The _Mem[] function performs single-copy atomic, aligned, little-endian memory accesses to the underlying
physical memory array of bytes:

bits(8*size) _Mem[AddressDescriptor memaddrdesc, integer size] // non-assignment form
 assert size == 1 || size == 2 || size == 4;

_Mem[AddressDescriptor memaddrdesc, integer size] = bits(8*size) value // assignment form
 assert size == 1 || size == 2 || size == 4;

The attributes in memaddrdesc.memattrs are used by the memory system to determine the memory type and
ordering behaviors as described in Memory types on page A3-18 and Memory access order on page A3-30.

B2.2.3 Interfaces to memory system specific pseudocode

Global declarations are as follows:

boolean iswrite; // TRUE for memory stores, FALSE for load accesses
boolean ispriv; // TRUE if the instruction executing with privileged access
boolean isinstrfetch; // TRUE if the memory access is associated with an instruction fetch

FindPriv() is used to determine if a privileged access. ValidateAddress() is used to resolve the memory
attributes associated with an address and check the validity of the access where memory protection is
enabled.

// FindPriv()
// ==========

boolean FindPriv()
 if (CurrentMode==Mode_Handler) OR ((CurrentMode==Mode_Thread)AND(CONTROL<0>=='0')) then
 ispriv = TRUE;
 else
 ispriv = FALSE;
 return ispriv;

ValidateAddress(bits(32) address, boolean ispriv, boolean iswrite, boolean isinstrfetch)
B2-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

System Memory Model
For more details on ValidateAddress(), see MPU pseudocode on page B3-36.

B2.2.4 Aligned memory accesses

The MemA[] function performs a memory access at the current privilege level, and the MemA_unpriv[] function
performs an access that is always unprivileged. In both cases the architecture requires the access to be
aligned, and generates an Alignment fault if it is not.

// MemA[]
// ======

bits(8*size) MemA[bits(32) address, integer size]
 return MemA_with_priv[address, size, FindPriv()];

MemA[bits(32) address, integer size] = bits(8*size) value
 MemA_with_priv[address, size, FindPriv()] = value;
 return;

// MemA_unpriv[]
// =============

bits(8*size) MemA_unpriv[bits(32) address, integer size]
 return MemA_with_priv[address, size, FALSE];

MemA_unpriv[bits(32) address, integer size] = bits(8*size) value
 MemA_with_priv[address, size, FALSE] = value;
 return;

// MemA_with_priv[]
// ================

// Non-assignment form

bits(8*size) MemA_with_priv[bits(32) address, integer size, boolean privileged]

 // Sort out alignment
 if address != Align(address, size) then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);

 // default address map or MPU
 memaddrdesc = ValidateAddress(address, privileged, FALSE);

 // Memory array access, and sort out endianness
 value = _Mem[memaddrdesc, size];
 if AIRCR.ENDIANESS == ’1’ then
 value = BigEndianReverse(value, size);
 return value;

// Assignment form

MemA_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-5
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ENDIANNESS

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
// MemA_with_priv[]
// ================

// Non-assignment form

bits(8*size) MemA_with_priv[bits(32) address, integer size, boolean privileged]

 // Sort out alignment
 if address != Align(address, size) then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);

 // default address map or MPU
 memaddrdesc = ValidateAddress(address, privileged, FALSE, FALSE);

 // Memory array access, and sort out endianness
 value = _Mem[memaddrdesc, size];
 if AIRCR.ENDIANNESS == ’1’ then
 value = BigEndianReverse(value, size);
 return value;

// Assignment form

MemA_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value

 // Sort out alignment
 if address != Align(address, size) then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);
 // default address map or MPU
 memaddrdesc = ValidateAddress(address, privileged, TRUE, FALSE);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.physicaladdress, ProcessorID(), size);

 // Sort out endianness, then memory array access
 if AIRCR.ENDIANNESS == ’1’ then
 value = BigEndianReverse(value, size);
 _Mem[memaddrdesc,size] = value;

 return;

System Memory Model
 // Sort out alignment
 if address != Align(address, size) then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);
 // default address map or MPU
 memaddrdesc = ValidateAddress(address, privileged, TRUE);

 // Effect on exclusives
 if memaddrdesc.memattrs.shareable then
 ClearExclusiveByAddress(memaddrdesc.physicaladdress, ProcessorID(), size);

 // Sort out endianness, then memory array access
 if AIRCR.ENDIANESS == ’1’ then
 value = BigEndianReverse(value, size);
 _Mem[memaddrdesc,size] = value;

 return;

B2.2.5 Unaligned memory accesses

The MemU[] function performs a memory access at the current privilege level, and the MemU_unpriv[] function
performs an access that is always unprivileged.

In both cases:

• if the CCR.UNALIGN_TRP bit is 0, unaligned accesses are supported

• if the CCR.UNALIGN_TRP bit is 1, unaligned accesses produce Alignment faults.

// MemU[]
// ======

bits(8*size) MemU[bits(32) address, integer size]
 return MemU_with_priv[address, size, FindPriv()];

MemU[bits(32) address, integer size] = bits(8*size) value
 MemU_with_priv[address, size, FindPriv()] = value;
 return;

// MemU_unpriv[]
// =============

bits(8*size) MemU_unpriv[bits(32) address, integer size]
 return MemU_with_priv[address, size, FALSE];

MemU_unpriv[bits(32) address, integer size] = bits(8*size) value
 MemU_with_priv[address, size, FALSE] = value;
 return;

// MemU_with_priv[]
// ================
//
// Due to single-copy atomicity constraints, the aligned accesses are distinguished from
// the unaligned accesses:
B2-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ENDIANNESS

ARM_2009_Q4
Cross-Out
See replacement pseudocode on PDF page 475.

System Memory Model
// * aligned accesses are performed at their size
// * unaligned accesses are expressed as a set of bytes.

// Non-assignment form

bits(8*size) MemU_with_priv[bits(32) address, integer size, boolean privileged]

 bits(8*size) value;
 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 value = MemA_with_priv[address, size, privileged];
 elsif CCR.UNALIGN_TRP == ’1’ then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);
 else // if unaligned access
 for i = 0 to size-1
 value<8*i+7:8*i> = MemA_with_priv[address+i, 1, privileged];
 if AIRCR.ENDIANESS == ’1’ then
 value = BigEndianReverse(value, size);

 return value;

// Assignment form

MemU_with_priv[bits(32) address, integer size, boolean privileged] = bits(8*size) value

 // Do aligned access, take alignment fault, or do sequence of bytes
 if address == Align(address, size) then
 MemA_with_priv[address, value, privileged] = value;
 elsif CCR.UNALIGN_TRP == ’1’ then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);
 else // if unaligned access
 if AIRCR.ENDIANESS == ’1’ then
 value = BigEndianReverse(value, size);
 for i = 0 to size-1
 MemA_with_priv[address+i, 1, privileged] = value<8*i+7:8*i>;

 return;

B2.2.6 Reverse endianness

The following pseudocode describes the operation to reverse endianness:

// BigEndianReverse()
// ==================

bits(8*N) BigEndianReverse (bits(8*N) value, integer N)
 assert N == 1 || N == 2 || N == 4;
 bits(8*N) result;
 case N of
 when 1
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-7
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ENDIANNESS

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ENDIANNESS

System Memory Model
 result<7:0> = value<7:0>;
 when 2
 result<15:8> = value<7:0>;
 result<7:0> = value<15:8>;
 when 4
 result<31:24> = value<7:0>;
 result<23:16> = value<15:8>;
 result<15:8> = value<23:16>;
 result<7:0> = value<31:24>;
 return result;

B2.2.7 Pseudocode details of operations on exclusive monitors

The SetExclusiveMonitors() function sets the exclusive monitors for a load exclusive instruction. The
ExclusiveMonitorsPass() function checks whether a store exclusive instruction still has possession of the
exclusive monitors and therefore completes successfully.

// SetExclusiveMonitors()
// ======================

SetExclusiveMonitors(bits(32) address, integer size)

 memaddrdesc = ValidateAddress(address, FindPriv(), FALSE);

 if memaddrdesc.memattrs.shareable then
 MarkExclusiveGlobal(memaddrdesc.physicaladdress, ProcessorID(), size);

 MarkExclusiveLocal(memaddrdesc.physicaladdress, ProcessorID(), size);

// ExclusiveMonitorsPass()
// =======================

boolean ExclusiveMonitorsPass(bits(32) address, integer size)

 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
 // before or after the check on the local Exclusive Monitor. As a result a failure
 // of the local monitor can occur on some implementations even if the memory
 // access would give a memory abort.

 if address != Align(address, size) then
 UFSR.UNALIGNED = ’1’;
 ExceptionTaken(UsageFault);
 else
 memaddrdesc = ValidateAddress(address, FindPriv(), TRUE);

 passed = IsExclusiveLocal(memaddrdesc.physicaladdress, ProcessorID(), size);
 if memaddrdesc.memattrs.shareable then
 passed = passed && IsExclusiveGlobal(memaddrdesc.physicaladdress, ProcessorID(), size);
 if passed then
 ClearExclusiveLocal(ProcessorID());
 return passed;
B2-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Memory Model
The MarkExclusiveGlobal() procedure takes as arguments an address, the processor identifier processorid
and the size of the transfer. The procedure records that processor processorid has requested exclusive access
covering at least size bytes from the address. The size of region marked as exclusive is IMPLEMENTATION
DEFINED, up to a limit of 2KB, and no smaller than size, and aligned in the address space to the size of the
region. It is UNPREDICTABLE whether this causes any previous request for exclusive access to any other
address by the same processor to be cleared.

MarkExclusiveGlobal(bits(32) address, integer processorid, integer size)

The MarkExclusiveLocal() procedure takes as arguments an address, the processor identifier processorid and
the size of the transfer. The procedure records in a local record that processor processorid has requested
exclusive access to an address covering at least size bytes from the address. The size of the region marked
as exclusive is IMPLEMENTATION DEFINED, and can at its largest cover the whole of memory, but is no
smaller than size, and is aligned in the address space to the size of the region. It is IMPLEMENTATION
DEFINED whether this procedure also performs a MarkExclusiveGlobal() using the same parameters.

MarkExclusiveLocal(bits(32) address, integer processorid, integer size)

The IsExclusiveGlobal() function takes as arguments an address, the processor identifier processorid and
the size of the transfer. The function returns TRUE if the processor processorid has marked in a global
record an address range as exclusive access requested that covers at least the size bytes from the address. It
is IMPLEMENTATION DEFINED whether it returns TRUE or FALSE if a global record has marked a different
address as exclusive access requested. If no address is marked in a global record as exclusive access,
IsExclusiveGlobal() returns FALSE.

boolean IsExclusiveGlobal(bits(32) address, integer processorid, integer size)

The IsExclusiveLocal() function takes as arguments an address, the processor identifier processorid and the
size of the transfer. The function returns TRUE if the processor processorid has marked an address range as
exclusive access requested that covers at least the size bytes from the address. It is IMPLEMENTATION
DEFINED whether this function returns TRUE or FALSE if the address marked as exclusive access requested
does not cover all of the size bytes from the address. If no address is marked as exclusive access requested,
then this function returns FALSE. It is IMPLEMENTATION DEFINED whether this result is ANDed with the
result of IsExclusiveGlobal() with the same parameters.

boolean IsExclusiveLocal(bits(32) address, integer processorid, integer size)

The ClearExclusiveByAddress() procedure takes as arguments an address, the processor identifier
processorid and the size of the transfer. The procedure clears the global records of all processors, other than
processorid, for which an address region including any of the size bytes starting from the supplied address
has had a request for an exclusive access. It is IMPLEMENTATION DEFINED whether the equivalent global
record of the processor processorid is also cleared if any of the size bytes starting from the address has had
a request for an exclusive access, or if any other address has had a request for an exclusive access.

ClearExclusiveByAddress(bits(32) address, integer processorid, integer size)

The ClearExclusiveLocal() procedure takes the argument processor identifier processorid. The procedure
clears the local record of processor processorid for which an address has had a request for an exclusive
access. It is IMPLEMENTATION DEFINED whether this operation also clears the global record of processor
processorid that an address has had a request for an exclusive access.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-9
Restricted Access Non-Confidential

System Memory Model
ClearExclusiveLocal(integer processorid)

B2.2.8 Access permission checking

The following pseudocode describes checking the access permission. Permissions are checked against
access control information associated with a region when memory protection is supported and enabled, or
against access control attributes associated with the default memory map.

// CheckPermission()
// =================

CheckPermission(Permissions perms, bits(32) address, boolean iswrite, boolean ispriv,
 boolean isinstrfetch)

 case perms.ap of
 when ’000’ fault = TRUE;
 when ’001’ fault = !ispriv;
 when ’010’ fault = !ispriv && iswrite;
 when ’011’ fault = FALSE;
 when ’100’ UNPREDICTABLE;
 when ’101’ fault = !ispriv || iswrite;
 when ’110’ fault = iswrite;
 when ’111’ fault = iswrite;
 else
 UNPREDICTABLE;

 if isinstrfetch then
 if fault || perms.xn then
 MMSR.IACCVIOL = ’1’;
 MMSR.MMARVALID = ’0’;
 ExceptionTaken(MemManage);
 elsif fault then
 MMSR.DACCVIOL = ’1’;
 MMAR = address;
 MMSR.MMARVALID = ’1’;
 ExceptionTaken(MemManage);
 return;

B2.2.9 MPU access control decode

The following pseudocode describes the memory attribute decode that is used when memory protection is
enabled. See MPU pseudocode on page B3-36 for information on when DefaultTEXDecode() is called.

// DefaultTEXDecode()
// ==================

MemoryAttributes DefaultTEXDecode(bits(5) texcb, bit S)

 MemoryAttributes memattrs;

 case texcb of
B2-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Memory Model
 when '00000'
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = '00'; // Non-cacheable
 memattrs.outerattrs = '00'; // Non-cacheable
 memattrs.shareable = TRUE;
 when '00001'
 memattrs.type = MemType_Device;
 memattrs.innerattrs = '00'; // Non-cacheable
 memattrs.outerattrs = '00'; // Non-cacheable
 memattrs.shareable = TRUE;
 when "0001x", '00100'
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = texcb<1:0>;
 memattrs.outerattrs = texcb<1:0>;
 memattrs.shareable = (S == '1');
 when '00110'
 IMPLEMENTATION_DEFINED setting of memattrs;
 when '00111'
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = '01'; // Write-back write-allocate cacheable
 memattrs.outerattrs = '01'; // Write-back write-allocate cacheable
 memattrs.shareable = (S == '1');
 when '01000'
 memattrs.type = MemType_Device;
 memattrs.innerattrs = '00'; // Non-cacheable
 memattrs.outerattrs = '00'; // Non-cacheable
 memattrs.shareable = FALSE;
 when "1xxxx"
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = texcb<1:0>;
 memattrs.outerattrs = texcb<3:2>;
 memattrs.shareable = (S == '1');
 otherwise
 UNPREDICTABLE; // reserved cases

 return memattrs;

B2.2.10 Default memory access decode

The following pseudocode describes the default memory attribute decode, when memory protection is
disabled, not supported, or cases where the protection control is overridden. See MPU pseudocode on
page B3-36 for information on when DefaultMemoryAttributes() is called.

// DefaultMemoryAttributes()
// =========================

MemoryAttributes DefaultMemoryAttributes(bits(32) address, boolean isinstrfetch)
 MemoryAttributes memattrs;

 if (((UInt(PA<31:28>) > 9) OR (PA<31:29> == ’010’)) AND isinstrfetch) then
 ExceptionTaken(HardFault); // Instruction execution attempted from XN memory
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-11
Restricted Access Non-Confidential

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
// DefaultMemoryAttributes()
// =================

MemoryAttributes DefaultMemoryAttributes(bits(32) address)
 MemoryAttributes memattrs;

 case PA<31:29> of
 when ‘000’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘10’;
 memattrs.shareable = ‘0’;

 when ‘001’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’;
 memattrs.shareable = ‘0’;
 when ‘010’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;
 when ‘011’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’;
 memattrs.shareable = ‘0’;
 when ‘100’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘10’;
 memattrs.shareable = ‘0’;
 when ‘101’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘1’;
 when ‘110’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;
 when ‘111’
 if PA<28:20> = ‘00000000’ then
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘1’;
 else
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;

 // Outer attributes are the same as the inner attributes in all cases.
 memattrs.outerattrs = memattrs.innerattrs;

 return memattrs;

System Memory Model
 case PA<31:29> of
 when ‘000’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘10’;
 memattrs.shareable = ‘0’;

 when ‘001’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’;
 memattrs.shareable = ‘0’;
 when ‘010’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;
 when ‘011’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘01’;
 memattrs.shareable = ‘0’;
 when ‘100’
 memattrs.type = MemType_Normal;
 memattrs.innerattrs = ‘10’;
 memattrs.shareable = ‘0’;
 when ‘101’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘1’;
 when ‘110’
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;
 when ‘111’
 if PA<28:20> = ‘00000000’ then
 memattrs.type = MemType_StronglyOrdered;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘1’;
 else
 memattrs.type = MemType_Device;
 memattrs.innerattrs = ‘00’;
 memattrs.shareable = ‘0’;

 // Outer attributes are the same as the inner attributes in all cases.
 memattrs.outerattrs = memattrs.innerattrs;

 return memattrs;
B2-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out
See updated pseudocode inserted on PDF page 481.

System Memory Model
B2.2.11 MemManage fault handling

Memory access violations are reported as MemManage faults. If the fault is disabled, the fault will escalate
to a HardFault exception. See Overview of the exceptions supported on page B1-14 and Fault behavior on
page B1-39 for more information.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B2-13
Restricted Access Non-Confidential

System Memory Model
B2-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter B3
System Address Map

This chapter contains information on the system address map. It contains the following sections:

• The system address map on page B3-2

• System Control Space (SCS) on page B3-6

• System timer - SysTick on page B3-24

• Nested Vectored Interrupt Controller (NVIC) on page B3-28

• Protected Memory System Architecture (PMSAv7) on page B3-35
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-1
Restricted Access Non-Confidential

System Address Map
B3.1 The system address map

For ARMv7-M, the 32-bit address space is predefined, with subdivision for code, data, and peripherals, as
well as regions for on-chip (tightly coupled to the core) and off-chip resources.The address space supports
8 x 0.5GB primary partitions:

• Code

• SRAM

• Peripheral

• 2 x RAM regions

• 2 x Device regions

• System

Physical addresses are architecturally assigned for use as event entry points (vectors), system control, and
configuration. The event entry points are all with respect to a table base address, where the base address is
configured to an IMPLEMENTATION DEFINED value on reset, then maintained in an address space reserved for
system configuration and control. To meet this and other system needs, the address space 0xE0000000 to
0xFFFFFFFF is RESERVED for system level use.

Table B3-1 on page B3-3 describes the ARMv7-M default address map.

• XN refers to eXecute Never for the region and will fault (MemManage exception) any attempt to
execute in the region.

• The Cache column indicates inner/outer cache policy to support system caches. The policy allows a
declared cache type to be demoted but not promoted.

WT: write through, can be treated as non-cached

WBWA: write-back, write allocate, can be treated as write-through or non-cached

• Shared indicates to the system that the access is intended to support shared use from multiple agents;
multiple processors and/or DMA agents within a coherent memory domain.

• It is IMPLEMENTATION DEFINED which portions of the overall address space are designated read-write,
which are read-only (for example Flash memory), and which are no-access (unpopulated parts of the
address map).

• An unaligned or multi-word access which crosses a 0.5GB address boundary is UNPREDICTABLE.
B3-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
For additional information on memory attributes and the memory model see Chapter A2 Application Level
Programmers’ Model.

To support a user (unprivileged) and supervisor (privileged) software model, a memory protection scheme
is required to control the access rights. The Protected memory System Architecture for ARMv7-M
(PMSAv7) is an optional system level feature described in Protected Memory System Architecture
(PMSAv7) on page B3-35. An implementation of PMSAv7 is known as a Memory Protection Unit (MPU).

The address map described in Table B3-1 is the default map for an MPU when it is disabled, and the only
address map supported when no MPU is present. The default map can be enabled as a background region
for privileged accesses when the MPU is enabled. See the definition of PRIVDEFENA in MPU Control
Register (MPU_CTRL) on page B3-40.

Table B3-1 ARMv7-M address map

Name
Device
Type

XN Cache Description

0x00000000-
0x1FFFFFFF

Code Normal - WT Typically ROM or flash memory. Memory
required from address 0x0 to support the
vector table for system boot code on reset.

0x20000000-
0x3FFFFFFF

SRAM Normal - WBWA SRAM region typically used for on-chip
RAM.

0x40000000-
0x5FFFFFFF

Peripheral Device XN - on-chip peripheral address space

0x60000000-
0x7FFFFFFF

RAM Normal - WBWA memory with write-back, write allocate
cache attribute for L2/L3 cache support

0x80000000-
0x9FFFFFFF

RAM Normal - WT memory with write-thru cache attribute

0xA0000000-
0xBFFFFFFF

Device Device,
shared

XN - shared device space

0xC0000000-
0xDFFFFFFF

Device Device XN - non-shared device space

0xE0000000-
0xFFFFFFFF

System - XN - system segment for the PPB and vendor
system peripherals

+0000000 PPB SO,
(shared)

XN 1MB region reserved as a Private Peripheral
Bus. The PPB supports key resources
including the System Control Space, and
debug features.

+0100000 Vendor_SYS Device XN vendor system. It is suggested that vendor
resources start at 0xF0000000 (+GB offset).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-3
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
0x00000000

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
0x00100000

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
3840MB

System Address Map
Note
 When an MPU is enabled, the MPU is restricted in how it can change the default memory map attributes
associated with System space (address 0xE0000000 or higher). System space is always marked as XN. System
space which defaults to Device can be changed to Strongly-Ordered, but cannot be mapped to Normal
memory. The PPB memory attributes cannot be remapped by an MPU.

B3.1.1 General rules applying to PPB register access

The Private Peripheral Bus (PPB), address range 0xE0000000 to 0xE0100000, supports the following general
rules:

• The region is defined as Strongly Ordered memory – see Strongly-ordered memory on page A3-25
and Memory access restrictions on page A3-26.

• Registers are always accessed little endian regardless of the endian state of the processor.

• In general, registers support word accesses only, with byte and halfword access UNPREDICTABLE.
Several registers (namely priority and fault status registers) are a concatenation of byte aligned bit
fields affecting different resources. In these cases, the registers1 can be declared as 8-bit or 16-bit
registers with an appropriate address offset within the 32-bit register base address.

• The term set means writing the value to 1, and the term clear(ed) means writing the value to 0. Where
the term applies to multiple bits, all bits assume the written value.

• The term disable means writing the bit value to 0, the term enable means writing the bit value to 1.

• Where a bit is defined as clear on read, the following atomic behavior must be guaranteed when the
bit is being read coincident with an event which sets the bit

— If the bit reads as one, the bit is cleared by the read operation

— If the bit reads as zero, the bit is set and read/cleared by a subsequent read operation

• A reserved register or bit field must be treated as UNK/SBZP.

Unprivileged (User) access to the PPB causes BusFault errors unless otherwise stated. Notable exceptions
are:

• Unprivileged accesses can be enabled to the Software Trigger Interrupt Register in the System
Control Space by programming a control bit in the Configuration Control Register.

• For debug related resources, see General rules applying to debug register access on page C1-6 for
exception details.

1. Registers only support byte and halfword access where it is explicitly stated in the register definition.
B3-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
Note
 The Flash Patch and Breakpoint block (FPB, see Flash Patch and Breakpoint (FPB) support on page C1-61)
is designated a debug resource. Alternatively, FPB resources can be used as a means of updating software
as part of a product maintenance policy. The address remapping behavior of the FPB is not specific to debug
operation. Debug functionality is reduced when FPB resources are allocated to software maintenance.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-5
Restricted Access Non-Confidential

System Address Map
B3.2 System Control Space (SCS)

The System Control Space is a memory-mapped 4kB address space which is used along with the
special-purpose registers to provide arrays of 32-bit registers for configuration, status reporting and control.
The SCS breaks down into the following groups:

• System Control/ID

• CPUID space

• System control, configuration and status

• Fault reporting

• A SysTick system timer

• A Nested Vectored Interrupt Controller (NVIC), supporting up to 496 discrete external interrupts.
The NVIC shares a common prioritization model with the other exceptions.

• A Protected Memory System Architecture (PMSAv7) – see Protected Memory System Architecture
(PMSAv7) on page B3-35

• System debug – see Chapter C1 ARMv7-M Debug

Table B3-2 defines the address space breakdown of the SCS register groups.

Table B3-2 SCS address space regions

System Control Space (address range 0xE000E000 to 0xE000EFFF)

Group Address Range(s) Notes

System
Control/ID

0xE000E000-0xE000E00F includes the Interrupt Controller Type and
Auxiliary Control registers

0xE000ED00-0xE000ED8F System control block, includes the primary
(CPUID) register

0xE000EF00-0xE000EF8F includes the SW Trigger Interrupt Register

0xE000EF90-0xE000EFCF IMPLEMENTATION DEFINED

0xE000EFD0-0xE000EFFF Microcontroller-specific ID space

SysTick 0xE000E010-0xE000E0FF System Timer

NVIC 0xE000E100-0xE000ECFF External interrupt controller

MPU 0xE000ED90-0xE000EDEF Memory Protection Unit

Debug 0xE000EDF0-0xE000EEFF Debug control and configuration
B3-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
Detailed breakdown of the register groups is provided as part of the appropriate feature definition:

• System ID block in System ID register support in the SCS on page B3-10

• System control and configuration in The System Control Block (SCB) on page B3-10

• SysTick system timer in System timer - SysTick on page B3-24

• NVIC in Nested Vectored Interrupt Controller (NVIC) on page B3-28

• MPU in Chapter Protected Memory System Architecture (PMSAv7) on page B3-35

• Debug in Chapter C1 ARMv7-M Debug

B3.2.1 System control and ID blocks

System control and ID is supported by registers within subregions of the System Control Space as defined
in Table B3-3.

Table B3-3 System control and ID registers

Address Type Reset Value Name Function

0xE000E000 R/W 0x00000000 Master Control register - RESERVED

0xE000E004 RO IMPLEMENTATION
DEFINED

ICTR Interrupt Controller Type Register

0xE000E008 R/W IMPLEMENTATION
DEFINED

ACTLR Auxiliary Control Register

… …

0xE000ED00 RO IMPLEMENTATION
DEFINED

CPUID CPUID Base Register

0xE000ED04 R/W 0x00000000 ICSR Interrupt Control State Register

0xE000ED08 R/W 0x00000000 VTOR Vector Table Offset Register

0xE000ED0C R/W bits [10:8] = 0b000 AIRCR Application Interrupt/Reset Control Register

0xE000ED10 R/W 0x00000000 SCR System Control Register

0xE000ED14 R/W 0x00000000 CCR Configuration Control Register

0xE000ED18 R/W 0x00000000 SHPR1 System Handlers 4-7 Priority Register

0xE000ED1C R/W 0x00000000 SHPR2 System Handlers 8-11 Priority Register

0xE000ED20 R/W 0x00000000 SHPR3 System Handlers 12-15 Priority Register

0xE000ED24 R/W 0x00000000 SHCSR System Handler Control and State Register
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-7
Restricted Access Non-Confidential

System Address Map
0xE000ED28 R/W 0x00000000 CFSR Configurable Fault Status Register with
separately accessible bit fields for:
1. MemManage fault status (MMFSR)
2. BusFault status (BFSR)
3. UsageFault status (UFSR)

0xE000ED2C R/W 0x00000000 HFSR HardFault Status Register

0xE000ED30 R/W 0x00000000a DFSR DebugFault Status Register

0xE000ED34 R/W UNKNOWN MMFAR MemManage Address Register

0xE000ED38 R/W UNKNOWN BFAR BusFault Address Register

0xE000ED3C R/W UNKNOWN AFSR Auxiliary Fault Status Register
(IMPLEMENTATION DEFINED)

0xE000ED40
-
0xE000ED7F

Reserved for CPUID Table (See Appendix A
CPUID)

0xE000ED88 R/W 0x00000000 CPACR Coprocessor Access Control Register

… …

0xE000EDF0
-
0xE000EEFF

See Debug register support in the SCS on
page C1-19

0xE000EF00 WO STIR Software Trigger Interrupt Register

unused reserved

0xE000EF90
-
0xE000EFCF

IMPLEMENTATION DEFINED

Table B3-3 System control and ID registers (continued)

Address Type Reset Value Name Function
B3-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
The Interrupt Controller Type Register (ICTR)

For details on the Interrupt Controller Type Register, see Interrupt Controller Type Register – (0xE000E004)
on page B3-32.

The Auxiliary Control Register (ACTLR)

The Auxiliary Control Register, ACTLR, provides implementation-specific configuration and control
options. The contents of this register are IMPLEMENTATION DEFINED.

0xE000EFD0 RO see notes PID4 Peripheral identification register

0xE000EFD4 RO PID5

0xE000EFD8 RO PID6

0xE000EFDC RO PID7

0xE000EFE0 RO PID0

0xE000EFE4 RO PID1

0xE000EFE8 RO PID2

0xE000EFEC RO PID3

0xE000EFF0 RO CID0 Component identification register

0xE000EFF4 RO CID1

0xE000EFF8 RO CID2

0xE000EFFC RO CID3

Notes

PIDx and CIDx: The ID registers should be CoreSight compatible or RAZ.
See Appendix A CPUID for more information.

a. Power-on reset only.

Table B3-3 System control and ID registers (continued)

Address Type Reset Value Name Function

Table B3-4 Auxiliary Control Register – (0xE000E008)

Bits R/W Name Function

[31:0] IMPLEMENTATION DEFINED
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-9
Restricted Access Non-Confidential

System Address Map
B3.2.2 System ID register support in the SCS

Support consists of the CPUID base register described in Table B3-5 and a block of ID attribute registers.

The CPUID allows applications and debuggers to determine what kind of ARMv7-M processor they are
using. The CPUID attribute ID registers can be read for specific details. This register is word accessible only.

CPU attribute ID registers

A bank of registers is defined as a series of 4-bit attribute fields. These attributes provide information details
on the instruction set, memory model, and debug support present. See Appendix A CPUID for the detailed
definition of the register support. These registers are word accessible only.

B3.2.3 The System Control Block (SCB)

Key control and status features of ARMv7-M are managed centrally in a System Control Block within the
SCS. The SCB provides support for the following features:

• Software reset control at various levels

• Base address management (table pointer control) for the exception model

• System exception management (excludes external interrupts handled by the NVIC)

— Exception enables

— Setting or clearing exceptions to/from the pending state

— Exception status (Inactive, Pending, or Active). Inactive is when an exception is neither
Pending nor Active.

— Priority setting (for configurable system exceptions)

— Miscellaneous control and status information

• Priority grouping control – see Priority grouping on page B1-18 for a definition of priority grouping

• The exception (vector) number of the currently executing code and highest pending exception

Table B3-5 CPUID Base Register – (CPUID, 0xE000ED00)

Bits R/W Name Function

[31:24] RO IMPLEMENTER Implementer code assigned by ARM. ARM == 0x41.

[23:20] RO VARIANT IMPLEMENTATION DEFINED

[19:16] RO (Constant) Reads as 0xF.

[15:4] RO PARTNO IMPLEMENTATION DEFINED

[3:0] RO REVISION IMPLEMENTATION DEFINED
B3-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
• Miscellaneous control and status features including coprocessor access support

• Power management – sleep support.

• Fault status information – see Fault behavior on page B1-39 for an overview of fault handling

• Debug status information – supplemented with control and status in the debug specific register
region. See Chapter C1 ARMv7-M Debug for debug details.

The SCB registers are listed in the following subsections in the order of their access address.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-11
Restricted Access Non-Confidential

System Address Map
Interrupt Control State Register (ICSR)

Table B3-6 Interrupt Control and State Register – (0xE000ED04)

Bits R/W Name Function

[31] R/W NMIPENDSET Setting this bit will activate an NMI. Since NMI is higher
priority than other exceptions, the NMI exception will
activate as soon as it is registered.

[28] R/W PENDSVSETa

a. writing PENDSVSET and PENDSVCLR to '1' concurrently is UNPREDICTABLE

Set a pending PendSV interrupt. This is normally used to
request a context switch. Reads back with current state (1 if
Pending, 0 if not).

[27] WO PENDSVCLR Clear a pending PendSV interrupt.

[26] R/W PENDSTSETb

b. writing PENDSTSET and PENDSTCLR to '1' concurrently is UNPREDICTABLE

Set a pending SysTick. Reads back with current state (1 if
Pending, 0 if not).

[25] WO PENDSTCLR Clear a pending SysTick (whether set here or by the timer
hardware).

[23] RO ISRPREEMPT If set, a pending exception will be serviced on exit from the
debug halt state.

[22] RO ISRPENDING Indicates if an external configurable (NVIC generated)
interrupt is pending.

[20:12] RO VECTPENDING Indicates the exception number for the highest priority
pending exception.

value == 0: no pending exceptions

[11] RO RETTOBASE This bit is 1 when the set of all active exceptions minus the
IPSR_current_exception yields the empty set.

[8:0] RO VECTACTIVE value == 0: Thread mode
value > 1: the exception numberc for the current executing
 exception

c. this is the same value as IPSR[8:0]

Unused Reserved
B3-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
In Handler mode, this bit is set to 1 when there is no active exception other than the exception shown by the IPSR.
In Thread mode the value of this bit is UNKNOWN.

System Address Map
Vector Table Offset Register (VTOR)

An implementation can include configuration input signals that determine the reset value of the STKALIGN
bit. If there is no configuration input signal to determine the reset value of this bit then it resets to 0.. A
non-zero value must comply with the alignment restrictions described in The vector table on page B1-16.

Table B3-7 Vector Table Offset Register – (0xE000ED08)

Bitsa

a. An implementation can include configuration input signals that determine the reset value of
the TBLOFF bit field. If there is no configuration input signals to determine the reset value of
this field then it resets to 0. A non-zero value must comply with the alignment restrictions
described in The vector table on page B1-16. TBLBASE resets to zero.

R/W Name Function

[29] R/W TBLBASE value ==0: Table base is in CODE, base address 0x00000000
value ==1: Table base is in RAM, base address 0x20000000

[28:7] R/W TBLOFF Table offset address[28:7] from the base address defined by
TBLBASE.

The offset address is 32-word aligned. Where more than 16
external interrupts are used, the offset word alignment must be
increased to accommodate vectors for all the exceptions and
interrupts supported and keep the required table size naturally
aligned. See Interrupt Controller Type Register (ICTR) on
page B3-32 for information on the number of interrupts
supported.

Unused Reserved
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-13
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
This paragraph is not relevant to the VTOR, and is also inaccurate.

ARM_2009_Q4
Inserted Text

----- Note -----
TBLBASE and TBLOFF together define the vector table address. That is, VTOR[29:7] specifies bits [29:7] of the vector table address, and all other bits of that address are zero.

System Address Map
Application Interrupt and Reset Control Register (AIRCR)

Table B3-8 Application Interrupt and Reset Control Register – (0xE000ED0C)

Bits R/W Name Function

[31:16] WO VECTKEY Vector Key. 0x05FA must be written anytime this register
is written, otherwise the write is ignored (no bits are
changed in the register).

[31:16] RO VECTKEYSTAT Reads as 0xFA05.

[15] RO ENDIANESS This bit is static or configured by a hardware input on
reset.
value == 0: little endian
value == 1: big endian

[10:8] R/W PRIGROUP Priority grouping position (binary point). This field sets
the interpretation of priority registers, both for handlers
and standard interrupts. For a definition of how this bit
field is interpreted to assign priority and priority
sub-group bit fields to the System Handler and NVIC
priority registers, see Priority grouping on page B1-18)

This field is cleared on reset.

[2] WO SYSRESETREQ Writing this bit 1 will cause a signal to be asserted to the
external system to indicate a reset is requested. The
signal is required to generate a Local Reset.

The bit self-clears as part of the reset sequence.
B3-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ENDIANNESS

System Address Map
System Control Register (SCR)

A debugger can read S_SLEEP (see Debug Halting Control and Status Register (DHCSR) on page C1-20)
to detect if sleeping.

[1] WO VECTCLRACTIVE Clears all active state information for fixed and
configurable exceptions. This bit self-clears.

Note: It is the application’s responsibility to re-initialize
the stack.

Writing a 1 to this bit when not in debug state (halted) is
UNPREDICTABLE.

[0] WO VECTRESET Local system reset, see Reset management on
page B1-47 for details. This bit self-clears.

Writing a 1 to this bit when not in debug state (halted) is
UNPREDICTABLE.

If VECTRESET and SYSRESETREQ are set
simultaneously, the behavior is UNPREDICTABLE.

Unused Reserved

Table B3-9 System Control Register (0xE000ED10)

Bits R/W Name Function

[4] R/W SEVONPEND When enabled, interrupt transitions from Inactive to
Pending are included in the list of wakeup events for the WFE
instruction.

See WFE wake-up events on page B1-49 for more
information.

[2] R/W SLEEPDEEP A qualifying hint that indicates waking from sleep might
take longer. Implementations can take advantage of the
feature to identify a lower power sleep state.

[1] R/W SLEEPONEXIT When set, the core can enter a sleep state on exit from an
ISR when it is returning to the Base level of activation.

Unused Reserved

Table B3-8 Application Interrupt and Reset Control Register – (0xE000ED0C) (continued)

Bits R/W Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-15
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
return to Thread mode with no active exception handlers. That is, on return to the mode exception level it has when it comes out of reset.

System Address Map
Configuration and Control Register (CCR)

Table B3-10 Configuration and Control Register (0xE000ED14)

Bits R/W Name Function

[9] R/W STKALIGN 1: on exception entry, the SP used prior to the
exception is adjusted to be 8-byte aligned and the
context to restore it is saved. The SP is restored on the
associated exception return.

0: only 4-byte alignment is guaranteed for the SP used
prior to the exception on exception entry.

The bit is cleared on reset. See Stack alignment on
exception entry on page B1-24 for more information.

[8] R/W BFHFNMIGN When enabled (=1), this causes handlers running at
priority -1 and -2 to ignore Precise data access faults.

When disabled (=0), these bus faults will cause a
lock-up as explained in Unrecoverable exception
cases on page B1-44.

[4] R/W DIV_0_TRP Enable bit (=1) for trap on Divide by 0.

[3] R/W UNALIGN_TRP Enable bit (=1) for trapping unaligned half or full
word accessesa.

a. Unaligned load-store multiples and halfword/word exclusive accesses will always fault.

[1] R/W USERSETMPEND When this bit is set (=1), the core allows unprivileged
(user) code to write the Software Trigger Interrupt
register. See Software Trigger Interrupt Register
(STIR) on page B3-23.

[0] R/W NONBASETHRDENA 0 (default): Thread state can only be entered at the
Base level of activation (will fault if attempted to
another level of activation).

1: Thread state can be entered at any level by
controlled return value. See Exception return
behavior on page B1-25 for details.

Unused Reserved
B3-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
It is IMPLEMENTATION DEFINED whether this bit is RO or R/W.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
The reset value of this bit is IMPLEMENTATION DEFINED. ARM recommends that this bit resets to 1.

----- Note -----
An implementation might include a configuration input signal that determines the reset value of this bit and the associated processor behavior.

System Address Map
System Handler Priority Register 1 (SHPR1)

This register is byte, aligned halfword and word accessible.

System Handler Priority Register 2 (SHPR2)

This register is byte, aligned halfword and word accessible.

System Handler Priority Register 3 (SHPR3)

This register is byte, aligned halfword and word accessible.

Table B3-11 System Handler Priority Register 1 – (0xE000ED18)

Bits R/W Name Function

[31:24] R/W PRI_7 Priority of system handler 7 - reserved

[23:16] R/W PRI_6 Priority of system handler 6 - UsageFault

[15:8] R/W PRI_5 Priority of system handler 5 - BusFault

[7:0] R/W PRI_4 Priority of system handler 4 - MemManage

Table B3-12 System Handler Priority Register 2 – (0xE000ED1C)

Bits R/W Name Function

[31:24] R/W PRI_11 Priority of system handler 11 - SVCall

[23:16] R/W PRI_10 Priority of system handler 10 - reserved

[15:8] R/W PRI_9 Priority of system handler 9 - reserved

[7:0] R/W PRI_8 Priority of system handler 8 - reserved

Table B3-13 System Handler Priority Register 3 – (0xE000ED20)

Bits R/W Name Function

[31:24] R/W PRI_15 Priority of system handler 15 - SysTick

[23:16] R/W PRI_14 Priority of system handler 14 - PendSV

[15:8] R/W PRI_13 Priority of system handler 13 - reserved

[7:0] R/W PRI_12 Priority of system handler 12 - DebugMonitor
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-17
Restricted Access Non-Confidential

System Address Map
System Handler Control and State Register (SHCSR)

Configurable Fault Status Registers (UserFault, BusFault, and MemManage)

The 3 Configurable Fault Status Registers are one or two bytes each and packed into one word. The registers
can be accessed collectively as a word as illustrated in Table B3-15 on page B3-1910-14, or individually as
a byte or halfword:

• For the UsageFault Status Register, see Table B3-18 on page B3-20

• For the BusFault Status Register, see Table B3-17 on page B3-20

• For the MemManage Status Register, see Table B3-16 on page B3-19

Table B3-14 System Handler Control and State Register – (0xE000ED24)

Bits R/W Name Function

[18] R/W USGFAULTENA Enable for UsageFault.

[17] R/W BUSFAULTENA Enable for BusFault.

[16] R/W MEMFAULTENA Enable for MemManage fault.

[15] R/W SVCALLPENDED Reads as 1 if SVCall is Pending (see note 1).

[14] R/W BUSFAULTPENDED Reads as 1 if BusFault is Pending.

[13] R/W MEMFAULTPENDED Reads as 1 if MemManage is Pending.

[12] R/W USGFAULTPENDED Reads as 1 if UsageFault is Pending.

[11] R/W SYSTICKACT Reads as 1 if SysTick is Active (see note 2).

[10] R/W PENDSVACT Reads as 1 if PendSV is Active.

[8] R/W MONITORACT Reads as 1 if the Monitor is Active.

[7] R/W SVCALLACT Reads as 1 if SVCall is Active.

[3] R/W USGFAULTACT Reads as 1 if UsageFault is Active.

[1] R/W BUSFAULTACT Reads as 1 if BusFault is Active.

[0] R/W MEMFAULTACT Reads as 1 if MemManage is Active.

Note 1: Pending state bits: A bit is set when the exception started to invoke, but was replaced by a higher
 priority exception
Note 2: Active state bits: the bit is set when the associated exception is the current exception or a nested
 (pre-empted) exception.
B3-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
The Configurable Fault Status Registers are byte, aligned halfword and word accessible.

The MemManage Status Register contains the status of MPU faults.

Table B3-15 Configurable Fault Status Registers (CFSR, 0xE000ED28)

Bits R/W
Fault Status
register

Function

[31:16] R/W1C UsageFault Provides information on UsageFault exceptions

[15:8] R/W1C BusFault Provides information on BusFault exceptions

[7:0] R/W1C MemManage Provides information on MemManage exceptions

R/W1C: Read/Write-one-to-clear

Table B3-16 MemManage Status Register (MMFSR, 0xE000D28)

Bits R/W Name Function

[7] R/W1C MMARVALID This bit is set if the MMAR register has valid contents.

[4] R/W1C MSTKERR A derived MemManage fault has occurred on exception
entry.

[3] R/W1C MUNSTKERR A derived MemManage fault has occurred on exception
return.

[1] R/W1C DACCVIOL Data access violation. The MMAR is set to the data address
which the load/store tried to access.

[0] R/W1C IACCVIOL MPU or eXecuteNever (XN) default memory map access
violation on an instruction fetch. The fault is only signalled
if the instruction is issued.

Unused bits Reserved

R/W1C: Read/Write-one-to-clear
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-19
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
E000ED28

System Address Map
The BusFault Status Register contains the status of bus errors resulting from instruction prefetches and data
accesses.

The UsageFault Status Register contains the status of a variety of instruction execution and data access
faults.

Table B3-17 BusFault Status Register (BFSR, 0xE000ED29)

Bits R/W Name Function

[7] R/W1C BFARVALID This bit is set if the BFAR register has valid contents.

[4] R/W1C STKERR This bit indicates a derived bus fault has occurred on
exception entry.

[3] R/W1C UNSTKERR This bit indicates a derived bus fault has occurred on
exception return.

[2] R/W1C IMPRECISERR Imprecise data access error.

[1] R/W1C PRECISERR Precise data access error. The BFAR is written with the
faulting address.

[0] R/W1C IBUSERR This bit indicates a bus fault on an instruction prefetch. The
fault is only signalled if the instruction is issued.

Unused bits Reserved

R/W1C: Read/Write-one-to-clear

Table B3-18 UsageFault Status Register (UFSR, 0xE000ED2A)

Bits R/W Name Function

[15:10] Reserved

[9] R/W1C DIVBYZERO Divide by zero error. When SDIV or UDIV instruction is used
with a divisor of 0, this fault will occur if DIV_0_TRP is
enabled.

[8] R/W1C UNALIGNED Unaligned access error. Multi-word accesses always fault if
not word aligned. Unaligned word and halfwords can be
configured to fault (UNALIGN_TRP is enabled)

[7:4] Reserved

[3] R/W1C NOCP Coprocessor access error (the coprocessor is disabled or not
present)

[2] R/W1C INVPC Integrity check error on EXC_RETURN.
B3-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
The UsageFault bits are additive; that is, if more than one fault occurs, all associated bits are set.

HardFault Status register (HFSR)

The HardFault Status Register contains a set of bits which indicate causes of faults.

Debug Fault Status Register (DFSR)

See Chapter C1 ARMv7-M Debug for a full description of debug support within ARMv7-M and Debug
Fault Status Register (DFSR) on page C1-19 for the Debug Fault Status Register.

Auxiliary Fault Status Register (AFSR)

The register is located at address 0xE000ED3C. The contents of this register are system specific and
IMPLEMENTATION DEFINED.

[1] R/W1C INVSTATE Invalid EPSR.T bit or illegal EPSR.IT bits for executing
instruction

[0] R/W1C UNDEFINSTR Undefined instruction executed (including those associated
with an enabled Coprocessor).

R/W1C: Read/Write-one-to-clear

Table B3-19 HardFault Status Register (0xE000ED2C)

Bits R/W Name Function

[31] R/W1C DEBUGEVT Debug event, and the Debug Fault Status Register has been
updated. Only set when halting debug is disabled
(C_DEBUGEN = 0) See Debug event behavior on
page C1-14 for more information

[30] R/W1C FORCED Configurable fault cannot be activated due to priority or
because it is disabled. Priority escalated to a HardFault
exception.

See Priority escalation on page B1-19.

[1] R/W1C VECTTBL Fault was due to vector table read on exception processing.

Not used Reserved

R/W1C: Read/Write-one-to-clear

Table B3-18 UsageFault Status Register (UFSR, 0xE000ED2A) (continued)

Bits R/W Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-21
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

System Address Map
MemManage Address Register (MMFAR)

BusFault Address Register (BFAR)

Coprocessor Access Control Register (CPACR)

If a bit pair is written with a 0b01 or 0b11 and it reads back as 0b00, the coprocessor is not fitted

Table B3-20 MemManage Address Register (0xE000ED34)

Bits R/W Name Function

[31:0] R/W ADDRESS Data address MPU faulted. This is the location which a load or
store attempted to access which was faulted. The MemManage
Status Register provides the cause, and indicates if the content of
this register is valid.When an unaligned access faults, the address
will be the actual address which faulted; since an access may be
split into multiple parts (each aligned), this address therefore may
be any offset in the range of the requested size.

Table B3-21 BusFault Address Register (0xE000ED38)

Bits R/W Name Function

[31:0] R/W ADDRESS Updated on precise data access faults. The value is the faulting
address associated with the attempted access. The BusFault Status
Register provides information on the reason, and indicates if the
content of this register is valid.For unaligned access faults, the
address is the address requested by the instruction, which is not
necessarily the address which faulted.

Table B3-22 Coprocessor Access Control Register– (0xE000ED88)

Bits R/W Name Function

[31:0] R/W CPACR Each bit pair corresponds to a coprocessor (bits [1:0] assigned to CP0,
…, bits [31:30] assigned to CP15). The interpretation of each bit pair
is as follows:

0b00: Access denied – generates a NOCP UsageFault
0b01: Privileged access only. User access will generate a NOCP fault.
0b10: Reserved (UNPREDICTABLE).
0b11: Full access.
B3-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
15

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
15:14

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
7

ARM_2009_Q4
Highlight
On ARMv7-M processors described by this issue of this document, bits [31:16] are reserved, RAZ/SBZP.

----- Note -----
On ARMv7-M processors that implement the Floating-point extension, bits [23:20] are defined in a similar way to bits [15:0]. Later issues of this document describe this optional architecture extension.

System Address Map
Software Trigger Interrupt Register (STIR)

Table B3-23 Software Trigger Interrupt Register – (0xE000EF00)

Bits R/W Name Function

[9:0] WO INTID The value written in this field is the interrupt to be triggered. This
acts the same as storing to the corresponding ISPR[x] set-pending
NVIC register bit. See Interrupt Set-Pending and Clear-Pending
Registers (NVIC_ISPRx and NVIC_ICPRx) on page B3-33.

This register applies to external interrupts only. The value written is
(ExceptionNumber - 16), see Exception number definition on
page B1-16.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-23
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
8:0

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_ISPRx

System Address Map
B3.3 System timer - SysTick

ARMv7-M includes an architected system timer – SysTick.

SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible
control mechanism. The counter can be used in several different ways, by example:

• An RTOS tick timer which fires at a programmable rate (for example 100Hz) and invokes a SysTick
routine.

• A high speed alarm timer using Core clock.

• A variable rate alarm or signal timer – the duration range dependent on the reference clock used and
the dynamic range of the counter.

• A simple counter. Software can use this to measure time to completion and time used.

• An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in
the control and status register can be used to determine if an action completed within a set duration,
as part of a dynamic clock management control loop.

B3.3.1 Theory of operation

The timer consists of four registers:

• A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt,
and determine counter status.

• The reload value for the counter, used to provide the counter’s wrap value.

• The current value of the counter.

• A calibration value register, indicating the preload value necessary for a 10ms (100Hz) system clock.

When enabled, the timer will count down from the reload value to zero, reload (wrap) to the value in the
SysTick Reload Value Register on the next clock edge, then decrement on subsequent clocks. Writing a
value of zero to the Reload Value Register disables the counter on the next wrap. When the counter
transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value Register will clear the register and the COUNTFLAG status bit. The write does
not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time
the register is accessed.

The calibration value TENMS allows software to scale the counter to other desired clock rates within the
counter’s dynamic range.

If the core is in Debug state (halted), the counter will not decrement.

The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an
external clock source. Where an external clock source is used, the implementation must document the
relationship between the core clock and the external reference. This is required for system timing
calibration, taking account of metastability, clock skew and jitter.
B3-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
value in the Current Value Register (SYST_CVR)

ARM_2009_Q4
Inserted Text
 (SYST_RVR)

ARM_2009_Q4
Sticky Note
-----Note-----
* The SYST_CVR value is UNKNOWN on reset. Before enabling the SysTick counter, software must write the required counter value to SYST_RVR, and then write to SYST_CVR. This clears SYST_CVR to zero. When enabled, the counter reloads the value from SYST_RVR, and counts down from that value, rather than from an arbitrary value.

* If the SYST_RVR value is zero, the timer is maintained with a current value of zero after it is reloaded with this value. This mechanism has the effect of disabling the SysTick counter independently of the counter enable bit.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
A write to the SYST_CVR

ARM_2009_Q4
Inserted Text
causes the SYST_CVR to reload from the SYST_RVR on the next timer clock, however, it

ARM_2009_Q4
Inserted Text
 to zero

System Address Map
B3.3.2 System timer register support in the SCS

Table B3-24 summarizes the register support provided within the SCS address map.

Descriptions of the four SysTick registers are provided in the following subsections.

Table B3-24 SysTick register support in the SCS

Address R/W Reset Value Name Function

0xE000E010 R/W 0x00000000 SYST_CSR SysTick Control and Status

0xE000E014 R/W Unpredictable SYST_RVR SysTick Reload value

0xE000E018 R/W Unpredictable SYST_CVR SysTick Current value

0xE000E01C RO IMP DEF SYST_CALIB SysTick Calibration value

…to 0xE000E0FF Reserved
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-25
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
 or 0x00000004, see description of SYST_CSR.CLKSOURCE bit.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNKNOWN

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNKNOWN

System Address Map
SysTick Control and Status Register (SYST_CSR)

SysTick Reload Value Register (SYST_RVR)

Table B3-25 SysTick Control and Status Register – (0xE000E010)

Bits R/W Name Function

[16] RO COUNTFLAG Returns 1 if timer counted to 0 since last time this register
was read. COUNTFLAG is set by a count transition from 1
=> 0. COUNTFLAG is cleared on read or by a write to the
Current Value register.

[2] R/W CLKSOURCE 0: clock source is (optional) external reference clock
1: core clock used for SysTick
If no external clock provided, this bit will read as 1 and
ignore writes.

[1] R/W TICKINT If 1, counting down to 0 will cause the SysTick exception to
be pended. Clearing the SysTick Current Value register by a
register write in software will not cause SysTick to be
pended.

[0] R/W ENABLE 0: the counter is disabled
1: the counter will operate in a multi-shot manner.

Unused Reserved

Table B3-26 SysTick Reload Value Register – (0xE000E014)

Bits R/W Name Function

[31:24] RAZ/WI

[23:0] R/W RELOAD Value to load into the Current Value register when the counter
reaches 0.
B3-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
SysTick Current Value Register (SYST_CVR)

SysTick Calibration value Register (SYST_CALIB)

Table B3-27 SysTick Current Value Register – (0xE000E018)

Bits R/W Name Function

[31:0] R/W CURRENT Current counter value. This is the value of the counter at the time
it is sampled. The counter does not provide read-modify-write
protection.The register is write-clear. A software write of any
value will clear the register to 0. Unsupported bits RAZ (see
SysTick Reload Value register).

Table B3-28 SysTick Calibration Value Register – (0xE000E01C)

Bits R/W Name Function

[31] RO NOREF If reads as 1, the Reference clock is not provided – the
CLKSOURCE bit of the SysTick Control and Status register will
be forced to 1 and cannot be cleared to 0.

[30] RO SKEW If reads as 1, the calibration value for 10ms is inexact (due to clock
frequency).

[29:24] Reserved

[23:0] RO TENMS An optional Reload value to be used for 10ms (100Hz) timing,
subject to system clock skew errors. If the value reads as 0, the
calibration value is not known.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-27
Restricted Access Non-Confidential

System Address Map
B3.4 Nested Vectored Interrupt Controller (NVIC)

ARMv7-M provides an interrupt controller as an integral part of the ARMv7-M exception model. The
interrupt controller operation aligns with ARM’s General Interrupt Controller (GIC) specification,
promoted for use with other architecture variants and ARMv7 profiles.

The ARMv7-M NVIC architecture supports up to 496 (IRQ[495:0]) discrete interrupts. The number of
external interrupt lines supported can be determined from the read-only Interrupt Controller Type Register
(ICTR) accessed at address 0xE000E004 in the System Control Space. See Interrupt Controller Type
Register (ICTR) on page B3-32 for the register detail. The general registers associated with the NVIC are
all accessible from a block of memory in the System Control Space as described in Table B3-29 on
page B3-30.

B3.4.1 Theory of operation

ARMv7-M supports level-sensitive and pulse-sensitive interrupt behavior. This means that both
level-sensitive and pulse-sensitive interrupts can be handled. Pulse interrupt sources must be held long
enough to be sampled reliably by the core clock to ensure they are latched and become Pending. A
subsequent pulse can re-pend the interrupt while it is Active, however, multiple pulses which occur during
the Active period will only register as a single event for interrupt scheduling.

In summary:

• Pulses held for a clock period will act like edge-sensitive interrupts. These can re-pend when the
interrupt is Active.

Note
 A pulse must be cleared before the assertion of AIRCR.VECTCLRACTIVE or the associated

exception return, otherwise the interrupt signal behaves as a level-sensitive input and the pending bit
is asserted again.

• Level based interrupts will pend and activate the interrupt. The Interrupt Service Routine (ISR) can
then access the peripheral, causing the level to be de-asserted. If the interrupt is still asserted on return
from the interrupt, it will be pended again.

All NVIC interrupts have a programmable priority value and an associated exception number as part of the
ARMv7-M exception model and its prioritization policy.

The NVIC supports the following features:

• NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable
or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear
policy, both registers reading back the current enabled state of the corresponding (32) interrupts.

When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending,
however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its
Active state until cleared by reset or an exception return. Clearing the enable bit prevents new
activations of the associated interrupt.
B3-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
Interrupt enable bits can be hard-wired to zero where the associated interrupt line does not exist, or
hard-wired to one where the associated interrupt line cannot be disabled.

• NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to
enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register
respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading
back the current pended state of the corresponding (32) interrupts. The Clear-Pending Register has
no effect on the execution status of an Active interrupt.

It is IMPLEMENTATION DEFINED for each interrupt line supported, whether an interrupt supports
setting and/or clearing of the associated pend bit under software control.

• Active bit status is provided to allow software to determine whether an interrupt is Inactive, Active,
Pending, or Active and Pending.

• NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register
supporting four interrupts). Priorities are maintained according to the ARMv7-M prioritization
scheme. See Exception priorities and pre-emption on page B1-17.

In addition to an external hardware event or setting the appropriate bit in the Set-Pending registers, an
external interrupt can be pended from software by writing its interrupt number (ExceptionNumber - 16) to
the Software Trigger Interrupt Register described in Software Trigger Interrupt Register (STIR) on
page B3-23.

External interrupt input behavior

The following pseudocode describes the relationship between external interrupt inputs and the NVIC
behavior:

// DEFINITIONS

NVIC[] is an array of active high external interrupt input signals;
 // the type of signal (level or pulse) and its assertion level/sense is IMPLEMENTATION DEFINED
 // and might not be the same for all inputs

boolean Edge(integer INTNUM); // Returns true if on a clock edge NVIC[INTNUM]
 // has changed from ’0’ to ’1’
boolean NVIC_Pending[INTNUM]; // an array of pending status bits for the external interrupts
integer INTNUM; // the external interrupt number

 // The WriteToRegField helper function returns TRUE on a write of ’1’ event
 // to the field FieldNumber of the RegName register.

boolean WriteToRegField(register RegName, integer FieldNumber)

boolean ExceptionIN(integer INTNUM); // returns TRUE if exception entry in progress
 // to activate INTNUM
boolean ExceptionOUT(integer INTNUM); // returns TRUE if exception return in progress
 // from active INTNUM
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-29
Restricted Access Non-Confidential

System Address Map
// INTERRUPT INTERFACE

sampleInterruptHi = WriteToRegField(AIRCR, VECTCLRACTIVE) || ExceptionOUT(INTNUM);
sampleInterruptLo = WriteToRegField(ICPR, INTNUM);

InterruptAssertion = Edge(INTNUM) || (NVIC[INTNUM] && sampleInterruptHi);
InterruptDeassertion = !NVIC[INTNUM] && sampleInterruptLo;

// NVIC BEHAVIOR

clearPend = ExceptionIN(INTNUM) || InterruptDeassertion;
setPend = InterruptAssertion || WriteToRegField(ISPR, INTNUM);

if clearPend && setPend then
 IMPLEMENTATION DEFINED whether NVIC_Pending[INTNUM] is TRUE or FALSE;
else
 NVIC_Pending[INTNUM] = setPend || (NVIC_Pending[INTNUM] && !clearPend);

B3.4.2 NVIC register support in the SCS

The Interrupt Controller Type Register (ICTR) and Software Trigger Interrupt Register (STIR) reside in the
system control region. The ICTR is a read-only register which provides information on the number of
external interrupts supported by the implementation. The STIR is a write-only register which enables
pending of external interrupts by software. The system control region also includes status and configuration
registers which apply to the NVIC as part of the general exception model.

All other external interrupt specific registers reside within the NVIC region of the SCS. Table B3-29
summarizes the NVIC specific registers in the SCS.

Table B3-29 NVIC register support in the SCS

Address Type Reset Value Name Function

0xE000E004 RO IMPLEMENTATION
DEFINED

ICTR Interrupt Controller Type Register

0xE000EF00 WO - STIR Software Trigger Interrupt Register

0xE000E100 R/W 0x00000000 NVIC_ISER0 Irq 0 to 31 Set-Enable Register

… … … …
B3-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
0xE000E13C R/W 0x00000000 NVIC_ISER15 Irq 480 to 495 Set-Enable Registera

0xE000E180 R/W 0x00000000 NVIC_ICER0 Irq 0 to 31 Clear-Enable Register

… … … …

0xE000E1BC R/W 0x00000000 NVIC_ICER15 Irq 480 to 495 Clear-Enable Registera

0xE000E200 R/W 0x00000000 NVIC_ISPR0 Irq 0 to 31 Set-Pending Register

… … … …

0xE000E23C R/W 0x00000000 NVIC_ISPR15 Irq 480 to 495 Set-Pending Registera

0xE000E280 R/W 0x00000000 NVIC_ICPR0 Irq 0 to 31 Clear-Pending Register

… … … …

0xE000E2BC RO 0x00000000 NVIC_ICPR15 Irq 480 to 495 Clear-Pending
Registera

0xE000E300 RO 0x00000000 NVIC_IABR0 Irq 0 to 31 Active Bit Register

… … … …

0xE000E37C RO 0x00000000 NVIC_IABR15 Irq 480 to 495 Active Bit Registera

380-3FC reserved

0xE000E400 R/W 0x00000000 NVIC_IPR0 Irq 0 to 3 Priority Register

… … … …

0xE000E7EC R/W 0x00000000 NVIC_IPR123 Irq 492 to 495 Priority Register

Table B3-29 NVIC register support in the SCS (continued)

Address Type Reset Value Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-31
Restricted Access Non-Confidential

System Address Map
Interrupt Controller Type Register (ICTR)

INTLINESNUM is the total number of interrupt lines supported by an implementation, defined in groups
of 32. This is encoded as follows:

• 0b0000: up to 32 interrupt lines supported
(These interrupts are banked in a multi-processor system)

• 0b0001: up to 64 interrupt lines supported.

• 0b0010: up to 96 interrupt lines supported

• 0b0011: up to 128 interrupt lines supported

• …

• 0b1110: up to 480 interrupt lines supported

• 0b1111: up to 496 interrupt lines supported (a maximum of sixteen supported by this value).

INTLINESNUM can be used to determine which sets of registers in the NVIC register map are populated.
NVIC register space access outside of the regions defined by INTLINESNUM is reserved.

0xE000E7F0 reserved

… … … …

0xE000ECFF reserved

a. bits [31:16] reserved

Table B3-29 NVIC register support in the SCS (continued)

Address Type Reset Value Name Function

Table B3-30 Interrupt Controller Type Register – (0xE000E004)

Bits R/W Name Function

[31:4] Reserved

[3:0] RO INTLINESNUM Number of interrupt lines supported by NVIC in
granularities of 32.
B3-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
Interrupt Set-Enable and Clear-Enable Registers
(NVIC_ISERx and NVIC_ICERx)

Interrupt Set-Pending and Clear-Pending Registers
(NVIC_ISPRx and NVIC_ICPRx)

Table B3-31 Interrupt Set-Enable Registers – (0xE000E100-E17C)

Bits R/W Name Function

[31:0] R/W SETENA Enable one or more interrupts within a group of 32. Each bit
represents an interrupt number from N to N+31 (starting at
interrupt 0, 32, 64, etc).

Writing a 1 will enable the associated interrupt.
Writing a 0 has no effect.
The register reads back with the current enable state.

Table B3-32 Interrupt Clear-Enable Registers – (0xE000E180-E1FC)

Bits R/W Name Function

[31:0] R/W CLRENA Disable one or more interrupts within a group of 32. Each bit
represents an interrupt number from N to N+31 (starting at
interrupt 0, 32, 64, etc).

Writing a 1 will disable the associated interrupt.
Writing a 0 has no effect.
The register reads back with the current enable state.

Table B3-33 Interrupt Set-Pending Registers – (0xE000E200-E27C)

Bits R/W Name Function

[31:0] R/W SETPEND Writing a 1 to a bit pends the associated interrupt under software
control. Each bit represents an interrupt number from N to N+31
(starting at interrupt 0, 32, 64, etc).

Writing a 0 to a bit has no effect on the associated interrupt.The
register reads back with the current pending state.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-33
Restricted Access Non-Confidential

System Address Map
Active Bit Register (NVIC_IABRx)

Interrupt Priority Register (NVIC_IPRx)

These registers are byte, aligned halfword and word accessible.

Table B3-34 Interrupt Clear-Pending Registers – (0xE000E280-E2FC)

Bits R/W Name Function

[31:0] R/W CLRPEND Writing a 1 to a bit un-pends the associated interrupt under
software control. Each bit represents an interrupt number from N
to N+31 (starting at interrupt 0, 32, 64, etc).

Writing a 0 to a bit has no effect on the associated interrupt.
The register reads back with the current pending state.

Table B3-35 Interrupt Active Bit Registers – (0xE000E300-E37C)

Bits R/W Name Function

[31:0] RO ACTIVE Each bit represents the current active state for the associated
interrupt within a group of 32. Each bit represents an interrupt
number from N to N+31 (starting at interrupt 0, 32, 64, etc).

Table B3-36 Interrupt Priority Registers – (0xE000E400-E7F8)

Bits R/W Name Function

[31:24] R/W PRI_N3 Priority of interrupt number N+3 (3, 7, 11, etc).

[23:16] R/W PRI_N2 Priority of interrupt number N+2 (2, 6, 10, etc).

[15:8] R/W PRI_N1 Priority of interrupt number N+1 (1, 5, 9, etc).

[7:0] R/W PRI_N Priority of interrupt number N (0, 4, 8, etc).
B3-34 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
B3.5 Protected Memory System Architecture (PMSAv7)

To support a user (unprivileged) and supervisor (privileged) software model, a memory protection scheme
is required to control the access rights. ARMv7-M supports the Protected Memory System Architecture
(PMSAv7). The system address space of a PMSAv7 compliant system is protected by a Memory Protection
Unit (MPU). The protected memory is divided up into a set of regions, with the number of regions supported
IMPLEMENTATION DEFINED. While PMSAv7 supports region sizes as low as 32 bytes, finite register
resources for the 4GB address space make the scheme inherently a coarse-grained protection scheme. The
protection scheme is 100% predictive with all control information maintained in registers closely-coupled
to the core. Memory accesses are only required for software control of the MPU register interface, see
Register support for PMSAv7 in the SCS on page B3-38.

MPU support in ARMv7-M is optional, and co-exists with the system memory map described in The system
address map on page B3-2 as follows:

• MPU support provides access right control on physical addresses. No address translation occurs in
the MPU.

• When the MPU is disabled or not present, the system adopts the default system memory map listed
in Table B3-1 on page B3-3.When the MPU is enabled, the enabled regions are used to define the
system address map with the following provisos:

— accesses to the Private Peripheral Bus (PPB) always uses the default system address map

— exception vector reads from the Vector Address Table always use the default system address
map

— the MPU is restricted in how it can change the default memory map attributes associated with
System space (address 0xE0000000 or higher).

System space is always marked as XN (eXecute Never).

System space which defaults to Device can be changed to Strongly-Ordered, but cannot be
mapped to Normal memory.

— exceptions executing at a priority < 0 (NMI, HardFault, and exception handlers with
FAULTMASK set) can be configured to run with the MPU enabled or disabled

— the default system memory map can be configured to provide a background region for
privileged accesses

— accesses with an address match in more than one region use the highest matching region
number for the access attributes

— accesses which do not match all access conditions of a region address match (with the MPU
enabled) or a background/default memory map match generate a fault.

B3.5.1 PMSAv7 compliant MPU operation

ARMv7-M only supports a unified memory model with respect to MPU region support. All enabled regions
provide support for instruction and data accesses.

The base address, size and attributes of a region are all configurable, with the general rule that all regions
are naturally aligned. This can be stated as:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-35
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

System Address Map
RegionBaseAddress[(N-1):0] = 0, where N is log2(SizeofRegion_in_bytes)

Memory regions can vary in size as a power of 2. The supported sizes are 2N, where 5 ≤ N ≤ 32. Where there
is an overlap between two regions, the register with the highest region number takes priority.

Sub-region support

For regions of 256 bytes or larger, the region can be divided up into eight sub-regions of size 2(N-3).
Sub-regions within a region can be disabled on an individual basis (8 disable bits) with respect to the
associated region attribute register. When a sub-region is disabled, an access match is required from another
region, or background matching if enabled. If an access match does not occur a fault is generated. Region
sizes below 256 bytes do not support sub-regions. The sub-region disable field is SBZ/UNP for regions of
less than 256 bytes in size.

ARMv7-M specific support

ARMv7-M supports the standard PMSAv7 memory model, plus the following extensions:

• An optimized two register update model, where the region being updated can be selected by writing
to the MPU Region Base Address Register. This optimization applies to the first sixteen memory
regions (0 ≤ RegionNumber ≤ 0xF) only.

• The MPU Region Base Address Register and the MPU Region Attribute and Size Register pairs are
aliased in three consecutive dual-word locations. Using the two register update model, up to four
regions can be modified by writing the appropriate even number of words using a single STM
multi-word store instruction.

MPU pseudocode

The following pseudocode defines the operation of an ARMv7-M MPU. The terms used align with the MPU
register names and bit field names described in Register support for PMSAv7 in the SCS on page B3-38.

// ValidateAddress()
// =================

AddressDescriptor ValidateAddressP(bits(32) address, boolean ispriv, boolean iswrite,
 boolean isinstrfetch)

 boolean isvectortablelookup; // TRUE if address associated with exception entry
 boolean isPPBaccess; // TRUE if the address is to the PPB region
 AddressDescriptor result;
 Permissions perms;

 // PMSA only supports shared (insruction and data) regions in ARMv7-M.

 result.physicaladdress = address;

B3-36 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
// ValidateAddress()
// =================

AddressDescriptor ValidateAddress(bits(32) address, boolean ispriv, boolean iswrite,
 boolean isinstrfetch)

 boolean isvectortablelookup; // TRUE if address associated with exception entry
 boolean isPPBaccess; // TRUE if the address is to the PPB region
 AddressDescriptor result;
 Permissions perms;

 // ARMv7-M PMSA only supports shared (instruction and data) regions
 result.physicaladdress = address;
 perms.ap = ’001’; // initialised value
 perms.xn = '0'; // initialised value

 if isvectortablelookup OR isPPBaccess then // bypass MPU for these accesses
 result.memattrs = DefaultMemoryAttributes(address);
 elsif MPU_CTRL.ENABLE == ‘0’ then // MPU disabled
 if MPU_CTRL.HFNMIENA == ‘1’ then
 UNPREDICTABLE;
 else result.memattrs = DefaultMemoryAttributes(address);

 else // MPU is enabled
 if MPU_CTRL.HFNMIENA == ‘0’ AND (ExecutionPriority() < 0) then

 // MPU disabled for HardFault, or FAULTMASK
 result.memattrs = DefaultMemoryAttributes(address);
 else
 // Scan through regions looking for matching ones. If found, the last
 // one matched is used.
 region_found = FALSE;

 for r=0 to MPU_TYPE.DREGION-1
 bits(16) size_enable = MPU_RASR[r]<15:0>;
 bits(32) base_address = MPU_RBAR[r];
 bits(16) access_control = MPU_RASR[r]<31:16>;

 if size_enable<0> == ’1’ then // Region is enabled
 lsbit = UInt(size_enable<5:1>) + 1;
 if lsbit < 5 then UNPREDICTABLE;

 if lsbit == 32 || address<31:lsbit> == base_address<31:lsbit> then
 if lsbit >= 8 then // can have subregions
 subregion = UInt(address<lsbit-1:lsbit-3>);
 hit = (size_enable<subregion+8> == ’0’);
 else
 hit = TRUE;

 if hit then
 texcb = access_control<5:3,1:0>;
 S = access_control<2>;
 perms.ap = access_control<10:8>;
 perms.xn = access_control<12>;
 region_found = TRUE;

 // Generate the memory attributes, and also the permissions if no region found.
 if region_found then
 result.memattrs = DefaultTEXDecode(texcb, S);
 else
 if MPU_CTRL.PRIVDEFENA == ’0’ then
 if isinstrfetch then
 MMSR.IACCVIOL = ’1’;
 MMSR.MMARVALID = ’0’;
 ExceptionTaken(MemManage);
 else
 MMSR.DACCVIOL = ’1’;
 MMAR = address;
 MMSR.MMARVALID = ’1’;
 ExceptionTaken(MemManage);
 else
 result.memattrs = DefaultMemoryAttributes(address);

 if (((UInt(PA<31:28>) > 9) OR (PA<31:29> == ’010’)) then
 perms.xn = '1'; // peripheral regions always Execute-Never

 // Check the permissions.
 CheckPermission(perms, address, iswrite, ispriv, isinstrfetch);

 return result;

System Address Map
 if isvectortablelookup OR isPPBaccess then // bypass MPU for these accesses
 result.memattrs = DefaultAttrs(PA);

 elsif ((ICSR.VECTACTIVE == 2) || (ICSR.VECTACTIVE == 3)) then // NMI, HardFault, or FAULTMASK
 if MPUCR.HFNMIENA == ‘1’ then // MPU enabled for NMI, HardFault and FAULTMASK
 if MPUCR.ENABLE == ‘0’ then
 UNPREDICTABLE;
 else
 result.memattrs = DefaultMemoryAttributes(PA); // MPU disabled for NMI etc.

 elsif MPUCR.ENABLE == ‘0’ then // MPU disabled
 result.memattrs = DefaultMemoryAttributes(PA);
 else // MPU is enabled

 // Scan through regions looking for matching ones. If found, the last
 // one matched is used.
 region_found = FALSE;

 for r=0 to MPUTR.DRegion-1
 bits(16) size_enable = MPURASR[r]<15:0>;
 bits(32) base_address = MPURBAR[r];
 bits(16) access_control = MPURASR[r]<31:16>;

 if size_enable<0> == ’1’ then // Region is enabled
 lsbit = UInt(size_enable<5:1>) + 1;
 if lsbit < 2 then UNPREDICTABLE;

 if lsbit == 32 || address<31:lsbit> == base_address<31:lsbit> then
 if lsbit >= 8 then // can have subregions
 subregion = UInt(address<lsbit-1:lsbit-3>);
 hit = (size_enable<subregion+8> == ’0’);
 else
 hit = TRUE;

 if hit then
 texcb = access_control<5:3,1:0>;
 S = access_control<2>;
 perms.ap = access_control<10:8>;
 perms.xn = access_control<12>;
 region_found = TRUE;

 // Generate the memory attributes, and also the permissions if no region found.
 if region_found then
 result.memattrs = DefaultTEXDecode(texcb, S);
 else
 if MPUCR.PRIVDEFENA == ’0’ then
 if isinstrfetch then
 MMSR.IACCVIOL = ’1’;
 MMSR.MMARVALID = ’0’;
 ExceptionTaken(MemManage);
 else
 MMSR.DACCVIOL = ’1’;
 MMAR = address;
 MMSR.MMARVALID = ’1’;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-37
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
See updated ValidateAddress() pseudocode on PDF page 520.

System Address Map
 ExceptionTaken(MemManage);
 else
 result.memattrs = DefaultMemoryAttributes(address);
 perms.ap = ’001’;
 perms.xn = if((UInt(PA<31:28>) > 9) OR (PA<31:29> == ’010’));

 // Check the permissions.
 CheckPermission(perms, address, iswrite, ispriv, isinstrfetch);

 return result;

MPU fault support

Instruction or data access violations cause a MemManage exception to be generated. In the pseudocode,
these are described by the pseudo-function MemManageFault(). See Fault behavior on page B1-39 for more
details of MemManage exceptions.

B3.5.2 Register support for PMSAv7 in the SCS

Table B3-37 on page B3-39 summarizes the register support for a memory Protection Unit (MPU) in the
System Control Space. In common with the general policy, all registers are byte, halfword, and word
accessible unless stated otherwise. All MPU register addresses are mapped as little endian.

MPU registers require privileged memory accesses for reads and writes. Unprivileged (User) accesses
generate MemManage faults.

There are three general MPU registers:

• The MPU Type Register specified in MPU Type Register (MPU_TYPE) on page B3-39. This register
can be used to determine if an MPU exists, and the number of regions supported.

• The MPU Control Register specified in MPU Control Register (MPU_CTRL) on page B3-40. The
MPU Control register includes a global enable bit which must be set to enable the MPU feature.

• The MPU Region Number Register specified in MPU Region Number Register (MPU_RNR) on
page B3-41.

The MPU Region Number Register selects the associated region registers:

• The MPU Region Base Address Register specified in MPU Region Base Address Register
(MPU_RBAR) on page B3-41.

• The MPU Region Attribute and Size Register to control the region size, sub-region access, access
permissions, memory type and other properties of the memory region in MPU Region Attribute and
Size Register (MPU_RASR) on page B3-42.

Each set of region registers contains its own region enable bit.
B3-38 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out
No such pseudocode function is defined. The cross-referenced section fully describes the MemManage exception.

ARM_2009_Q4
Cross-Out
See updated ValidateAddress() pseudocode on PDF page 520.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
BusFault

System Address Map
Where PMSAv7 is not supported, only the MPU Type Register is mandatory. The MPU Control Register is
RAZ/WI, and all other registers in this region are reserved (UNK/SBZP).

MPU Type Register (MPU_TYPE)

The MPU Type Register indicates how many regions are supported by the MPU. It can be used to determine
if there is an MPU supported.

Table B3-37 MPU register support in the SCS

Address Type Reset Value Name Function

0xE000ED90 RO IMPLEMENTATION
DEFINED

MPU_TYPE MPU Type Register

0xE000ED94 R/W 0x00000000 MPU_CTRL MPU Control Register

0xE000ED98 R/W UNKNOWN MPU_RNR MPU Region Number Register

0xE000ED9C R/W UNKNOWN MPU_RBAR MPU Region Base Address Register

0xE000EDA0 R/W UNKNOWN MPU_RASR MPU Region Attribute and Size Register

0xE000EDA4 R/W MPU_RBAR_A1 MPU Alias 1: MPURBAR(RegionNumber+1)

0xE000EDA8 R/W MPU_RASR_A1 MPU Alias 1: MPURASR(RegionNumber+1)

0xE000EDAC R/W MPU_RBAR_A2 MPU Alias 2: MPURBAR(RegionNumber+2)

0xE000EDB0 R/W MPU_RASR_A2 MPU Alias 2: MPURASR(RegionNumber+2)

0xE000EDB4 R/W MPU_RBAR_A3 MPU Alias 3: MPURBAR(RegionNumber+3)

0xE000EDB8 R/W MPU_RASR_A3 MPU Alias 3: MPURASR(RegionNumber+3)

…to
0xE000EDEF

… Reserved for future protection registers

Table B3-38 MPU Type Register – (0xE000ED90)

Bits R/W Name Function

[31:24] - reserved

[23:16] RO IREGION RAZ. ARMv7-M only supports a unified MPU.

[15:8] RO DREGION Specifies the number of regions supported by the MPU.
If RAZ, the MPU is not supported.

[0] RO SEPARATE RAZ. ARMv7-M only supports a unified MPU.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-39
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RASR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RASR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
 of MPU_RASR

System Address Map
MPU Control Register (MPU_CTRL)

The MPU Control Register is used to enable the MPU. The register is cleared on reset. If no regions are
enabled and the PRIVDEFENA and ENABLE bits are set, only privileged code can execute from the system
address map.

If the MPU is not fitted, this register is RAZ/WI.

Table B3-39 MPU Control Register – (0xE000ED94)

Bits R/W Name Function

[31:3] - - reserved

[2] R/W PRIVDEFENA When the bit is set along with the ENABLE bit, the Default
memory map (as defined in The system address map on
page B3-2) is enabled as a background region for privileged
access. The background region acts as though it were region
number -1. MPU configured regions will override (take
priority over) the default memory map.

When the bit is clear, the default map is disabled. Instruction or
data accesses not covered by a region will fault.

When the ENABLE bit is clear, PRIVDEFENA is ignored.

[1] R/W HFNMIENA When set along with the ENABLE bit, the MPU is enabled for
HardFault, NMI, and exception handlers with FAULTMASK
set.

When clear, the MPU will be disabled when in these handlers
(regardless of the value of ENABLE).

When HFNMIENA is set and ENABLE is clear, the system
behavior is UNPREDICTABLE.

[0] R/W ENABLE When set, the MPU is enabled.

When clear, the MPU is disabled and the default memory map
applies to privileged and User code.
B3-40 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
When this bit and the ENABLE bit are both set to 1, the MPU is enabled whenever execution priority is less than 1. This means it is enabled when executing the HardFault and NMI handlers, and when FAULTMASK is set to 1.

ARM_2009_Q4
Sticky Note
This change is a clarification of the intended meaning.

System Address Map

B3-40 Copyright © 2006-2009 ARM Limited. All rights reserve ARM DDI 0403Cerrata
Non-Confidential

Effect of MPU_CTRL settings on unprivileged instructions

The Thumb instruction set includes instructions that, when executed by privileged software, perform
unprivileged memory accesses:
• the following sections describe instructions that perform unprivileged register loads:

— LDRBT on page A7-294
— LDRHT on page A7-310
— LDRSBT on page A7-318
— LDRSHT on page A7-326
— LDRT on page A7-327

• the following sections describe instructions that perform unprivileged register stores:
— STRBT on page A7-469
— STRHT on page A7-480
— STRT on page A7-481.

Table B3-47 shows how the MPU_CTRL.HFNMIENA and MPU_CTRL.ENABLE bits affect the handling
of these instructions when issued by an exception handler for HardFault, or NMI, or for another exception
when FAULTMASK is set to 1, and when this is different for other privileged software,

Table B3-47 shows whether the MPU configuration or the default memory map determines the attributes
for the address accessed by the unprivileged load or store instruction. Handling of the instruction access then
depends on those attributes. If the attributes do not permit an unprivileged access then the memory system
generates a fault. If the access is from the NMI or HardFault handler, or when execution priority is -1
because FAULTMASK is set to 1, then this fault causes a lockup.

Table B3-47 Effect of MPU_CTRL settings on unprivileged instructions

MPU_CTRL Effect on unprivileged load or store instructions from

HFNMIENA ENABLE Specified handlersa Other privileged software

x 0 MPU disabled. Unprivileged access, using default memory map.

0 1 MPU disabled for these handlers. Unprivileged
access, using default memory map.

Unprivileged access, using MPU.

1 1 MPU enabled. Unprivileged access, using MPU.

a. HardFault or NMI handler, or other exception handler when FAULTMASK is set to 1,

ARM_2009_Q4
File Attachment
Description of effect of MPU_CONTROL settings on accesses by Unprivleged instructions

System Address Map
MPU Region Number Register (MPU_RNR)

The MPU Region Number Register is written to select the region to read or write.

MPU Region Base Address Register (MPU_RBAR)

The minimum size of region supported by an MPU Region Base Address Register is IMPLEMENTATION
DEFINED. It can be determined by writing all 1’s to the region’s MPURBAR[31:5] and reading back the bits
set. The minimum size is determined from the number of trailing zeroes in the bit field. All regions support
all size values from the minimum supported to 4GB (see SIZE in MPU Region Attribute and Size Register
– (0xE000EDA0) on page B3-42). This register is UNPREDICTABLE if accessed other than as a word.

Table B3-40 MPU Region Number Register – (0xE000ED98)

Bits R/W Name Function

[31:8] - - reserved

[7:0] R/W REGION This field selects the region specific MPURBAR and MPURASR.
The MPURNR must be written before accessing the associated
register pair, unless the alternative access feature (see
MPURBAR.VALID description) is used on a write access.

Table B3-41 MPU Region Base Address Register – (0xE000ED9C)

Bits R/W Name Function

[31:N] R/W ADDR Base address of the region. The base address is naturally aligned
according to the size of the region. N is defined as
log2(SizeofRegion_in_bytes), where the size can be determined
from the MPU Region Size Register.

[N-1:5] R/W RAZ/WI

[4] R/W VALID When the bit is written with ’1’, the REGION field of this register
is zero extended and copied into the MPURNR.

When the bit is written with ’0’, MPURNR does not change.

This bit is RAZ.

[3:0] R/W REGION For register writes, see VALID bit field description.

For register reads, the bit field reads as bits [3:0] of the MPURNR.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-41
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RNR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RNR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RASR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RNR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RNR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
5

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text

If an implementation supports N regions then the regions number from 0 to (N-1), and the effect of writing a value of N or greater to the REGION field is UNPREDICTABLE.

ARM_2009_Q4
Inserted Text
If an implementation supports N regions then the regions number from 0 to (N-1). If N is less than 16, the effect of writing a value of N or greater to the REGION field is UNPREDICTABLE.

System Address Map
MPU Region Attribute and Size Register (MPU_RASR)

The Region Attribute and Size Register (MPURASR) defines the size and access behavior of the associated
memory region. The register fields are described in Table B3-42.

Writing a SIZE field with a value greater than that supported by the associated MPU Region Base Address
Register is UNPREDICTABLE.

The 8 Sub-Region Disable (SRD) bits allow the 1/8th sub-regions to be disabled individually. The least
significant bit affects the 1/8th sub-region with the lowest address range, the most significant bit affects the
highest addressed 1/8th sub-region. The sub-region disable bits are UNPREDICTABLE for region sizes of 32,
64, and 128 bytes. For further information on sub-region support, see Sub-region support on page B3-36.

Additional information on the SIZE and ATTRS fields is provided below.

Region size control

The size of a region is encoded in the MPU Region Size Register as shown in Table B3-43.

Table B3-42 MPU Region Attribute and Size Register – (0xE000EDA0)

Bits R/W Name Function

[31:16] R/W ATTRS The MPU Region Attribute Register as defined in Region attribute
control on page B3-43

[15:8] R/W SRD For regions of 256 bytes or larger, the Sub-Region Disable bits are
used to disable 1/8 of the region per bit. For any bit that is set, the
relevant 1/8 of the region’s address range is disabled with respect
to the attribute settings.

[7:6] - reserved

[5:1] R/W SIZE The region size as defined in Table B3-43.

[0] R/W ENABLE When set, the associated region is enabled within the MPU. The
global MPU enable bit must also be set for it to take effect.

Table B3-43 Region Size Encoding

Size
Encoding

Region size in bytes
Size
Encoding

Region size in bytes

00000 - 10000 128KB

00001 - 10001 256KB

00010 - 10010 512KB

00011 - 10011 1MB
B3-42 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RASR

System Address Map
Region attribute control

TheMPU region attribute fields define the memory type, cache, and access policies for a given memory
region.

00100 32 10100 2MB

00101 64 10101 4MB

00110 128 10110 8MB

00111 256 10111 16MB

01000 512 11000 32MB

01001 1KB 11001 64MB

01010 2KB 11010 128MB

01011 4KB 11011 256MB

01100 8KB 11100 512MB

01101 16KB 11101 1GB

01110 32KB 11110 2GB

01111 64KB 11111 4GB

Table B3-44 Region attribute fields

31 29 28 27 26 24 23 22 21 19 18 17 16

Reserved XN Reserved AP Reserved TEX S C B

Table B3-43 Region Size Encoding (continued)

Size
Encoding

Region size in bytes
Size
Encoding

Region size in bytes
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-43
Restricted Access Non-Confidential

System Address Map
The TEX, S, C and B bits control the device type and cacheability as shown in Table B3-45. Cache
information is exported by the core on instruction fetches and data accesses. The information can be used
to support system caches on a system bus.

Table B3-45 TEX/CB/S Encoding

TEX C B Description Memory Type
Region
Shareable?

000 0 0 Strongly ordered Strongly ordered Shareable

000 0 1 Shared device Device Shareable

000 1 0 Outer and inner write through, no write
allocate

Normal sa

000 1 1 Outer and inner write back, no write
allocate

Normal s

001 0 0 Outer and inner Non-cacheable Normal s

001 0 1 RESERVED RESERVED RESERVED

001 1 0 IMPLEMENTATION DEFINED IMPLEMENTATION
DEFINED

IMPLEMENTATION
DEFINED

001 1 1 Outer and inner write back; write and read
allocate

Normal s

010 0 0 Non-shared device Device Not shareable

010 0 1 RESERVED RESERVED RESERVED

010 1 X RESERVED RESERVED RESERVED

011 X X RESERVED RESERVED RESERVED

1BB A A Cached memory.
BB = outer policyb, AA == inner policy
See Table B3-46 on page B3-45 for
encoding details.

Normal s

a. “s” is the S bit (bit [2]) from the MPU Region Attribute Register
b. the cache policy refers to cache rules to be exported on the bus
B3-44 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

System Address Map
The AP bits, AP[2:0], are used for access permissions. These are shown in Table B3-47.

The XN bit provides an eXecute Never capability. Instructions must have read access as defined by the AP
bits and XN clear for correct execution, otherwise a MemManage fault is generated when the instruction is
issued.

Table B3-46 Cache policy encoding

Memory Attribute Encoding
(AA and BB)

Cache Policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

Table B3-47 AP encoding

AP[2:0]
Privileged
Permissions

User
Permissions

Description

000 No Access No Access All accesses generate a permission fault

001 Read/Write No Access Privileged access only

010 Read/Write Read Only Unprivileged (User) writes generate permission
faults

011 Read/Write Read/Write Full access

100 UNPREDICTABLE UNPREDICTABLE RESERVED

101 Read Only No Access Privileged read only

110 Read Only Read Only Privileged/User read only

111 Read Only Read Only Privileged/User read only

Table B3-48 XN encoding

XN Description

0 Instruction fetches allowed

1 Instruction fetches not allowed
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B3-45
Restricted Access Non-Confidential

System Address Map
MPU alias register support

The MPU Region Base Address Register and the MPU Region Attribute and Size Register form a pair of
words in the address range of 0xE000ED9C to 0xE000EDA3. Three aliases of this address range are
provided at addresses 0xE000D9C + 8, +16, and +24 as shown in Table B3-37 on page B3-39. Using the
register aliases along with the REGION/VALID fields of the MPU Region Base Address Register, software
can efficiently update the four regions with a stream of word writes, assuming all the regions accessed are
in the range Region0 to Region15.
B3-46 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Chapter B4
ARMv7-M System Instructions

As previously stated, ARMv7-M only executes instructions in Thumb state. The full list of supported
instructions is provided in Alphabetical list of ARMv7-M Thumb instructions on page A6-17. To support
reading and writing the special-purpose registers under software control, ARMv7-M provides three system
instructions:

CPS

MRS

MSR
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-1
Restricted Access Non-Confidential

ARMv7-M System Instructions
B4.1 Alphabetical list of ARMv7-M system instructions

The ARMv7-M system instructions are defined in this section:

• CPS

• MRS on page B4-4

• MSR (register) on page B4-81

B4.1.1 CPS

Change Processor State changes one or more of the special-purpose register PRIMASK and FAULTMASK
values.

enable = (im == ’0’); disable = (im == ’1’);
affectPRI = (I == ’1’); affectFAULT = (F == ’1’);
if InITBlock() then UNPREDICTABLE;

Assembler syntax

CPS<effect><q> <iflags>

where:

<effect> Specifies the effect required on PRIMASK and FAULTMASK. This is one of:

IE Interrupt Enable. This sets the specified bits to 0.

ID Interrupt Disable. This sets the specified bits to 1.

<q> See Standard assembler syntax fields on page A6-7. A CPS instruction must be
unconditional.

<iflags> Is a sequence of one or more of the following, specifying which masks are affected:

i PRIMASK. Raises the current priority to 0 when set to 1. This is a 1-bit register,
which supports privileged access only.

f FAULTMASK. Raises the current priority to -1 (the same as HardFault) when
it is set to 1. Thisis a 1-bit register, which can only be set by privileged code with
a lower priority than -1. The register self-clears on return from any exception
other than NMI.

1. MSR(immediate) is a valid instruction in other ARMv7 profiles and earlier architecture variants. The MSR
(immediate) encoding is UNDEFINED in ARMv7-M.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
CPS<effect> <iflags> Not allowed in IT block.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 1 1 0 0 1 1 im (0) (0) I F
B4-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
This is

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Sticky Note
The change from current priority to execution priority is a clarification. The two terms have exactly the same meaning.

ARMv7-M System Instructions
Operation

EncodingSpecificOperations();
if CurrentModeIsPrivileged() then
 if enable then
 if affectPRI then PRIMASK<0> = ’0’;
 if affectFAULT then FAULTMASK<0> = ’0’;
 if disable then
 if affectPRI then PRIMASK<0> = ’1’;
 if affectFAULT && ExecutionPriority > -1 then FAULTMASK<0> = ’1’;

Exceptions

None.

Notes

Privilege Any unprivileged (User) code attempt to write the masks is ignored.

Masks and CPS

The CPSIE and CPSID instructions are equivalent to using an MSR instruction:

• The CPSIE i instruction is equivalent to writing a 0 into PRIMASK

• The CPSID i instruction is equivalent to writing a 1 into PRIMASK

• The CPSIE f instruction is equivalent to writing a 0 into FAULTMASK

• The CPSID f instruction is equivalent to writing a 1 into FAULTMASK.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-3
Restricted Access Non-Confidential

ARM_2009_Q2
Inserted Text
()

ARMv7-M System Instructions
B4.1.2 MRS

Move to Register from Special Register moves the value from the selected special-purpose register into a
general-purpose register.

d = UInt(Rd);
if d IN {13,15} || !(UInt(SYSm) IN {0..3,5..9,16..20}) then UNPREDICTABLE;

Assembler syntax

MRS<c><q> <Rd>, <spec_reg>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rd> Specifies the destination register.

<spec_reg> Encoded in SYSm, specifies one of the following:

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
MRS<c> <Rd>,<spec_reg>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 1 1 (0) (1) (1) (1) (1) 1 0 (0) 0 Rd SYSm

Special register Contents SYSm value

APSR The flags from previous instructions 0

IAPSR A composite of IPSR and APSR 1

EAPSR A composite of EPSR and APSR 2

XPSR A composite of all three PSR registers 3

IPSR The Interrupt status register 5

EPSR The execution status register 6

IEPSR A composite of IPSR and EPSR 7

MSP The Main Stack pointer 8

PSP The Process Stack pointer 9

PRIMASK Register to mask out configurable exceptions 16 a

BASEPRI The base priority register 17 b
B4-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Callout
Add footnote:

The EPSR is RAZ

ARMv7-M System Instructions
BASEPRI_MAX This acts as an alias of BASEPRI on reads 18 c

FAULTMASK Register to raise priority to the HardFault level 19 d

CONTROL The special-purpose control register 20 e

RSVD RESERVED unused

a. Raises the current priority to 0 when set to 1. This is a 1-bit register.
b. Changes the current pre-emption priority mask to a value between 0 and N. 0 means the mask is disabled.

The register only has an effect when the value (1 to N) is lower (higher priority) than the non-masked
priority level of the executing instruction stream.
The register can have up to 8 bits (depending on the number of priorities supported), and it is formatted
exactly the same as other priority registers.
The register is affected by the PRIGROUP (binary point) field. See Exception priorities and pre-emption
on page B1-17 for more details. Only the pre-emption part of the priority is used by BASEPRI for
masking.

c. When used with the MSR instruction, it performs a conditional write.
d. This register raises the current priority to -1 (the same as HardFault) when it is set to 1. This can only be

set by privileged code with a priority below -1 (not NMI or HardFault), and self-clears on return from any
exception other than NMI. This is a 1-bit register.

e. The control register is composed of the following bits:
[0] = Thread mode privilege: 0 means privileged, 1 means unprivileged (User). This bit resets to 0.
[1] = Current stack pointer: 0 is Main stack (MSP), 1 is alternate stack (PSP if Thread mode, RESERVED if
Handler mode). This bit resets to 0.

Special register Contents SYSm value
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-5
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Sticky Note
The change from current priority to execution priority is a clarification. The two terms have exactly the same meaning.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARMv7-M System Instructions
Operation

if ConditionPassed() then
 R[d] = 0;
 case SYSm<7:3> of
 when ’00000’
 if SYSm<0> == ’1’ and CurrentModeIsPrivileged() then
 R[d]<8:0> = IPSR<8:0>;
 if SYSm<1> == ’1’ then
 R[d]<26:24> = ’000’; /* EPSR reads as zero */
 R[d]<15:10> = ’000000’;
 if SYSm<2> == ’0’ then
 R[d]<31:27> = APSR<31:27>;
 when ’00001’
 if CurrentModeIsPrivileged() then
 case SYSm<2:0> of
 when ’000’
 R[d] = MSP;
 when ’001’
 R[d] = PSP;
 when ’00010’
 case SYSm<2:0> of
 when ’000’
 R[d]<0> = if CurrentModeIsPrivileged() then
 PRIMASK<0> else ’0’;
 when ’001’
 R[d]<7:0> = if CurrentModeIsPrivileged() then
 BASEPRI<7:0> else ’00000000’;
 when ’010’
 R[d]<7:0> = if CurrentModeIsPrivileged() then
 BASEPRI<7:0> else ’00000000’;
 when ’011’
 R[d]<0> = if CurrentModeIsPrivileged() then
 FAULTMASK<0> else ’0’;
 when ‘100‘
 R[d]<1:0> = CONTROL<1:0>;

Exceptions

None.
B4-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M System Instructions
Notes

Privilege If User code attempts to read any stack pointer or the IPSR, it returns 0s.

EPSR None of the EPSR bits are readable during normal execution. They all read as 0 when read
using MRS (Halting debug can read them via the register transfer mechanism).

Bit positions The PSR bit positions are defined in The special-purpose program status registers (xPSR)
on page B1-8.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-7
Restricted Access Non-Confidential

ARMv7-M System Instructions
B4.1.3 MSR (register)

Move to Special Register from ARM Register moves the value of a general-purpose register to the selected
special-purpose register.

n = UInt(Rn);
if n IN {13,15} || !(UInt(SYSm) IN {0..3,5..9,16..20}) then UNPREDICTABLE;

Assembler syntax

MSR<c><q> <spec_reg>, <Rn>

where:

<c><q> See Standard assembler syntax fields on page A6-7.

<Rn> Is the general-purpose register to receive the special register contents.

<spec_reg> Encoded in SYSm, specifies one of the following:

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.

MSR<c> <spec_reg>,<Rn>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 1 0 0 (0) Rn 1 0 (0) 0 (1) (0) (0) (0) SYSm

Special register Contents SYSm value

APSR The flags from previous instructions 0

IAPSR A composite of IPSR and APSR 1

EAPSR A composite of EPSR and APSR 2

XPSR A composite of all three PSR registers 3

IPSR The Interrupt status register 5

EPSR The execution status register (reads as zero, see Notes) 6

IEPSR A composite of IPSR and EPSR 7

MSP The Main Stack pointer 8

PSP The Process Stack pointer 9

PRIMASK Register to mask out configurable exceptions 16 a

BASEPRI The base priority register 17 b
B4-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Callout
Insert footnote:

The EPSR ignores writes

ARMv7-M System Instructions
BASEPRI_MAX On writes, raises BASEPRI but does not lower it 18 c

FAULTMASK Register to raise priority to the HardFault level 19 d

CONTROL The special-purpose control register 20 e

RSVD RESERVED unused

a. Raises the current priority to 0 when set to 1. This is a 1-bit register.
b. Changes the current pre-emption priority mask to a value between 0 and N. 0 means the mask is disabled.

The register only has an effect when the value (1 to N) is lower (higher priority) than the non-masked
priority level of the executing instruction stream.
The register can have up to 8 bits (depending on the number of priorities supported), and it is formatted
exactly the same as other priority registers.
The register is affected by the PRIGROUP (binary point) field. See Exception priorities and pre-emption
on page B1-17 for more details. Only the pre-emption part of the priority is used by BASEPRI for
masking.

c. When used with the MSR instruction, it performs a conditional write. The BASEPRI value is only updated
if the new priority is higher (lower number) than the current BASEPRI value.
Zero is a special value for BASEPRI (it means disabled). If BASEPRI is 0, it always accepts the new value.
If the new value is 0, it will never accept it. This means BASEPRI_MAX can always enable BASEPRI but
never disable it. PRIGROUP has no effect on the values compared or written. All register bits are
compared and conditionally written.

d. This register raises the current priority to -1 (the same as HardFault) when it is enabled set to 1. This can
only be set by privileged code with a priority below -1 (not NMI or HardFault), and self-clears on return
from any exception other than NMI. This is a 1-bit register.
The CPS instruction can also be used to update the FAULTMASK register.

e. The control register is composed of the following bits:
[0] = Thread mode privilege: 0 means privileged, 1 means unprivileged (User). This bit resets to 0.
[1] = Current stack pointer: 0 is Main stack (MSP), 1 is alternate stack (PSP if Thread mode, RESERVED if
Handler mode). This bit resets to 0.

Special register Contents SYSm value
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-9
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
execution

ARM_2009_Q4
Sticky Note
The change from current priority to execution priority is a clarification. The two terms have exactly the same meaning.

ARMv7-M System Instructions
Operation

if ConditionPassed() then
 case SYSm<7:3> of
 when '00000'
 if SYSm<2> == '0' then
 APSR<31:27> = R[n]<31:27>;
 when '00001'
 if CurrentModeIsPrivileged() then
 case SYSm<2:0> of
 when '000'
 MSP = R[n];
 when '001'
 PSP = R[n];
 when '00010'
 case SYSm<2:0> of
 when '000'
 if CurrentModeIsPrivileged() then PRIMASK<0> = R[n]<0>;
 when '001'
 if CurrentModeIsPrivileged() then BASEPRI<7:0> = R[n]<7:0>;
 when '010'
 if CurrentModeIsPrivileged() &&
 (R[n]<7:0> != '00000000') &&
 (R[n]<7:0> < BASEPRI<7:0> || BASEPRI<7:0> == '00000000') then
 BASEPRI<7:0> = R[n]<7:0>;
 when '011'
 if CurrentModeIsPrivileged() &&
 (ExecutionPriority > -1) then
 FAULTMASK<0> = R[n]<0>;
 when `100`
 if CurrentModeIsPrivileged() then
 CONTROL<0> = R[n]<0>;
 If CurrentMode == Mode_Thread then CONTROL<1> = R[n]<1>;

Exceptions

None.
B4-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Highlight

ARM_2009_Q2
Inserted Text
()

ARMv7-M System Instructions
Notes

Privilege Writes from unprivileged Thread mode to any stack pointer, the EPSR, the IPSR, the masks,
or CONTROL, will be ignored. If privileged Thread mode software writes a 0 into
CONTROL[0], the core will switch to unprivileged Thread mode (User) execution, and
inhibit further writes to special-purpose registers.
An ISB instruction is required to ensure instruction fetch correctness following a Thread
mode privileged => unprivileged transition.

IPSR The currently defined IPSR fields are not writable. Attempts to write them by Privileged
code is write-ignored (has no effect).

EPSR The currently defined EPSR fields are not writable. Attempts to write them by Privileged
code is write-ignored (has no effect).

Bit positions The PSR bits are positioned in each PSR according to their position in the larger xPSR
composite. This is defined in The special-purpose program status registers (xPSR) on
page B1-8.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. B4-11
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
1

ARMv7-M System Instructions
B4-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Part C
Debug Architecture

Chapter C1
ARMv7-M Debug

 This chapter covers all aspects of debug with respect to ARMv7-M. It is made up of the following sections:

• Introduction to debug on page C1-2

• The Debug Access Port (DAP) on page C1-4

• Overview of the ARMv7-M debug features on page C1-8

• Debug and reset on page C1-13

• Debug event behavior on page C1-14

• Debug register support in the SCS on page C1-19

• Instrumentation Trace Macrocell (ITM) support on page C1-27

• Data Watchpoint and Trace (DWT) support on page C1-33

• Embedded Trace (ETM) support on page C1-56

• Trace Port Interface Unit (TPIU) on page C1-57

• Flash Patch and Breakpoint (FPB) support on page C1-61.

This chapter is profile specific. ARMv7-M includes several debug features unique within the ARMv7
architecture to this profile.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-1
Restricted Access Non-Confidential

ARMv7-M Debug
C1.1 Introduction to debug

Debug support is a key element of the ARM architecture. ARMv7-M provides a range of debug approaches,
both invasive and non-invasive techniques.

Invasive debug techniques are:

• the ability to halt the core, execute to breakpoints etc. (run-stop model)

• debug code using the DebugMonitor exception (less intrusive than halting the core).

Non-invasive debug techniques are:

• application trace by writing to the Instrumentation Trace Macrocell (ITM), a very low level of
intrusion

• non-intrusive hardware supported trace and profiling,

Debug is normally accessed via the DAP (see The Debug Access Port (DAP) on page C1-4), which allows
access to debug resources when the processor is running, halted, or held in reset. When a core is halted, the
core is in Debug state.

The software-based and non-intrusive hardware debug features supported are as follows:

• High level trace and logging using the Instrumentation Trace Macrocell (ITM). This uses a fixed
low-intrusion overhead (non-blocking register writes) which can be added to an RTOS, application
or exception handler/ISR. The instructions can be retained in product code avoiding probe effects
where necessary.

• Profiling a variety of system events including associated timing information. These include
monitoring core clock counts associated with interrupt and sleep functions.

• PC sampling and event counts associated with load/store, instruction folding, and CPI statistics.

• Data tracing.

As well as the Debug Control Block (DCB) within the System Control Space (SCS), other debug related
resources are allocated fixed 4kB address regions within the Private Peripheral Bus (PPB) region of the
ARMv7-M system address map:

• Instrumentation Trace Macrocell (ITM) for profiling software.

• Debug Watchpoint and Trace (DWT) provides watchpoint support, program counter sampling for
performance monitoring and embedded trace trigger control.

• Flash Patch and Breakpoint (FPB) block. This block can remap sections of ROM (Flash memory) to
regions of RAM and set breakpoints on code in ROM. This feature can be used for debug and
provision of code and/or data patches to applications where updates or corrections to product ROM(s)
are required in the field.

• Embedded Trace Macrocell (ETM). This optional block provides instruction tracing.

• Trace Port Interface Unit (TPIU). This optional block provides the pin interface for the ITM, DWT
and ETM (where applicable) trace features.
C1-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
• ROM table. A table of entries providing a mechanism to identify the debug infrastructure supported
by the implementation.

The address ranges for the ITM, DWT, FPB, DCB and trace support are listed in Table C1-1.

Note
 Minimal systems might not include all the listed debug features, see Debug support in ARMv7-M on
page C1-10.

Notes on Table C1-1:

• There is a requirement for writes to the ITM stimulus ports not to cause an exception when the ITM
feature is disabled or not present to ensure the feature is transparent to application code, see Theory
of operation on page C1-27.

• The SCB is described in The System Control Block (SCB) on page B3-10.

• In addition to the DWT and ITM, a TPIU is needed to export information off-chip for data trace,
application trace, and profiling. The protocol used to communicate with an external software agent
via the TPIU is described in Appendix E Debug ITM and DWT packet protocol.

• The TPIU can be a shared resource in a complex debug system, or omitted where visibility of ITM
stimuli, or ETM and DWT trace event output is not required. Where the TPIU is a shared resource,
it can reside within the PPB memory map and under local processor control, or be an external system
resource, controlled from elsewhere.

Table C1-1 PPB debug related regions

Private Peripheral Bus (address range 0xE0000000 to 0xE00FFFFF)

Group Address Offset
Range(s)

Notes

Instrumentation Trace Macrocell (ITM) 0xE0000000-0xE0000FFF profiling and performance monitor support

Data Watchpoint and Trace (DWT) 0xE0001000-0xE0001FFF includes control for trace support

Flash Patch and Breakpoint (FPB) 0xE0002000-0xE0002FFF optional block

SCS: System Control Block (SCB) 0xE000ED00-0xE000ED8F SCB: generic control features

SCS: Debug Control Block (DCB) 0xE000EDF0-0xE000EEFF debug control and configuration

Trace Port Interface Unit (TPIU) 0xE0040000-0xE0040FFF optional trace and/or serial wire viewer
support (see notes).

Embedded Trace Macrocell (ETM) 0xE0041000-0xE0041FFF optional instruction trace capability

ARMv7-M ROM table 0xE00FF000-0xE00FFFFF DAP accessible for auto-configuration
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-3
Restricted Access Non-Confidential

ARMv7-M Debug
C1.2 The Debug Access Port (DAP)

Debug access is through the Debug Access Port (DAP), an implementation of the ARM Debug Interface v5
Architecture Specification. A JTAG Debug Port (JTAG-DP) or Serial Wire Debug Port (SW-DP) can be
used. The DAP specification includes details on how a system can be interrogated to determine what debug
resources are available, and how to access any ARMv7-M device(s). A valid ARMv7-M system
instantiation includes a ROM table of information as described in Table C1-3. The general format of a ROM
table entry is described in Table C1-2.

A debugger can use a DAP interface to interrogate a system for memory access ports (MEM-APs). The
BASE register in a memory access port provides the address of the ROM table (or a series of ROM tables
within a ROM table hierarchy). The memory access port can then be used to fetch the ROM table entries.
See ARM Debug Interface v5 Architecture Specification for more information.

For ARMv7-M all address offsets are negative. The entry 0x00000000 indicates the end of table marker.

Table C1-2 ROM table entry format

Bits Name Description

[31:12] Address offset Signed base address offset of the component relative to the ROM base address

[11:2] Reserved UNK/SBZP

[1] Format Reads-as-one when a valid table entry

[0] Entry present 1: valid table entry
0: (and bits [31:1] not equal to zero), ignore the table entrya

a. 0x00000002 is the recommended null entry for ARMv7-M where a null entry is required before an end of table marker.

Table C1-3 ARMv7-M DAP accessible ROM table

Offset Value Name Description

0x000 0xFFF0F003 ROMSCS Points to the SCS at 0xE000E000.

0x004 0xFFF02002 or
0xFFF02003

ROMDWT Points to the Data Watchpoint and Trace block at 0xE0001000.
Bit [0] is set if a DWT is fitted.

0x008 0xFFF03002 or
0xFFF03003

ROMFPB Points to the Flash Patch and Breakpoint block at 0xE0002000.
Bit [0] is set if an FPB is fitted.

0x00C 0xFFF01002 or
0xFFF01003

ROMITMa Points to the Instrumentation Trace block at 0xE0000000.
Bit [0] is set if an ITM is fitted.

0x010 0xFFF41002 or
0xFFF41003

ROMTPIUb Points to the Trace Port Interface Unit. Bit [0] is set if a TPIU is fitted
and accessible to the processor on its Private Peripheral Bus (PPB).
C1-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
The basic sequence of events to access and enable ARMv7-M debug using a DAP is as follows:

• Enable the power-up bits for the debug logic in the DAP Debug Port control register.

• Ensure the appropriate DAP Memory Access Port control register is enabled for word accesses (this
should be the default in a uniprocessor system).

0x014 0xFFF42002 or
0xFFF42003

ROMETMb Points to the Embedded Trace Macrocell block. Bit [0] is set if an ETM
is fitted and accessible to the processor on its PPB.

0x018 0x00000000 end End-of-table marker. It is IMPLEMENTATION DEFINED whether the table
is extended with pointers to other system debug resources. The table
entries always terminate with a null entry.

0x020
to
0xFC8

Not Used RAZ

0xFCC 0x00000001 SYSTEM
ACCESSc

Bit [0] set indicates that resources other than those listed in the ROM
table are accessible wihin the same 32-bit address space via the DAP.

0xFD0 IMP DEF PID4 CIDx values are fully defined for the ROM table, and are CoreSight
compliant.

PIDx values should be CoreSight compliant or RAZ.

See Appendix B ARMv7-M infrastructure IDs for more information.

CoreSight: ARM’s system debug architecture

0xFD4 0 PID5

0xFD8 0 PID6

0xFDC 0 PID7

0xFE0 IMP DEF PID0

0xFE4 IMP DEF PID1

0xFE8 IMP DEF PID2

0xFEC IMP DEF PID3

0xFF0 0x0000000D CID0

0xFF4 0x00000010 CID1

0xFF8 0x00000005 CID2

0xFFC 0x000000B1 CID3

a. Accesses cannot cause a non-existent memory exception.
b. It is IMPLEMENTATION DEFINED whether a shared resource is managed by the local processor or a different resource.
c. This location was formerly known as MEMTYPE.

Table C1-3 ARMv7-M DAP accessible ROM table (continued)

Offset Value Name Description
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-5
Restricted Access Non-Confidential

ARMv7-M Debug
• If halting debug is required:

— set the C_DEBUGEN bit in the Debug Halting Control and Status Register (DHCSR) – see
Debug Halting Control and Status Register (DHCSR) on page C1-20.

If the target is to be halted immediately:

— set the C_HALT bit in the same register

— read back the S_HALT bit in the DHCSR to ensure the target is halted in Debug state.

Otherwise, if monitor debug is required:

— enable DebugMonitor exceptions in the DEMCR.

Note
 C_DEBUGEN must be clear if DebugMonitor exceptions are to occur. If C_DEBUGEN is set,

halting debug behavior overrides DebugMonitor exceptions.

• If using the watchpoint and trace features, set the TRCENA bit in the Debug Exception and Monitor
Control Register (DEMCR) – see Debug Exception and Monitor Control Register (DEMCR) on
page C1-24.

See the ARM Debug Interface v5 Architecture Specification for more information on the DAP.

Warning
 System control and configuration fields (in particular registers in the SCB) can be changed via the DAP
while software is executing. For example, resources designed for dynamic updates can be modified. This
can have undesirable side-effects if both the application and debugger are updating the same or related
resources. The consequences of updating a running system via a DAP in this manner have no guarantees,
and can be worse than UNPREDICTABLE with respect to system behavior.

In general, MPU or FPB address remapping changes should not be performed by a debugger while software
is running to avoid associated context problems.

C1.2.1 General rules applying to debug register access

The Private Peripheral Bus (PPB), address range 0xE0000000 to 0xE0100000, supports the following general
rules:

• The region is defined as Strongly Ordered memory – see Strongly-ordered memory on page A3-25
and Memory access restrictions on page A3-26.

• Registers are always accessed little endian regardless of the endian state of the processor.

• Debug registers can only be accessed as a word access. Byte and halfword accesses are
UNPREDICTABLE.

• The term set means assigning the value to 1 and the term clear(ed) means assigning the value to 0.
Where the term applies to multiple bits, all bits assume the assigned value.
C1-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
• The term disable means assigning the bit value to 0 and the term enable means assigning the bit value
to 1.

• A reserved register or bit field has the value UNK/SBZP.

Unprivileged (User) access to the PPB causes BusFault errors unless otherwise stated. Notable exceptions
are:

• Unprivileged accesses can be enabled to the Software Trigger Interrupt Register in the System
Control Space by programming a control bit in the Configuration Control Register.

• For debug related resources (DWT, ITM, FPB, ETM and TPIU blocks), user access reads return
UNKNOWN and writes are ignored unless stated otherwise.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-7
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
The behavior of unprivileged accesses to the ITM. For more information, see Theory of operation on page C1-27 [PDF page 571].

ARMv7-M Debug
C1.3 Overview of the ARMv7-M debug features

ARMv7-M defines a debug model specifically designed for the profile. The ARMv7-M debug model has
control and configuration integrated into the memory map. The Debug Access Port defined in the ARM
Debug Interface v5 Architecture Specification provides the interface to a host debugger. Debug resources
within ARMv7-M are as listed in Table C1-1 on page C1-3.

ARMv7-M supports the following debug related features:

• A Local Reset, see Overview of the exceptions supported on page B1-14. This resets the core and
supports debug of reset events.

• Core halt. Control register support to halt the processor. This can occur asynchronously by assertion
of an external signal, execution of a BKPT instruction, or from a debug event (by example configured
to occur on reset, or on exit from or entry to an ISR).

• Step, with or without interrupt masking.

• Run, with or without interrupt masking.

• Register access. The DCB supports debug requests, including reading and writing core registers when
halted.

• Access to exception-related information through the SCS resources. Examples are the currently
executing exception (if any), the active list, the pended list, and the highest priority pending
exception.

• Software breakpoints. The BKPT instruction is supported.

• Hardware breakpoints, hardware watchpoints, and support for remapping of code memory locations.

• Access to all memory through the DAP.

• Support of profiling. Support for PC sampling is provided.

• Support of instruction tracing and the ability to add other system debug features such as a bus monitor
or cross-trigger facility. ETM instruction trace requires a multiwire Trace Port Interface Unit (TPIU).

• Application and data trace that can be supported through either a low pin-count Serial Wire Viewer
(SWV) or a multiwire TPIU.

Note
 CoreSight is the name given to ARM’s system debug architecture, incorporating a range of debug control,
capture and system interface blocks. ARMv7-M does not require CoreSight compliance. The register
definitions and address space allocations for the DWT, ITM, TPIU and FPB blocks in this specification are
compatible. ARMv7-M allows these blocks to add support for CoreSight topology detection and operation
as appropriate by extending them with CoreSight ID and management registers.
C1-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.3.1 Debug authentication

ARMv7 supports two generic signals for debug enable and to control invasive versus non-invasive debug as
described in Table C1-4.

For ARMv7-M, the provision of DBGEN and NIDEN as actual signals is IMPLEMENTATION DEFINED. It is
acceptable for DBGEN to be considered permanently enabled (DBGEN = HIGH), with control deferred to
other enable bits within the profile specific debug architecture.

Note
 ARMv7-M does not support the SPIDEN and SPNIDEN signals. These signals form part of the secure
debug authentication scheme as used by ARMv6K with the Security Extensions and the ARMv7-A profile.

C1.3.2 External debug request

The EDBGRQ input is asserted by an external agent to signal an external debug request. An external debug
request can cause a debug event and entry to Debug state as described in Debug event behavior on
page C1-14. The debug event is reported in the DFSR.EXTERNAL status bit, see Debug Fault Status
Register (DFSR) on page C1-19.

When the processor is in Debug state, the HALTED output signal is asserted. HALTED reflects the
DHCSR.S_HALT bit, see Debug Halting Control and Status Register (DHCSR) on page C1-20. The signal
can be used as a debug acknowledge for EDBGRQ.

EDBGRQ and HALTED assert HIGH. EDBGRQ is ignored when the processor is in Debug state.

C1.3.3 External restart request

It is IMPLEMENTATION DEFINED whether multiprocessing support is provided in the ARMv7-M Debug
Extension. An implementation with multiprocessing debug support is required to provide the ability to
perform a linked restart of multiple processors. Two signals are required to support the multiprocessing
restart mechanism:

• a DBGRESTART input

• a DBGRESTARTED output.

Table C1-4 ARMv7 debug authentication signals

DBGEN NIDEN Invasive debug permitted Non-invasive debug permitted

LOW LOW No No

LOW HIGH No Yes

HIGH X Yes Yes
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-9
Restricted Access Non-Confidential

ARMv7-M Debug
DBGRESTART and DBGRESTARTED

DBGRESTART and DBGRESTARTED form a four-phase handshake, as shown in Figure C1-1.

Asserting DBGRESTART HIGH causes the core to exit from Debug state. Once DBGRESTART is
asserted, it must be held HIGH until DBGRESTARTED is deasserted. DBGRESTART is ignored unless
HALTED and DBGRESTARTED are asserted.

Figure C1-1 DBGRESTART / DBGRESTARTED handshake

Figure C1-1 is diagrammatic only, and no timings are implied. The numbers in Figure C1-1 have the
following meanings:

1. If DBGRESTARTED is asserted HIGH the peripheral asserts DBGRESTART HIGH and waits for
DBGRESTARTED to go LOW

2. The processor drives DBGRESTARTED LOW to deassert the signal and waits for DBGRESTART
to go LOW

3. The peripheral drives DBGRESTART LOW to deassert the signal. This is the event that indicates to
the processor that it can start the Debug ➝ Non-debug state transition phase.

4. The processor leaves Debug state and asserts DBGRESTARTED HIGH.

In the process of leaving Debug state the processor clears the HALTED signal to LOW. It is
IMPLEMENTATION DEFINED when this change occurs relative to the 1 ➝ 0 change in DBGRESTART and
the 0 ➝ 1 change in DBGRESTARTED.

C1.3.4 Debug support in ARMv7-M

ARMv7-M supports a comprehensive set of debug features. The following bit fields can be used to
determine the level of debug support present in a design:

• if ROMDWT[0] is zero there is no DWT support. Otherwise, if DEMCR.TRCENA == 1 and if:

— DWT_CTRL.NOTRCPKT == ’1’, there is no DWT trace sampling or exception tracing
support

— DWT_CTRL.NOEXTTRIG == ’1’, there is no CMPMATCH[N] support

— DWT_CTRL.NOCYCCNT == ’1’, there is no cycle counter support

— DWT_CTRL.NOPRFCNT == ’1’, there is no profiling counter support.

• if ROMITM[0] is zero there is no ITM support

+���.������ *�
�����.������

������	
�	

� �

������	
�	��

9�
C1-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
• if ROMFPB[0] is zero there is no FPB support

• if ROMETM[0] is zero there is no ETM support

• if neither DWT nor ITM is supported, DEMCR.TRCENA is RAZ/WI

• if FP_REMAP[29] is zero the FPB only supports breakpoint functionality.

Note
 The number of comparators supported in the DWT or FPB can be determined from bit fields in the
DWT_CTRL and FP_CTRL registers respectively.

Recommended levels of debug

There are three recommended levels of debug provision in ARMv7-M:

• a minimum level that only supports the DebugMonitor exception

• a basic level that requires a DAP and adds some halting debug support

• a comprehensive level that includes the above with fully-featured ITM, DWT and FPB support.

The minimum level of debug in ARMv7-M only supports core access (no DAP) and the DebugMonitor
exception with:

• the BKPT instruction

Note
 When the DebugMonitor exception is disabled, this escalates to a HardFault exception.

• monitor stepping

• monitor entry from EDBGRQ.

ARM defines the following configuration of features as a basic level of support:

• support of a DAP and halting debug

• no ITM support - ROMITM[0] == ’0’, see ARMv7-M DAP accessible ROM table on page C1-4

Note
 There is a requirement for writes to the ITM stimulus ports not to cause an exception when the ITM

feature is disabled or not present to ensure the feature is transparent to application code, see Theory
of operation on page C1-27.

• 2 breakpoints in the FPB (no remapping support)

• 1 watchpoint in the DWT (no trace sampling or external match signal (CMPMATCH[N])
generation)

• Debug monitor support of the minimum level debug features along with the listed FPB and DWT
events.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-11
Restricted Access Non-Confidential

ARMv7-M Debug
For compliance with the comprehensive level of support:

• the DebugMonitor exception and halting debug are supported

• ROMITM[0] != ’0’

— at least 8 Stimulus Port registers.

• ROMDWT[0] != ’0’

— at least 1 watchpoint is supported

— DWT_CTRL.NOTRCPKT == ’0’

— DWT_CTRL.NOCYCCNT == ’0’

— DWT_CTRL.NOPRFCNT == ’0’

— DWT_CTRL.NOEXTTRIG is IMPLEMENTATION DEFINED.

CMPMATCH[N] support is required when ROMETM[0] == ’1’.

• ROMFPB[0] != ’0’

— at least 2 breakpoints are supported

— FP_REMAP[29] != ’0’.
C1-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.4 Debug and reset

ARMv7-M defines two levels of reset as stated in Overview of the exceptions supported on page B1-14:

• a Power-ON Reset (POR)

• a Local Reset.

Software can initiate a system reset as described in Reset management on page B1-47. The reset vector catch
control bit (VC_CORERESET) can be used to generate a debug event when the core comes out of reset. A
debug event causes the core to halt (enter Debug state) when halting debug is enabled.

The following bit fields are reset by a POR but not by a Local Reset:

• fault flags in the DFSR, see Debug Fault Status Register (DFSR) on page C1-19.

• debug control in the DHCSR, see the notes associated with Debug Halting Control and Status
Register (DHCSR) on page C1-20.

• DEMCR.TRCENA and the vector catch (VC*) configuration bits, see Debug Exception and Monitor
Control Register (DEMCR) on page C1-24.

Note
 ARMv7-M does not provide a means to:

• debug a Power-On Reset

• differentiate Power-On Reset from a Local Reset.

The relationship with the debug logic reset and power control signals described in the DAP recommended
external interface (see ARM Debug Interface v5 Architecture Specification) is IMPLEMENTATION DEFINED.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-13
Restricted Access Non-Confidential

ARMv7-M Debug
C1.5 Debug event behavior

An event triggered for debug reasons is known as a debug event. A debug event will cause one of the
following to occur:

• Entry to Debug state. If halting debug is enabled (C_DEBUGEN in the DHCSR, Table C1-9 on
page C1-20, is set), captured events will halt the processor in Debug state. See Table B1-9 on
page B1-40 for a comprehensive application level fault table.

• A DebugMonitor exception. If halting debug is disabled (C_DEBUGEN is cleared) and the debug
monitor is enabled (MON_EN in the DEMCR, Table C1-12 on page C1-24, is set), a debug event will
cause a DebugMonitor exception when the group priority of DebugMonitor is higher than the current
active group priority.

If the DebugMonitor group priority is less than or equal to the current active group priority, a BKPT
instruction will escalate to a HardFault and other debug events (watchpoints and external debug
requests) are ignored.

Note
 Software can put the DebugMonitor exception into the Pending state under this condition, and when

the DebugMonitor exception is disabled.

• A HardFault exception. If both halting debug and the monitor are disabled, a BKPT instruction will
escalate to a HardFault and other debug events (watchpoints and external debug requests) are ignored.

Note
 A BKPT instruction that causes a HardFault or lockup is considered as unrecoverable.

The Debug Fault Status Register (Table C1-8 on page C1-19) contains status bits for each captured debug
event. The bits are write-one-to-clear. These bits are set when a debug event causes the processor to halt or
generate an exception. It is IMPLEMENTATION DEFINED whether the bits are updated when an event is
ignored.
C1-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
:
 - The processor escalates a breakpoint debug event to a HardFault.
 - Whether the processor escalates a breakpoint generated by the FPB to a HardFault, or ignores FPB breakpoints, is IMPLEMENTATION DEFINED. However the processor can ignore an FPB breakpoint only if the breakpointed instruction shows its architectural behavior.
 - The processor ignores the other debug events. This means it ignores watchpoints and external debug requests.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
set the DEMCR.MON_PEND to 1 at any time to make the DebugMonitor exception pending. When DEMCR.MON_PEND is set to 1, the processor takes the DebugMonitor exception according to the exception prioritization rules, regardless of the value of the DEMCR.MON_EN bit

ARM_2009_Q4
Sticky Note
This change, including the change in the Note that follows, clarifies the required behavior.

ARMv7-M Debug
A summary of halting and debug monitor support is provided in Table C1-5.

For a description of the vector catch feature, see Vector catch support on page C1-26.

If DHCSR.C_DEBUGEN is clear and a breakpoint occurs in an NMI or HardFault exception handler, the
system locks up with an unrecoverable error. Handling of unrecoverable exceptions in general is described
in Unrecoverable exception cases on page B1-44. The breakpoint can be due to a BKPT instruction or
generated by the FPB, see Flash Patch and Breakpoint (FPB) support on page C1-61.

C1.5.1 Debug stepping

ARMv7-M supports debug stepping in both halting debug and monitor debug. Stepping from Debug state
is supported by writing to the C_STEP and C_HALT control bits in the Debug Halt Control and Status
Register (see Debug Halting Control and Status Register (DHCSR) on page C1-20 for the control bit
definitions).

When C_STEP is set, and C_HALT is cleared in the same or a subsequent register write, the system:

1. exits Debug state

2. performs one of the following:

• The next instruction is executed (stepped).

• An exception entry sequence occurs that stacks the next instruction context. The processor
halts on the first instruction of the exception handler entered according to the exception
priority and late-arrival rules.

Table C1-5 Debug related faults

Fault
Cause

Exception support
(Halt and
 DebugMonitor)

DFSR Bit Name Notes

Internal halt
request

Yes HALTED Step command, core halt request, etc.

Breakpoint Yes BKPT Breakpoint from BKPT instruction or
match in FPB

Watchpointa

a. Includes a PC match watchpoint.

Yes DWTTRAP Watchpoint match in DWT

Vector catch Halt only VCATCH DEMCR.VC_xxx bit(s) set

External Yes EXTERNAL EDBGRQ line asserted
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-15
Restricted Access Non-Confidential

ARMv7-M Debug
• The next instruction is executed (stepped) and the exception model causes a change from the
expected program flow:

— An exception entry sequence occurs according to the exception priority and late-arrival
rules. The processor halts ready to execute the first instruction of the exception handler
taken.

— If the executed instruction is an exception return instruction, tail-chaining can cause
entry to a new exception handler. The processor halts ready to execute the first
instruction of the exception handler taken.

Note
 The exception entry behavior is not recursive. Only a single PushStack() update can occur within a

step sequence.

3. returns to Debug state.

The debugger can optionally set the C_MASKINTS bit in the DHCSR to inhibit (mask) PendSV, Systick
and external configurable interrupts from occurring. Where C_MASKINTS is set, permitted exception
handlers which activate will execute along with the stepped instruction. See Table C1-6 for a summary of
stepping control.

Table C1-6 Debug stepping control using the DHCSR

DHCSR writesa

C_HALT C_STEP C_MASKINTS Action

0 0 0 Exit Debug state and start instruction execution

Exceptions activate according to the exception
configuration rules.

0 0 1 Exit Debug state and start instruction execution.

PendSV, SysTick and external configurable
interrupts are disabled, otherwise exceptions
activate according to standard configuration
rules.

0 1 0 Exit Debug state, step an instruction and halt.

Exceptions activate according to the exception
configuration rules.
C1-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
Modifying C_STEP or C_MASKINTS while the system is running with halting debug support enabled
(C_DEBUGEN == 1, S_HALT == 0) is UNPREDICTABLE.

The values of C_HALT, C_STEP and C_MASKINTS are ignored by hardware and UNKNOWN to software
when C_DEBUGEN == 0.

Note
 If C_HALT is cleared in Debug state, a subsequent read of S_HALT == ’1’ means Debug state has been
re-entered due to detection of a new debug event.

Debug monitor stepping

Stepping by a debug monitor is supported by the MON_STEP control bit in the Debug Exception and
Monitor Control Register (see Debug Exception and Monitor Control Register (DEMCR) on page C1-24).
When MON_STEP is set (with C_DEBUGEN clear), the step request is a Pending request that will activate
on return from the DebugMonitor handler to the code being debugged (the debug target code).

Note
 Tail-chaining can result in other exception handlers being executed before the monitor step request is
activated.

Once the step request activates, it performs one of the following in the step execution phase:

• The next instruction is executed (stepped).

• An exception entry sequence occurs that stacks the next instruction context. The processor halts on
the first instruction of the exception handler entered according to the exception priority and
late-arrival rules.

0 1 1 Exit Debug state, step an instruction and halt.

PendSV, SysTick and external configurable
interrupts are disabled, otherwise exceptions
activate according to standard configuration
rules.

1 x x remain in Debug state

a. assumes C_DEBUGEN == 1 and S_HALT == 1 when the write occurs (the system is halted).

Table C1-6 Debug stepping control using the DHCSR (continued)

DHCSR writesa

C_HALT C_STEP C_MASKINTS Action
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-17
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
C_HALT == '1' and

ARM_2009_Q4
Inserted Text

To force the processor to enter Debug state as soon as it comes out of reset, a debugger sets DHCSR.C_DEBUGEN to 1, to enable halting debut, and sets DEMCR.VC_CORERESET to 1 to enable vector catch on the Reset exception. When the processor comes out of reset it sets DHCSR.C_HALT to 1, and enters Debug state.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out
The effect of a write to DHCSR that changes the C_MASKINTS bit is UNPREDICTABLE if either, before the write, the value of the C_HALT bit is 0, or the same write to DHCSR changes the value of the C_HALT bit from 1 to 0. To set C_MASKINTS to 1 and C_HALT to 0 a processor must first write to DHCSR to set CMASKINTS to 1, and then write to DHCSR again to set C_HALT to 0.

ARM_2009_Q4
Cross-Out
A debugger uses debug monitor stepping to return from the DebugMonitor exception handler, execute a single instruction, and the re-enter the DebugMonitor exception handler. Debug monitor stepping is enabled when all of the following apply:
 • DHCSR.C_DEBUGEN is set to 0, halting debug disabled, see Debug Halting Control and Status Register (DHCSR) on page C1-20 [PDF page 564]
 • DEMCR.MON_EN is set to 1, monitor debug enabled, see Debug Exception and Monitor Control Register (DEMCR) on page C1-24 [PDF page 568]
 • DEMCR.MON_STEP is set to 1, monitor stepping enabled
 • execution priority is below the priority of the DebugMonitor exception.

When debug monitor stepping is enabled, the processor performs a debug monitor step as follows:
 1. Either:
 • Execute the next instruction.
 • Perform an exception entry sequence to a pending exception with a priority below that of the DebugMonitor exception. In this case, the processor does not execute an instruction in this step.
 2. Set the DEMCR.MON_PEND bit to 1.
 3. Take any pending exception of sufficient priority.

If, during this process, any exceptions other than the DebugMonitor exception are pending, the normal rules for exception prioritization apply. This means that another exception with higher priority than the DebugMonitor exception might preempt execution. If this happens, the debug monitor stepping process continues when execution priority falls back below the priority of the DebugMonitor exception.

Otherwise, step 3 of this process results in the DebugMonitor exception preempting execution, returning control to the DebugMonitor handler. Unless that handler clears DEMCR.MON_STEP to 0, returning from the handler performs the next debug monitor step.

----- Note -----
If the instruction execution performed at step 1 of the debug monitor step explicitly causes the execution priority to become higher than the priority of the DebugMonitor exception, it is IMPLEMENTATION DEFINED whether the processor sets DEMCR.MON_PEND to 1 as part of the debug monitor step.

ARM_2009_Q4
Sticky Note
This change clarifies the description of Debug monitor stepping and corrects some errors in the original version.

ARMv7-M Debug
• The next instruction is executed (stepped) and the exception model causes a change from the expected
program flow:

— An exception entry sequence occurs according to the exception priority and late-arrival rules.
The processor halts ready to execute the first instruction of the exception handler taken.

— If the executed instruction is an exception return instruction, tail-chaining can cause entry to a
new exception handler. The processor halts ready to execute the first instruction of the
exception handler taken.

Note
 Only a single PushStack() update can occur due to a non-recursive exception entry sequence within the step
execution phase.

After the step execution phase, the DebugMonitor exception will be taken with the DFSR.HALTED bit set,
see Debug Fault Status Register (DFSR) on page C1-19.
C1-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out
See updated description of Debug monitor stepping on previous page.

ARMv7-M Debug
C1.6 Debug register support in the SCS

The debug provision in the System Control Block consists of two handler-related flag bits (ISRPREEMPT
and ISRPENDING) in the Interrupt Control and State Register (Interrupt Control and State Register –
(0xE000ED04) on page B3-12), and the Debug Fault Status Register (DFSR).

Additional debug registers are architected in the Debug Control Block as summarized in Table C1-7.

C1.6.1 Debug Fault Status Register (DFSR)

The Debug Fault Status Register as defined in Table C1-8 provides the top level reason why a debug event
has occurred.

Table C1-7 Debug register region of the SCS

Address R/W Name Function

0xE000EDF0 R/W DHCSR Debug Halting Control and Status Register

0xE000EDF4 WO DCRSR Debug Core Register Selector Register

0xE000EDF8 R/W DCRDR Debug Core Register Data Register

0xE000EDFC R/W DEMCR Debug Exception and Monitor Control Register

… to 0xE000EEFF … Reserved for debug extensions

Table C1-8 Debug Fault Status Register (0xE000ED30)

Bitsa

a. bits [4:0] are cleared on a power-up reset. They are not cleared by a software initiated (local) reset.

R/W Name Function

[31:5] Reserved

[4] R/W1Cb

b. R/W1C: Read/Write-one-to-clear.

EXTERNAL An asynchronous exception generated due to the assertion of
EDBGRQ.

[3] R/W1C VCATCH Vector catch triggered. Corresponding FSR will contain the
primary cause of the exception.

[2] R/W1C DWTTRAP Data Watchpoint and Trace trap. Indicates that the core halted
due to at least one DWT trap event.

[1] R/W1C BKPT BKPT instruction executed or breakpoint match in FPB.

[0] R/W1C HALTED Halt request, including step debug command. Stopped on next
instruction.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-19
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
Indicates a debug event generated by either:
 * a C_HALT or C_STEP request, triggered by a write to the DHCSR
 * a step request triggered by setting DEMCR.MON_STEP to 1.

ARMv7-M Debug
C1.6.2 Debug Halting Control and Status Register (DHCSR)

The Debug Halting Control and Status Register (DHCSR) controls halting debug.

Table C1-9 Debug Halting Control and Status Register – (0xE000EDF0)

Bits R/W Name Function

[31:16] W DBGKEY Debug Key. The value 0xA05F must be written to enable write
accesses to bits [15:0], otherwise the write access will be
ignored. Read behavior of bits [31:16] is as listed below.

[31:26] R - Reserved

[25] R S_RESET_ST Core reset since the last time this bit was read. This is a sticky
bit, which clears on read.

[24] R S_RETIRE_ST Instruction has completed (retired) since last read. This is a
sticky bit, which clears on read. This bit can be used to
determine if the core is stalled on a load/store or fetch.

[23:20] - - Reserved

[19] R S_LOCKUP Core is locked up due to an unrecoverable exception. See
Unrecoverable exception cases on page B1-44 for details.
This bit can only be read as set by a remote debugger (via the
DAP) while the core is running and locked up. The bit is
cleared on entry to Debug state when the core halts.

[18] R S_SLEEP Core is sleeping. Must set the C_HALT bit to gain control, or
wait for an interrupt (WFI instruction response) to wake-up the
system.

[17] R S_HALT Core is in Debug state.

[16] R S_REGRDY A handshake flag. The bit is cleared to ’0’ on a write to the
Debug Core Register Selector Register and is set to ’1’ when
the transfer to/from the Debug Core Register Data Register is
complete. Otherwise the bit is UNKNOWN.

[15:6] - - Reserved

[5] R/W C_SNAPSTALL If the core is stalled on a load/store operation (see
S_RETIRE_ST), setting this bit will break the stall and force
the instruction to complete. This bit can only be set if
C_DEBUGEN and C_HALT are set, and S_RETIRE_ST is
clear. The bus state is UNPREDICTABLE when C_SNAPSTALL
is set.

[4] - - Reserved
C1-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
When set to 1, indicates that an instruction has completed since the last read of DHCSR.

This is a sticky bit, which is cleared on a register read. This bit is UNKNOWN after a Power-on or Local reset, but then is set to 1 as soon as the processor executes and retires an instruction.

ARM_2009_Q4
Sticky Note
This change is a clarification of the behavior of this bit.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
When the processor is not in Debug state

ARM_2009_Q4
Sticky Note
This is a clarification of the intended meaning.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
If the processor is stalled on a load or store operation, a debugger can set this bit to 1 to attempt to break the stall. The effect of this bit is:
0 = No action
1 = Attempt to force any stalled load or store instruction to complete.

The effect of setting this bit to 1 is UNPREDICTABLE unless the DHCSR write also sets C_DEBUGEN and C_HALT to 1. This means that if the processor is not already in Debug state it enters Debug state when the stalled instruction completes.

Writing 1 to this bit makes the state of the memory system UNPREDICTABLE. Therefore, if a debugger writes 1 to this bit it must
reset the processor before leaving Debug state.

----- Note -----
 * A debugger can write to the DHCSR to clear this bit to 0. However, this does not remove the UNPREDICTABLE state of the
memory system caused by setting C_SNAPSTALL to 1.
 * The architecture does not guarantee that setting this bit to 1 will force a stalled load or store operation to complete.
 * ARM strongly recommends that software never writes 1 to C_SNAPSTALL when the processor is in Debug state.

ARMv7-M Debug
Notes on Table C1-9 on page C1-20:

• S_RESET_ST is set on every reset (power-on and local resets)

• S_RETIRE_ST, S_LOCKUP, S_SLEEP and S_HALT clear on reset. If C_HALT and C_DEBUGEN
are asserted on reset, S_HALT will be set, and the core will enter Debug state immediately after the
reset sequence.

• C_SNAPSTALL, C_MASKINTS, C_STEP, and C_DEBUGEN are cleared on a power-on reset only

• Modifying C_STEP or C_MASKINTS while the system is running with halting debug support
enabled (C_DEBUGEN == 1, S_HALT == 0) is UNPREDICTABLE.

• For more information on the use of C_HALT, C_STEP and C_MASKINTS, see Debug stepping on
page C1-15.

[3] R/W C_MASKINTS Mask PendSV, SysTick and external configurable interrupts
when debug is enabled. The bit does not affect NMI. When
C_DEBUGEN==0, this bit is UNKNOWN.

[2] R/W C_STEP Step the core. When C_DEBUGEN==0, this bit is UNKNOWN.

[1] R/W C_HALT Halt the core. When in Debug state, a write of this bit affects
the core according to Table C1-6 on page C1-16. The bit reads
as UNKNOWN.

[0] R/W C_DEBUGEN Enable halting debug.

C_MASKINTS must be written with 0 when this bit is
asserted (written with 1 when previously 0).

This bit can only be set from the DAP, it cannot be set under
software control.

Table C1-9 Debug Halting Control and Status Register – (0xE000EDF0) (continued)

Bits R/W Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-21
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
For details of how to force the processor to enter Debug state immediately after it comes out of reset, see the information added at the end of section C1.5.1 Debug stepping, immediately before the first Note on page C1-17 [PDF page 561].

ARM_2009_Q4
Inserted Text
 after a power-on Reset.

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
After a Power-on reset:
 - C_SNAPSTALL and C_DEBUGEN are 0
 - C_MASKINTS and C_STEP are UNKNOWN.

ARMv7-M Debug
C1.6.3 Debug Core Register Selector Register (DCRSR)

The DCRSR write-only register generates a handshake to the core to transfer the selected register to/from
the DCRDR. The DHCSR S_REGRDY bit is cleared when the DCRSR is written, and remains clear until
the core transaction completes. This register is only accessible from Debug state.

Notes on Table C1-10:

xPSR etc For information on the xPSR see The special-purpose program status registers (xPSR) on
page B1-8.

Note
 A debugger must preserve the Exception Number (IPSR bits) in Debug state, otherwise the

behavior is UNPREDICTABLE.

DebugReturnAddress()

The address of the next instruction to be executed on exit from Debug state.

The address reflects the point in the execution stream where the debug event was invoked.
For a hardware or a software breakpoint, the address is the breakpointed instruction address.

Table C1-10 Debug Core Register Selector Register – (0xE000EDF4)

Bits R/W Name Function

[31:17] - - Reserved

[16] WO REGWnR Write = 1, Read = 0

[15:5] - - Reserved

[4:0] WO REGSEL 00000: R0
00001: R1
…
01100: R12
01101: the current SP
01110: LR
01111: DebugReturnAddress()
10000: xPSR / Flags, Execution Number, and state information
10001: MSP (Main SP)
10010: PSP (Process SP)
10100: CONTROL bits [31:24], FAULTMASK bits [23:16],

BASEPRI bits [15:8], and PRIMASK bits [7:0]

All unused values reserved
C1-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARMv7-M Debug
For all other debug events, including PC match watchpoints, the address is that of an
instruction which in a simple execution model is one which executes after the instruction
which caused the event, but which itself has not executed. All instructions prior to this
instruction in the model have executed.

Note
 Bit [0] of DebugReturnAddress() is RAZ/WI. Writing bit [0] does not affect the EPSR.T-bit,

which is accessed independently through the xPSR register selection.

C1.6.4 Debug Core Register Data Register (DCRDR)

The DCRDR is used with the DCRSR to provide access to the general-purpose and special-purpose registers
in the core. The DCRDR is read or written (depending on REGWnR) to/from the selected register (defined
by REGSEL) on a write to the DCRSR.

Note
 1. The xPSR registers are fully accessible using this access method, unlike the MSR/MRS instructions

where some bits RAZ and ignored on writes. Illegal values can cause faults to occur.

2. The EPSR.IT bits can be written. IT bits must only be written with a value consistent with the
instruction to be executed on return from Debug state, otherwise instruction execution will be
UNPREDICTABLE. See ITSTATE on page A6-10 for information on the correct bit patterns within an
IT instruction block. The IT bits must be zero on exit from Debug state if the next instruction to
execute is outside an IT block.

3. The EPSR.ICI bits can be written and used with an LDM or STM instruction. Clearing the ICI bits will
cause the underlying LDM or STM instruction to restart instead of continue.

4. FAULTMASK cannot be set by an MSR instruction when the execution priority is -1 or higher (NMI,
HardFault and exception handlers with FAULTMASK already set). See MSR (register) on page B4-8.
This restriction does not apply to the DCRSR/DCRDR debug mechanism.

The DCRDR can be used on its own as a message passing resource between a debugger and a debug agent
running on the core.

Table C1-11 Debug Core Register Data Register – (0xE000EDF8)

Bits R/W Name Function

[31:0] R/W DBGTMP Data temporary cache, for reading and writing registers. This
register is UNKNOWN on reset or while DHCSR.S_REGRDY ==
‘0’ during execution of a DCRSR based transaction that updates
the register.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-23
Restricted Access Non-Confidential

ARMv7-M Debug
C1.6.5 Debug Exception and Monitor Control Register (DEMCR)

The DEMCR is used to manage exception behavior under debug. The register is used for vector catching
and DebugMonitor handling.

Bits [23:16] are used for DebugMonitor exception control, and bits [15:0] are associated with Debug state
(halting debug). All register bits are reset by a power-on reset. Only the DebugMonitor related bits
(MONxxx) are cleared on a Local Reset, see Reset behavior on page B1-20 for the definition of Local Reset.

Table C1-12 provides the DEMCR details. For a complete list of faults and their assignment to vector catch
enable bits, see Fault behavior on page B1-39.

Table C1-12 Debug Exception and Monitor Control Register – (0xE000EDFC)

Bits R/W Name Function

[31:25] - - Reserved

[24] R/W TRCENA Global enable for all features configured and controlled
by the DWT and ITM blocks. The bit can be used to gate
the ETM and TPIU blocks too. Clearing the bit does not
in itself guarantee stopping all events. The feature enables
in the DWT and ITM blocks must be cleared before
clearing TRCENA to ensure everything is stopped.

This bit is cleared on a Power-up reset only. TRCENA is
not cleared by a software initiated reset.

When TRCENA == ’0’:

• DWT registers return UNKNOWN values on reads. It
is IMPLEMENTATION DEFINED whether writes to the
DWT unit are ignored.

• ITM registers return UNKNOWN values on reads. It
is IMPLEMENTATION DEFINED whether writes to the
ITM unit are ignored.

If the ITM and DWT blocks are not implemented,
TRCENA is RAZ/WI.

[23:20] - - Reserved

[19] R/W MON_REQ A DebugMonitor semaphore bit. The meaning is
IMPLEMENTATION DEFINED by the monitor software.
MON_REQ is cleared on a Local Reset.

[18] R/W MON_STEP When MON_EN is set, this bit is used to step the core.
When MON_EN is clear, this feature is disabled. This is
the debug monitor equivalent of C_STEP in Debug state.
MON_STEP is cleared on a Local Reset.
C1-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
[17] R/W MON_PEND Pend the DebugMonitor exception to activate when
priority allows. This can be use to wake up the monitor via
the DAP. MON_PEND is cleared on a Local Reset.

[16] R/W MON_EN Enable the DebugMonitor exception. See Exception
model on page B1-14 for the exception model details.

When disabled BKPT instructions are escalated to
HardFault, FPB generated breakpoints are
IMPLEMENTATION DEFINEDa, and all other DebugMonitor
exceptions are ignored.

C_DEBUGEN (halting debug) in the DHCSR overrides
this bit. MON_EN is cleared on a Local Reset.

[15:11] - - Reserved

[10] R/W VC_HARDERRb Debug trap on a HardFault exception.
Ignored when C_DEBUGEN is clear.

[9] R/W VC_INTERRb Debug trap on a fault occurring during an exception entry
or return sequence. Ignored when C_DEBUGEN is clear.

[8] R/W VC_BUSERRb Debug trap on a BusFault exception.
Ignored when C_DEBUGEN is clear.

[7] R/W VC_STATERRb Debug trap on a UsageFault exception due to a state
information error (for example an UNDEFINED
instruction). Ignored when C_DEBUGEN is clear.

[6] R/W VC_CHKERRb Debug trap on a UsageFault exception due to a checking
error (for example an alignment check error).
Ignored when C_DEBUGEN is clear.

[5] R/W VC_NOCPERRb Debug trap on a UsageFault access to a Coprocessor.
Ignored when C_DEBUGEN is clear.

[4] R/W VC_MMERRb Debug trap on a MemManage exception.
Ignored when C_DEBUGEN is clear.

[3:1] - - Reserved

[0] R/W VC_CORERESETb Reset Vector Catch. Halt a running system when a Local
Reset occurs. Ignored when C_DEBUGEN is clear.

Table C1-12 Debug Exception and Monitor Control Register – (0xE000EDFC) (continued)

Bits R/W Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-25
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
The effect of setting this bit to 1 is not affected by the value of the MON_EN bit. A debugger can set MON_PEND to 1, and force the processor to take a DebugMonitor exception, even when MON_EN is set to 0.

ARMv7-M Debug
Vector catch support

Vector catch support is the mechanism used to generate a debug event and enter Debug state when a
particular exception occurs. Vector catching is only supported by halting debug.

If C_DEBUGEN in the DHCSR is set, at least one VC* enable bit is set in the DEMCR, and the associated
exception activates, then a debug event occurs. This causes Debug state to be entered (execution halted) on
the first instruction of the exception handler.

Note
 Fault status bits are set on exception entry and are available to the debugger to help determine the source of
the error (see Configurable Fault Status Registers (UserFault, BusFault, and MemManage) on page B3-18,
HardFault Status register (HFSR) on page B3-21 and Debug Fault Status Register (DFSR) on page C1-19).

A vector catch guarantees to enter Debug state without executing any additional instructions. However,
saved context might include information on a lockup situation or a higher priority pending exception, for
example a pending NMI exception detected on reset.

Late arrival and derived exceptions can occur, postponing when the processor will halt. See Late arriving
exceptions on page B1-33 and Derived exceptions on page B1-34 for details.

a. It is IMPLEMENTATION DEFINED whether an FPB generated breakpoint takes a HardFault or is ignored. An
FPB generated breakpoint can only be ignored where the breakpointed instruction exhibits its normal
architectural behavior.

b. The vector catch (VC prefixed) bits are cleared on a power-up reset. They are not altered by a software
initiated reset.
C1-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.7 Instrumentation Trace Macrocell (ITM) support

The Instrumentation Trace Macrocell (ITM) provides a memory-mapped register interface to allow
applications to write logging/event words to the optional external Trace Port Interface Unit (TPIU). The
ITM also supports control and generation of timestamp information packets.

The event words and timestamp information are formed into packets and multiplexed with hardware event
packets from the Data Watchpoint and Trace (DWT) block according to the packet protocol described in
Appendix E Debug ITM and DWT packet protocol.

C1.7.1 Theory of operation

The ITM consists of:

• stimulus (Stimulus Port) registers

• stimulus enable (Trace Enable) registers

• a stimulus access (Trace Privilege) register

• a general control (Trace Control) register.

The number of Stimulus Port registers is an IMPLEMENTATION DEFINED multiple of eight. Writing all 1s to
the Trace Privilege Register then reading how many bits are set can be used to determine the number of
Stimulus Ports supported.

The Trace Privilege Register defines whether the associated Stimulus Ports (in groups of 8) and their
corresponding Trace Enable Register bits can be written by an unprivileged (User) access. User code can
always read the Stimulus Ports.

Stimulus Port registers are 32-bit registers that support word-aligned (address[1:0] == 0b00) byte (bits
[7:0]), halfword (bits [15:0]), or word accesses. Non-word-aligned accesses are UNPREDICTABLE. There is
a global enable, ITMENA, in the control register and additional mask bits, which enable the Stimulus Port
registers individually, in the Trace Enable Register.

When an enabled Stimulus Port is written to, the identity of the port, the size of the write access, and the
data written are copied into a FIFO for emission to a trace sink, such as a TPIU.

A minimum of a single-entry Stimulus Port output buffer, that is shared by all the Stimulus port registers,
must be provided. The size of the output buffer is IMPLEMENTATION DEFINED. When the Stimulus Port
output buffer is full, a write to a Stimulus Port is ignored, and an overflow packet is generated.

A Stimulus Port read indicates the output buffer status. The output buffer status reads return “full” when
ITMENA or the Stimulus Port’s enable bit is clear (the port is disabled). ITMENA is cleared by a power-on
reset.

Note
 To ensure system correctness, a software polling scheme can use exclusive accesses to manage Stimulus
Port writes with respect to the Stimulus Port output buffer status. Software must test the status by reading
from the Stimulus Port that it intends to write.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-27
Restricted Access Non-Confidential

ARMv7-M Debug
All ITM registers can be read by unprivileged (User) and privileged code at all times. Privileged write
accesses are ignored unless ITMENA is set. Unprivileged write accesses to the Trace Control and Trace
Privilege registers are always ignored. Unprivileged write accesses to the Stimulus Port and Trace Enable
registers are allowed or ignored according to the setting in the Trace Privilege Register. Trace Enable
registers are byte-wise enabled for user access, according to the Trace Privilege Register setting.

Timestamp support

Timestamps provide information on the timing of event generation with respect to their visibility at a trace
output port. The timestamp counter size, clock frequency, and whether the timestamp reference clock is
synchronous or asynchronous with respect to the core clock are IMPLEMENTATION DEFINED. Timestamp
packets are generated within the following constraints:

• Timestamp packets support a maximum count field of 28 bits. The transmitted packet should
compress leading zeroes and transmit the minimum size packet required to support the timestamp
value.

• Timestamp packet generation is enabled by the TSENA bit in the Trace Control Register (see Trace
Control Register – ITM_TCR (0xE0000E80) on page C1-31). Synchronous versus Asynchronous
operation is determined by the SWOENA control bit.

• Timestamp operation is defined as differential. A timestamp packet is generated when an event is
posted to its associated FIFO and the timestamp counter is non-zero.

• The timestamp counter is cleared when a timestamp packet is generated.

• Synchronous configuration is selected by setting the TSENA bit and clearing the SWOENA bit in the
Trace Control Register (see Trace Control Register – ITM_TCR (0xE0000E80) on page C1-31).

• Asynchronous configuration is selected by setting the TSENA and SWOENA bits in the Trace
Control register (see Trace Control Register – ITM_TCR (0xE0000E80) on page C1-31).

The relationship between the timestamp reference clock and an asynchronous TPIU port (see Trace
Port Interface Unit (TPIU) on page C1-57) is fixed by the effective lineout clock rate of the
asynchronous port, the rate dependent on the output encoding scheme (NRZ or Manchester).

• When asynchronous configuration is selected, the timestamp counter is held in reset (cleared) while
the asynchronous interface is idle. This means that a timestamp is not generated on the first packet
after idle on an asynchronous interface.

• When synchronous configuration is selected, it is IMPLEMENTATION DEFINED if timestamps are
disabled in Debug state.

Note
 ARM recommends that the generation of timestamps is disabled in Debug state.

• If the timestamp counter overflows, an overflow packet is generated and a timestamp packet is
transmitted at the earliest opportunity (can be a value other than zero if delayed due to higher priority
trace packets).
C1-28 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
A timestamp packet can be generated and appended to a single event packet, or a stream of back-to-back
packets where multiple events generate a packet stream with no idle time. Timestamp status information is
merged with the timestamp packets to indicate if the timestamp packet transfer is delayed by the FIFO, or
if there is a delay in the associated event packet transfer to the output FIFO. The timestamp count continues
until it can be sampled and delivered in a packet to the FIFO.

Timestamp packets are combined with synchronization packets (see below) plus the ITM and Data
Watchpoint and Trace (DWT, see Data Watchpoint and Trace (DWT) support on page C1-33) event packets
according to the packet protocol prioritization rules described in Multiple Source Arbitration on
page AppxE-7.

Synchronization support

Synchronization packets are independent of timestamp packets. They are used to recover bit to byte
alignment information. The packets are required on synchronous TPIU ports that are dedicated to an
ARMv7-M core or in complex systems where multiple trace streams are formatted into a single output. See
CoreSight Architecture Specification for more details on synchronization and trace formatting. When
enabled, synchronization packets are emitted on a regular basis and can be used as a system heartbeat.
Synchronization packets should be disabled on asynchronous TPIU ports.

Synchronization packets are enabled by the SYNCENA bit in the Trace Control Register (see Trace Control
Register – ITM_TCR (0xE0000E80) on page C1-31). The frequency of generation (the TPIU output
heartbeat) is controlled by the SYNCTAP bitfield in the DWT Control Register (see Control Register
(DWT_CTRL) on page C1-48).

C1.7.2 Register support for the ITM

Table C1-13 lists the ITM registers and their address offset. The base address for the ITM is 0xE0000000.

Table C1-13 ITM registers

Address offset Type (Read/Write) Name Notes

0xE0000000 R/W ITM_STIM0 Stimulus Port #0

… … … ... word aligned locations between offsets
0x000 and 0x3FC (ports #0 to #255)

0xE00003FC R/W ITM_STIM255 Stimulus Port #255

0xE0000E00 R/W ITM_TER0 Trace Enable ports #0 to #31
(Instrumentation)

… … …

0xE0000E1C R/W ITM_TER7 Trace Enable ports #224 to #255

0xE0000E40 R/W ITM_TPR Trace Privilege (Instrumentation)
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-29
Restricted Access Non-Confidential

ARMv7-M Debug
Stimulus Portx Register - ITM_STIM[255:0] (0xE0000000 to 0xE00003FC)

These registers provide the interface for generating instrumentation messages.

Trace Enable Register - ITM_TER[7:0] (0xE0000E00 to 0xE0000E1C)

This register provides individual mask bits for the stimulus registers.

0xE0000E80 R/W ITM_TCR Trace Control (Instrumentation)

0xE0000FB4a RO See Appendix B ARMv7-M infrastructure
IDs, Table B-2 on page AppxB-3

0xE0000FD0 ID space:
See Appendix B ARMv7-M infrastructure
IDs for more information.…

0xE0000FFC

a. CoreSight compliance for the lock status register is required.

Table C1-13 ITM registers (continued)

Address offset Type (Read/Write) Name Notes

Table C1-14 Stimulus Port Register: STIMx

Bitsa

a. Bits read as UNKNOWN and write accesses are ignored when DEMCR.TRCENA == 0.

R/W Name Function

[31:0] W STIMULUS Data write to the Stimulus Port FIFO for forwarding as a
software event packet. The write is ignored if the Stimulus Port
is disabled by the Trace Enable Register.

[31:1] R RAZ

[0] R FIFOREADY 1: Stimulus Port FIFO can accept at least one word
0: Stimulus Port FIFO full.
RAZ when the Stimulus Port is disabled by the Trace Enable
Register.

Table C1-15 Transfer Enable Register: TER

Bits R/W Name Function

[31:0] R/W STIMENA Stimulus Port #N is enabled when bit STIMENA[N] is set.
Unused bits are RAZ/WI.
The register is cleared on Power-up reset.
C1-30 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
ITM_

ARM_2009_Q4
Inserted Text
ITM_

ARMv7-M Debug
User writes are ignored if the corresponding PRIVMASK bit is set.

Trace Privilege Register - ITM_TPR (0xE0000E40)

This register allows an operating system to control which stimulus ports can be accessed by User code.

Trace Control Register – ITM_TCR (0xE0000E80)

Trace Control Register is used to configure and control transfers through the ITM interface.

Table C1-16 Trace Privilege Register: TPR

Bits R/W Name Function

[31:0] R/W PRIVMASK Bit mask to enable unprivileged (User) access to ITM
stimulus ports.
Bit [N] of PRIVMASK controls stimulus ports 8N to 8N+7.
0: User access allowed to stimulus ports
1: Privileged access only to stimulus ports
 Unused bits are RAZ/WI.
 The register is cleared on Power-up reset.

Table C1-17 Trace Control Register: TCR

Bits R/W Name Function

[31:24] - Reserved

[23] RO BUSY Set when ITM events present and being drained

[22:16] R/W TraceBusID Optional identifier for multi-source trace stream formatting. If
multi-source trace is in use, this field must be written with a
non-zero value.
See CoreSight Architecture Specification for more details.

[15:10] Reserved

[9:8] R/W TSPrescale Timestamp prescaler, used with the trace packet reference
clock. The reference clock source is selected by SWOENA.
00: no prescaling
01: divide by 4
10: divide by 16
11: divide by 64
These bits are cleared on Power-up reset.

[7:5] - Reserved
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-31
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
ITM_

ARM_2009_Q4
Inserted Text
ITM_

ARMv7-M Debug
The CoreSight compliant TraceBusID field is required in systems supporting multiple trace streams, for
example an ARMv7-M core with ETM. This is the ID used to identify the ITM/DWT trace stream. The ID
to identify the ETM trace stream is programmed in the ETM traceBusID register (see Embedded Trace
macrocell Architecture Specification). To avoid trace stream corruption, the ITM must be disabled
(ITMENA clear) and the BUSY bit polled until it is clear (reads zero) before the TraceBusID is modified.

[4] R/W SWOENA Enables asynchronous-specific usage model for timestamps
(when TSENA ==1)
0: mode disabled. Timestamp counter uses system clock from
 the core and counts continuously.
1: Timestamp counter uses lineout (data related) clock from
 TPIU interface. The timestamp counter is held in reset
 while the output line is idle.

[3] R/W TXENAa Enable hardware event packet emission to the TPIU from the
DWT. This bit is cleared on Power-up reset.

[2] R/W SYNCENA Enable synchronization packet transmission for a synchronous
TPIU.
Note: DWT_CTRL.SYNCTAP must be configured for the
correct synchronization speed. This bit is cleared on Power-up
reset.

[1] R/W TSENA Enable differential timestamps. Timestamp behavior is
qualified by SWOENA. This bit is cleared on Power-up reset.

[0] R/W ITMENA Enable ITM. This is the master enable and must be set to allow
writes to all ITM registers, including the control register. This
bit is cleared on Power-up reset.

a. This bit was formerly known as DWTENA. The name was changed to better describe the limited scope of
the signal.

Table C1-17 Trace Control Register: TCR (continued)

Bits R/W Name Function
C1-32 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
ITM_

ARMv7-M Debug
C1.8 Data Watchpoint and Trace (DWT) support

The Data Watchpoint and Trace (DWT) component can provide the following features:

• PC sampling, two forms are supported:

— PC sample trace output as a result of a cycle count event or DWT function match

— external PC sampling using a PC sample register.

• comparators to support:

— watchpoints – enters Debug state or takes a DebugMonitor exception

— data tracing

— signalling for use with an external resource, for example an ETM

— cycle count matching.

• exception trace support

• profiling counter support.

See Debug support in ARMv7-M on page C1-10 for information on how to determine the level of DWT
support in a given device.

C1.8.1 Theory of operation

Apart from exception tracing and an external agent PC sampling feature (DWT_PCSR, see Program counter
sampling support on page C1-36), DWT functionality is counter or comparator based. Supported features
can be determined from the debug ROM table, DEMCR.TRCENA master enable bit and feature availability
bits in the DWT_CTRL register, see Debug support in ARMv7-M on page C1-10.

Exception tracing and counter control is provided by the DWT Control Register (see Control Register
(DWT_CTRL) on page C1-48).

Watchpoint and data trace support use a set of compare, mask and function registers (see Comparator
Register (DWT_COMPx) on page C1-53, Mask Register (DWT_MASKx) on page C1-53, and Function
Register (DWT_FUNCTIONx) on page C1-54 for details).

DWT generated events result in one of four actions:

• generation of a Hardware Source packet. Packets are generated and combined with other event,
control and timestamp packets according to the packet protocol described in Appendix E Debug ITM
and DWT packet protocol.

Note
 Packet protocol support requires cycle count support (DWT_CTRL.TRCCNT == ’0’ &&

DWT_CRTL.CYCCNT == ’0’)

• a core halt – entry to Debug state

• a DebugMonitor exception
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-33
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out
Transmission of packets generated by the ITM or the DWT unit requires the processor to implement and enable the cycle counter, indicated by DWT_CTRL.NOCYCCNT being RAZ, and DWT_CTRL.CYCCNTENA being set to 1, see Control register (DWT_CTRL) on page C1-48 [PDF page 592].

ARM_2009_Q4
Sticky Note
This is a clarification of the intended meaning.

ARMv7-M Debug
• generation of a CMPMATCH[N] signal as a control input to an external debug resource.

Note
 DWT hardware event packet transmission is enabled in the ITM block (Trace Control Register), which also
controls the timestamp support. For timestamp provision, the ITM stimulus ports can be disabled. However,
the ITMENA and TSENA in the ITM Trace Control Register must be set to provide a timestamp capability.

Exception trace support

Exception tracing is enabled using the EXCTRCENA bit in the DWT_CTRL register. When the bit is set,
the DWT emits an exception trace packet under the following conditions:

• exception entry (from Thread mode or pre-emption of thread or handler).

• exception exit when exiting a handler with an EXC_RETURN vector. See Exception return behavior
on page B1-25.

• exception return when re-entering a pre-empted thread or handler code sequence.

Cycle counter and PC sampling support

The cycle count register (DWT_CYCCNT (or CYCCNT), see Cycle Count Register (DWT_CYCCNT) on
page C1-49) is a 32-bit register. The register has five architected tap points:

• bit [6] or bit [10], as selected by the CYCTAP bit in the DWT_CTRL register, is used to clock a 4-bit
post-scalar counter (POSTCNT).

• bit [24], bit [26] or bit [28], as selected by the SYNCTAP bits in the DWT_CTRL register, is used as
an input to the ITM block to generate synchronization packets (see Trace Control Register –
ITM_TCR (0xE0000E80) on page C1-31).

The interface to POSTCNT, along with control bits for CYCCNT, are in the DWT_CTRL register. The
POSTPRESET field provides a reload value for POSTCNT.

CYCCNT is enabled and POSTCNT is preloaded from POSTPRESET when CYCCNTENA is set.

CYCCNT should be cleared before it is enabled.
C1-34 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text

When POSTCNT is enabled, by setting either DWT_CTRL.PCSAMPLENA or DWT_CTRL.CYCEVTENA to 1 when both bits were previously 0, the processor reloads POSTCNT from the DWT_CTRL.POSTCNT field.

ARMv7-M Debug
When POSTCNT is non-zero, transitions (0 ➝ 1 or 1 ➝ 0) on the tap port selected by CYCTAP cause
POSTCNT to decrement. When POSTCNT is zero and the selected tap port transitions, the action which
occurs is as described in Table C1-18.

Profiling counter support

In addition to CYCCNT and POSTCNT, the following 8-bit event counters are defined:

• DWT_CPICNT: the general counter for instruction cycle count estimation. The counter increments
on any additional cycles (the first cycle is not counted) required to execute multi-cycle instructions
except those recorded by DWT_LSUCNT. The counter also increments on any instruction fetch
stalls.

• DWT_LSUCNT: the load-store count. The counter increments on any additional cycles (the first
cycle is not counted) required to execute multi-cycle load-store instructions.

• DWT_FOLDCNT: the folded instruction count. The counter increments on any instruction that
executes in zero cycles.

• DWT_EXCCNT: the exception overhead counter. The counter increments on any cycles associated
with exception entry and return.

• DWT_SLEEPCNT: the sleep overhead counter. The counter increments on any cycles associated
with power saving, initiated by the WFI or WFE instructions, or by use of the SLEEPONEXIT control
feature. See Power management on page B1-48 for more details.

Table C1-18 Cycle count event generation

DWT_CTRL control bit

CYCCNTENA PCSAMPLENA CYCEVTENA Actiona

a. POSTCNT == 0 and a count event occurs (the selected tap port of CYCCNT transitions 0 ➝ 1 or 1 ➝ 0)

0 x x CYCCNT (and POSTCNT) disabled

1 0 0 Events disabled,
POSTPRESET => POSTCNT

1 0 1 An event packet with the Cyc bit set is
emitted, see Event Packets – Discriminator
ID0 on page AppxE-8
POSTPRESET => POSTCNT

1 1 x PC sample packet emitted, see
PC Sample Packets – Discriminator ID2 on
page AppxE-9
POSTPRESET => POSTCNT
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-35
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
sleep-on-exit

ARM_2009_Q4
Inserted Text
Additional table row:
--
CYCCNTENA PCSAMPLENA CYCEVTENA Action
--
 1 1 1 ARM deprecates the use of this combination of DWT_CTRL bit values.
 In early ARMv7-M implementations, setting both PCSAMPLENA and
 CYCEVTENA to 1 has the same effect as setting PCSAMPLENA to 1 and
 CYCEVTENA to 0.
 ARM does not guarantee future ARMv7-M implementations will behave in
 this way.
--

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
0

ARMv7-M Debug
All 8-bit counters have separate enable bits in the DWT_CTRL register, and each counter is initialized to
zero when it is enabled. The counters wrap when they overflow (every 256th cycle counted), and have
counting suppressed when they are disabled. Counter overflow causes an event packet (see Event Packets –
Discriminator ID0 on page AppxE-8) to be emitted by the DWT, with the appropriate counter flag(s) set.

Profiling counter accuracy

The counters are designed to provide approximately accurate performance count information, but in order
to keep the implementation and validation cost low, a reasonable degree of inaccuracy in the counts is
acceptable. There is no exact definition of “reasonable degree of inaccuracy”, but the following guidelines
should be followed.

Under normal operating conditions, the counters should present an accurate value of the overall system
count:

• While the counters can be used with halting debug, they are primarily intended for non-intrusive
operation. Entry or exit from Debug state can be a source of inaccuracy. Counters will not increment
when halted. The overhead associated with STEP and RUN commands from and to the halt condition
in Debug state is IMPLEMENTATION DEFINED.

• The intention is that where an instruction is used to enter or exit exceptions and sleep state (for
example SVC and WFI), the cycle count associated with the instruction is minimal, with the balance of
cycles associated with the exception overhead. The exact division is IMPLEMENTATION DEFINED.

• In superscalar implementations FOLD counts can be very high, affecting profiling statistics. Profile
data validity will generally improve when aggregated over longer timeframes with large data and
instruction working sets.

The permissibility of inaccuracy will limit the possible uses of the performance counters. In particular, the
point in a pipeline where the performance counter is incremented is not defined relative to the point at which
a read of the performance counters is made, so allowing for some imprecision due to pipelining effects.
Counter size and the event generation model are designed primarily for non-intrusive operation, where the
information is traced, processed and analysed remotely, and not subject to the system overhead of software
reads and processing on the core itself.

Implementations should document any particular scenarios where significant inaccuracies are expected.

Program counter sampling support

The DWT Program Counter Sampling Register (DWT_PCSR) is an IMPLEMENTATION DEFINED option in
ARMv7-M. The register is defined such that it can be accessed by a debugger without changing the behavior
of any code currently executing on the device. This provides a mechanism for coarse-grained non-intrusive
profiling of code executing on the core. The DWT_PCSR is a word-accessible read-only register, writes to
the register are ignored. Byte or halfword reads are UNPREDICTABLE. When the register is read it returns one
of the following:

• the address of an instruction recently executed by the core
C1-36 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
• 0xFFFFFFFF if implemented and the processor is in Debug state, or in a state and mode where
non-invasive debug is not permitted

• RAZ/WI if not implemented.

Note
 There is no architectural definition of recently executed. The delay between an instruction being executed
by the core and its address appearing in the DWT_PCSR is not defined. For example, if a piece of code reads
the DWT_PCSR of the processor it is running on, there is no guaranteed relationship between the program
counter for that piece of code and the value read. The DWT_PCSR is intended for use only by an external
agent to provide statistical information for code profiling. Read accesses made to the DWT_PCSR directly
by the ARM core can return an UNKNOWN value.

A debug agent should not rely on a return value of 0xFFFFFFFF to indicate that the core is halted. The
S_HALT bit in the Debug Halting Control and Status Register should be used for this purpose.

The value read always references a committed instruction, where a committed instruction is defined as an
instruction which is both fetched and committed for execution. It is IMPLEMENTATION DEFINED whether
instructions that do not pass their condition codes are considered as committed instructions. ARM
recommends that these instructions are treated as committed instructions.

If DWT_PCSR is implemented, it must be possible to sample references to branch targets. It is
IMPLEMENTATION DEFINED whether references to other instructions can be sampled. ARM recommends that
a reference to any instruction can be sampled.

The branch target for a conditional branch that fails its condition code is the instruction that follows the
conditional branch instruction.

An implementation must not sample values that reference instructions that are fetched but not committed
for execution. A read access from the DWT_PCSR returns an UNKNOWN value when the TRCENA bit in
the Debug Exception and Monitor Control Register is clear.

The DWT_PCSR is not affected by the PCSAMPLENA bit in the DWT Control Register.

Comparator support

The DWT_COMPx, DWT_MASKx, and DWT_FUNCTIONx register sets provide the programming
interface for the type of match to perform, and the action to take on a match. The number of register sets
supported is IMPLEMENTATION DEFINED and can be determined by reading the NUMCOMP field in the
DWT_CTRL register.

The types of match that can be performed are:

• watchpoint data address matching

• watchpoint data value matching (option within DWT)

• instruction address (PC) matching

• cycle count matching.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-37
Restricted Access Non-Confidential

ARMv7-M Debug
DWT_COMPx contains the reference value (COMP) for the comparator. This value is compared against an
input value to determine a match.

For address matching (watchpoint data or instruction address) the input value is masked. The number of
input value bits masked (MASK) is defined in DWT MASKx[4:0]. The maximum address mask range
supported (up to 2GB) is IMPLEMENTATION DEFINED.

DWT_FUNCTIONx defines the matching conditions and control information for the comparator inputs and
what information/action is returned on a match. One of three types of action can be taken on successful
matches:

• Return sampled information in a hardware source packet through the ITM - see Hardware Source
Packet on page AppxE-6 and DWT packet formats on page AppxE-8. Packets will be generated and
transmitted where transmit FIFO space exists, otherwise an overflow packet (see Overflow Packet on
page AppxE-3) will be generated where appropriate for each source to indicate packet loss.

• Halt and enter Debug state. The address of the next instruction to execute on a halt is
IMPLEMENTATION DEFINED. A halt is asynchronous with respect to the instruction which caused it.

• Generate a CMPMATCH[N] event. CMPMATCH[N] events are for use external to the DWT block

Where a multiple match occurs, a HALT or CMPMATCH[N] match action will always be generated. Event
packet generation on a multiple match is UNPREDICTABLE. An overflow packet is generated when a DWT
event cannot create a DWT packet, because the DWT output buffer is full.

Table C1-19 summarizes the control bit settings in DWT_FUNCTIONx and how they relate to the other
DWT registers.

Table C1-19 DWT register set feature summary

DWT_FUNCTIONx[bits]a DWT_MASKx DWT_COMPx

[19:12] [11:10] [9] [8] [7] [5] [3:0]/Action
reference
input

SBZ SBZ SBZ 0 0 x See Table C1-20
on page C1-39

Mask_value Addressb

SBZ SBZ SBZ 0 1c SBZ See Table C1-21
on page C1-41

SBZ Cycle count

LinkAddr()d Dsize xe 1f 0 SBZ See Table C1-22
on page C1-42

SBZ Data valueg

x x x 1 1 x UNPREDICTABLE x x
C1-38 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
a. DWT_FUNCTION bit field names (see Function Register (DWT_FUNCTIONx) on page C1-54 for more information):
LNKADDR1: bits [19:16] LNKADDR0: bits [15:12] LNK1ENA: bit [9]
DATAVMATCH: bit [8] CYCMATCH: bit [7] EMITRANGE: bit [5]
FUNCTION: bits [3:0]

b. The address of the executing instruction or data access.
c. Supported on DWT_FUNCTION0 only. For other comparators bit [7] is RAZ/WI.
d. Two 4-bit fields providing pointers to 1 or 2 linked address comparators. If LNK1ENA == 0, only LNKADDR0 support

is implemented. See LinkAddr() support on page C1-43 for more information.
e. See DWT_FUNCTIONx on page C1-54.
f. Optional support, otherwise RAZ/WI.
g. Word and halfword values are in little endian data format. A halfword value must be replicated in bits [15:0] and bits

[31:16]. A byte value must be replicated in all (four) byte lanes.

Table C1-20 General DWT function support

DWT_FUNCTIONx Comparator Function Description/Action

(DATAV:CYC)MATCHa

Bits [8:7]
EMITRANGE
Bit [5]

FUNCTION
Bits [3:0] Inputb Access Match(Input, COMP) == TRUE

00 x 0000 disabled or LinkAddr()c support

00 0 0001 Daddr R/W Samplede PC

00 1 0001 Daddr R/W Sample Daddr[15:0]

00 0 0010 Daddr R/W Sample data

00 1 0010 Daddr R/W Sample Daddr[15:0] + data

00 0 0011 Daddr R/W Sample PC + data

00 1 0011 Daddr R/W Sample Daddr[15:0] + data

00 x 0100 Iaddr - PC watchpoint eventfg

00 x 0101 Daddr ROh Watchpoint event (optional)

00 x 0110 Daddr WO Watchpoint event (optional)

00 x 0111 Daddr R/W Watchpoint eventg

00 x 1000 Iaddr - Generate CMPMATCH[N]i event

00 x 1001 Daddr RO Generate CMPMATCH[N] event
 (optional)

00 x 1010 Daddr WO Generate CMPMATCH[N] event
 (optional)

00 x 1011 Daddr R/W Generate CMPMATCH[N] event
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-39
Restricted Access Non-Confidential

ARMv7-M Debug
A watchpoint event is an asynchronous event with respect to the instruction which caused it. Watchpoints
are treated as interrupts in the exception model.

00 0 1100 Daddr RO Sample data (optional)

00 1 1100 Daddr RO Sample Daddr[15:0] (optional)

00 0 1101 Daddr WO Sample data (optional)

00 1 1101 Daddr WO Sample Daddr[15:0] (optional)

00 0 1110 Daddr RO Sample PC + data (optional)

00 1 1110 Daddr RO Sample Daddr[15:0] + data (optional)

00 0 1111 Daddr WO Sample PC + data (optional)

00 1 1111 Daddr WO Sample Daddr[15:0] + data (optional)

01 x xxxx See Table C1-21 on page C1-41

1x x xxxx See Table C1-22 on page C1-42

a. Shortform of DATAVMATCH:CYCMATCH.
b. Daddr: data access address match. Iaddr: instruction address match.
c. See LinkAddr() support on page C1-43 for more details. In the LinkAddr() case, the input is Daddr, the data access

address.
d. This is the matched address of the executing instruction.
e. Sampled information is emitted as hardware event packets. See DWT packet formats on page AppxE-8 for packet format

information. The behavior of this feature is UNPREDICTABLE if DWT_CTRL.NOTRCPKT == 1.
f. PC watchpoints can match on a range of addresses. Breakpoints only match on a specific instruction address.
g. DebugMonitor exception or Halt. The address of the next instruction to execute on a halt (DebugReturnAddress() is

IMPLEMENTATION DEFINED, see Table C1-10 on page C1-22).
h. Support of explicit watchpoint read and write functionality is IMPLEMENTATION DEFINED.
i. CMPMATCH[N] events are for use external to the DWT block. The behavior of this feature is UNPREDICTABLE if

DWT_CTRL.NOEXTTRIG == 1.

Table C1-20 General DWT function support (continued)

DWT_FUNCTIONx Comparator Function Description/Action

(DATAV:CYC)MATCHa

Bits [8:7]
EMITRANGE
Bit [5]

FUNCTION
Bits [3:0] Inputb Access Match(Input, COMP) == TRUE
C1-40 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
but must be an instruction that, under simple sequential execution of the program, the processor would execute after the instruction that triggered the watchpoint. For more information,

ARMv7-M Debug
Support of explicit watchpoint read and watchpoint write functionality can be determined by writing the
appropriate value to DWT_FUNCTIONx[FUNCTION] and reading back the result. Read-only or
write-only watchpoint requests convert to read/write watchpoints where the requested feature is not
supported.

Table C1-21 DWT comparator support for CYCCNT

DWT_FUNCTION0a

a. DWT_FUNCTION0 only. For x > 0, DWT_FUNCTIONx[7] is RAZ/WI.

Function Description/Action

(DATAV:CYC)MATCHb

Bits [8:7]

b. Shortform of DATAVMATCH:CYCMATCH.

FUNCTION
Bits [3:0]

Match(CYCCNT, COMP) == TRUE

00 xxxx See Table C1-20 on page C1-39

1x xxxx See Table C1-22 on page C1-42

01 0000 Disabled

01 0001 Samplec PC

c. This is the matched address of the executing instruction. Sampled information is emitted as hardware
event packets. See DWT packet formats on page AppxE-8 for packet format information. The
behavior of this feature is UNPREDICTABLE if DWT_CTRL.NOTRCPKT == 1.

01 001x UNPREDICTABLE

01 0100 Watchpoint event

01 0101 UNPREDICTABLE

01 011x UNPREDICTABLE

01 1000 CMPMATCH0d event generated

d. CMPMATCH events are for use external to the DWT block. The behavior of this feature is
UNPREDICTABLe if DWT_CTRL.NOEXTTRIG == 1

01 1001 UNPREDICTABLE

01 101x UNPREDICTABLE

01 11xx Reserved
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-41
Restricted Access Non-Confidential

ARMv7-M Debug
Support of explicit watchpoint read and watchpoint write functionality can be determined by writing the
appropriate value to DWT_FUNCTIONx[FUNCTION] and reading back the result. Read-only or
write-only watchpoint requests convert to read/write watchpoints where the requested feature is not
supported.

Table C1-22 DWT comparator support for data matching

DWT_FUNCTIONx Comparator Function Description/Action

(DATAV:CYC)MATCH
Bits[8:7]

FUNCTION
Bits [3:0]

Input Access Match(Input, COMP) == TRUE

00 xxxx See Table C1-20 on page C1-39

01 xxxx See Table C1-21 on page C1-41

11 xxxx UNPREDICTABLE

10 0000 Disabled

10 00x1 UNPREDICTABLE

10 001x UNPREDICTABLE

10 0100 UNPREDICTABLE

10 0101 Dataa ROb Watchpoint eventc (optional)

10 0110 Data WO Watchpoint event (optional)

10 0111 Data R/W Watchpoint event

10 1000 UNPREDICTABLE

10 1001 Data RO CMPMATCH [N]d event generated
(optional)

10 1010 Data WO CMPMATCH [N] event generated
(optional)

10 1011 Data R/W CMPMATCH [N] event generated

10 11xx UNPREDICTABLE

a. For details on data matching see Comparator support - watchpoint data value matching on page C1-45.
b. Support of explicit watchpoint read and write functionality is IMPLEMENTATION DEFINED.
c. The address of the next instruction to execute on a halt (DebugReturnAddress(), see Table C1-10 on

page C1-22 on page page C1-22) is IMPLEMENTATION DEFINED. A halt is imprecise with respect to the
instruction which caused it.

d. CMPMATCH events are for use external to the DWT block. The behavior of this feature is
UNPREDICTABLE if DWT_CTRL.NOEXTTRIG == 1.
C1-42 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
, but must be an instruction that, under simple sequential execution of the program, the processor would execute after the instruction that triggered the watchpoint.

ARMv7-M Debug
LinkAddr() support

Data value matching can be gated by a configurable data access address match using a comparator
associated with another register set.

DWT_FUNCTION[N] is defined as the set of registers DWT_FUNCTIONx, DWT_COMPx and
DWT_MASKx where x = N. Up to two comparators associated with other register sets (x != N) can be
configured using the LNK1ENA, DATAVADDR0 and DATAVADDR1 fields in DWT_FUNCTION[N]. See
Function Register (DWT_FUNCTIONx) on page C1-54 for more details.

See Comparator support - data address matching on page C1-44 for details on link address matching.

Where LNK1ENA == 1, a single link address can be configured by configuring both to the same link address
comparator or disabling one of them by configuring the feature as not used.

Comparator support - cycle count matching

Cycle count matching is only supported on DWT_COMP0. For all other register sets, the CYCMATCH field
is RAZ/WI. Non-zero values of DWT_MASK0 are UNPREDICTABLE.

Note
 The DWT_CRTRL.NOCYCCNT bit field is set when the cycle counter is not supported. In this case
validCYCMATCH is always false.

The comparator behavior is defined as follows:

boolean validCYCMATCH; // conditions for selecting CYCCNT from
 // ... configuration of the DWT_FUNCTION0 register
if validCYCMATCH then
 match = (CYCCNT<31:0> == DWT_COMP0<31:0>);
 return match;

Comparator support - instruction address matching

Instruction address matching is supported on all comparators. DWT_COMPx must be halfword aligned, and
the mask register must be applied by software to the comparator reference value before it is written to
DWT_COMPx, otherwise the comparator operation is UNPREDICTABLE.

Instruction address matches on NOP or IT instructions are UNPREDICTABLE with respect to whether the event
occurs or not.

The comparator behavior is defined as follows:

// InstructionAddressMatch()
// =========================

boolean InstructionAddressMatch(integer N, bits(32) Iaddr)

 if DWT_FUNCTION[N]<3:0> == ’0100’ then // condition for selecting Iaddr
 // UNPREDICTABLE if COMP does not meet alignment and masking conditions
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-43
Restricted Access Non-Confidential

ARMv7-M Debug
 mask = ZeroExtend(Ones(UInt(DWT_MASK[N]<4:0>)), 32);
 if !IsZero(DWT_COMP[N] & mask) then UNPREDICTABLE;
 match = (Iaddr & NOT(mask) == DWT_COMP[N]);
 else
 match = FALSE;
 return match;

Comparator support - data address matching

Where a data value comparator is linked using the LinkAddr() support, an address match occurs if either the
first or second linked data address comparator matches. If LinkAddr() is configured as not used, a data value
match can occur on any data access.

For data address compares, the implementation must address match all memory accesses, where the range
of watched addresses lie between the start address of the transaction and the next word aligned address. It
is IMPLEMENTATION DEFINED whether the comparison matches some or all unaligned memory accesses that
access a watched location across a word boundary. Data address matching comparator behavior is defined
as follows:

enumeration sizeofaccess (byte, halfword, word);
boolean validDaddr; // conditions for selecting Daddr from
 // ...configuraton of the relevant DWT_FUNCTIONx register
if validDaddr then
 match = DataAddressMatch(N, Daddr, Dsize);
 return match;

// DataAddressMatch()
// ==================

boolean DataAddressMatch(UInt N, bits(32) address, sizeofaccess size)

 // UNPREDICTABLE if the base compare address isn’t properly aligned
 mask = ZeroExtend(Ones(UInt(DWT_MASK[N]<4:0>)), 32);
 if !IsZero(comp_start & mask) then UNPREDICTABLE;

 // compute start and end addresses of compared region
 comp_start = DWT_COMP[N]<31:0>;
 comp_end = comp_start + mask;

 // compute start and end addresses of access
 access_start = address;
 case size of
 when word
 access_end = access_start + 3;
 when halfword
 access_end = access_start + 1;
 when byte
 access_end = access_start;

 // Implementations can terminate matching on a word aligned address boundary > access_start
C1-44 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
 if (IMPLEMENTATION DEFINED condition) then
 temp = ((access_end + 1) & ~3) - 1;
 if (temp > access_start) then
 access_end = temp;

 match = (access_start >= comp_start && access_start <= comp_end) ||
 (access_end >= comp_start && access_end <= comp_end) ||
 (access_start <= comp_start && access_end >= comp_end);
 return match;

Comparator support - watchpoint data value matching

Support of data value matching is an architecture option. It is IMPLEMENTATION DEFINED how many of the
available comparators support it. Non-zero values of DWT_MASK with data value matching are
UNPREDICTABLE.

For halfword and byte data value matches, software must replicate the data value in DWT_COMPx
otherwise matching is UNPREDICTABLE. Values are stored in DWT_COMPx in little endian data format.

• For byte compares: DWT_COMPx[31:24], DWT_COMPx[23:16], DWT_COMPx[15:8], and
DWT_COMPx[7:0] should be the same value

• For halfword compares: DWT_COMPx[31:16], and DWT_COMPx[15:0] should be the same value

Data value matching generates a match where the data value to be matched is the same as the data access
value, or is a partial match where the size of the access is larger than that specified in the DATAVSIZE bit
field.

Data value matching is gated by LinkAddr() - see LinkAddr() support on page C1-43. It is IMPLEMENTATION
DEFINED whether the data value matching is exact on the data address. If matching is exact, a match is only
generated if the data value in DWT_COMPx precisely matches the value in memory at the address specified
in the linked address comparator DWT_COMPy. Inexact matches are permitted. The conditions which
generate inexact matches are IMPLEMENTATION DEFINED.

For example, if DWT_FUNCTIONx.DATAVSIZE specifies a halfword, and linked address comparator
DWT_COMPy specifies a halfword aligned address with DWT_MASKy specifying a 1-bit address mask,
then an exact match would match only those accesses made where the halfword location at DWT_COMPy
is accessed with the value DWT_COMPx. However, an inexact match can be generated for a word access
which accesses either or both bytes of [DWT_COMPy…DWT_COMPy+1], and is such that bits [15:0], bits
[23:8] or bits [31:16] of the access value match DWT_COMPx, even if this value is not the value in memory
at DWT_COMPy.

Comparator behavior for inexact data matching is illustrated as follows:

boolean validVMATCH; // conditions for selecting data value matching from
 // ... configuration of the relevant DWT_FUNCTIONx register

if validVMATCH then
 addrmatch1 = addrmatch2 = FALSE;

 doaddrmatch1 = (DWT_FUNCTION[N]<9> == ’1’ && UInt(DWT_FUNCTION[N]<19:16>) != N);
 addrmatch1 = doaddrmatch1 && DataAddressMatch(UInt(DWT_FUNCTION[N]<19:16>), Daddr, Dsize);
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-45
Restricted Access Non-Confidential

ARMv7-M Debug
 doaddrmatch2 = (UInt(DWT_FUNCTION[N]<15:12>) != N);
 addrmatch2 = doaddrmatch2 && DataAddressMatch(UInt(DWT_FUNCTION[N]<15:12>), Daddr, Dsize);

 bits(8*Dsize) data = MemU[Daddr, Dsize];
 case DWT_FUNCTION[N]<11:10> of
 when ’00’
 case Dsize of
 when 1
 data_match = (DWT_COMP[N]<7:0> == data<7:0>);
 when 2
 data_match = (DWT_COMP[N]<7:0> == data<7:0> ||
 DWT_COMP[N]<7:0> == data<15:8>);
 when 4
 data_match = (DWT_COMP[N]<7:0> == data<7:0> ||
 DWT_COMP[N]<7:0> == data<15:8> ||
 DWT_COMP[N]<7:0> == data<23:16> ||
 DWT_COMP[N]<7:0> == data<31:24>);
 when ’01’
 case Dsize of
 when 1
 data_match = FALSE;
 when 2
 data_match = (DWT_COMP[N]<15:0> == data<15:0>);
 when 4
 data_match = (DWT_COMP[N]<15:0> == data<15:0> ||
 DWT_COMP[N]<15:0> == data<23:8> ||
 DWT_COMP[N]<15:0> == data<31:16>);
 when ’10’
 case Dsize of
 when 1
 data_match = FALSE;
 when 2
 data_match = FALSE;
 when 4
 data_match = (DWT_COMP[N]<31:0> == data<31:0>);
 when ’11’
 data_match = UNKNOWN;

 if (doaddressmatch1 || doaddressmatch2) then
 match = (addrmatch1 || addrmatch2) && data_match;
 else
 match = data_match;
 return match;

Note
 For the DWT register set feature summary, see Table C1-19 on page C1-38.

For address matching information, see Comparator support - data address matching on page C1-44.
C1-46 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.8.2 Register support for the DWT

The DWT is programmed using the registers described in Table C1-23.

Table C1-23 DWT register summary

Address R/W Name Notes

0xE0001000 R/W DWT_CTRL Control register

0xE0001004 R/W DWT_CYCCNT Cycle count register

0xE0001008 R/W DWT_CPICNT Instruction cycle count event register

0xE000100C R/W DWT_EXCCNT Exception overhead event register

0xE0001010 R/W DWT_SLEEPCNT Sleep overhead event register

0xE0001014 R/W DWT_LSUCNT Load-store overhead event register

0xE0001018 R/W DWT_FOLDCNT Folded instruction overhead event register

0xE000101C RO DWT_PCSR PC sampling register

0xE0001020+X R/W DWT_COMP[N-1] X is the value (N-1) << 4 where:
0 < N ≤ DWT_CTRL.NUMCOMP

0xE0001024+X R/W DWT_MASK[N-1] X is the value (N-1) << 4 where:
0 < N ≤ DWT_CTRL.NUMCOMP

0xE0001028+X R/W DWT_FUNCTION[N-1] X is the value (N-1) << 4 where:
0 < N ≤ DWT_CTRL.NUMCOMP

0xE0001FB4a

a. CoreSight compliance for the lock status register is required.

RO See Appendix B ARMv7-M infrastructure
IDs, Table B-2 on page AppxB-3

0xE0001FD0 RO ID space:
See Appendix B ARMv7-M infrastructure
IDs for more information.…

0xE0001FFC
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-47
Restricted Access Non-Confidential

ARMv7-M Debug
Control Register (DWT_CTRL)

Table C1-24 DWT_CTRL (0xE0001000)

Bits R/W Name
Reset
Value Functiona

[31:28] RO NUMCOMP IMP DEF Number of comparators available.
NUMCOMP == 0: no comparator support

[27] RO NOTRCPKTb IMP DEF When set, trace sampling and exception tracing
are not supported

[26] RO NOEXTTRIGc IMP DEF When set, no CMPMATCH[N] support

[25] RO NOCYCCNTd IMP DEF When set, DWT_CYCCNT is not supported

[24] RO NOPRFCNTe IMP DEF When set, DWT_FOLDCNT, DWT_LSUCNT,
DWT_SLEEPCNT, DWT_EXCCNT, and
DWT_CPICNT are not supported

[22] R/W CYCEVTENA 0b0 Used with PCSAMPLENA to control
CYCCNT or PC sample event generation.
See Table C1-18 on page C1-35 for details.

[21] R/W FOLDEVTENA 0b0 Enables Folded-instruction count event.

[20] R/W LSUEVTENA 0b0 Enables LSU count event.

[19] R/W SLEEPEVTENA 0b0 Enables Sleep count event.

[18] R/W EXCEVTENA 0b0 Enables Exception Overhead event.

[17] R/W CPIEVTENA 0b0 Enables CPI count event.

[16] R/W EXCTRCENA 0b0 Enables exception trace. This traces exception
entry, exit and return (to a pre-empted handler
or thread).

[12] R/W PCSAMPLENA 0b0 See CYCEVTENA.

[11:10] R/W SYNCTAP UNKNOWN Selects a synchronization packet rate.
CYCCNTENA and ITM_TCR.SYNCENA
must also be enabled for this feature.
00: Disabled. No synchronization packets.
01: Tap at CYCCNT bit 24
10: Tap at CYCCNT bit 26
11: Tap at CYCCNT bit 28
Synchronization packets (if enabled) generated
on tap transitions (0 to1 or 1 to 0)
C1-48 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
Cycle Count Register (DWT_CYCCNT)

This counter is not supported (DWT_CYCCNT is RAZ/WI) if DWT_CTRL.NOCYCCNT == 1.

[9] R/W CYCTAP UNKNOWN Selects a tap on the DWT_CYCCNT register.
 0: Tap at CYCCNT bit 6
 1: Tap at CYCCNT bit 10
Transitions generate a count event for
POSTCNT.

[8:5] R/W POSTCNT UNKNOWN 4-bit post-scalar counter used to extend the
range of CYCCNT. Decrements when value > 1
on a count event (see CYCTAP)

[4:1] R/W POSTPRESET UNKNOWN Preset (reload) value for POSTCNT
POSTPRESET => POSTCNT occurs on a
count event when POSTCNT == 0.

[0] R/W CYCCNTENA 0b0 Enable CYCCNT, allowing it to increment and
generate synchronization and count events.
If DWT_CTRL.NOCYCCNT == 1, this bit is
RAZ/WI.

a. For details of counter operation and event generation, see Cycle counter and PC sampling support on
page C1-34

b. When the NOTRCPKT bit is set, DWT_FUNCTIONx[3:2] == ’00’, and DWT_FUNCTIONx[1:0] != ’00’,
DWT comparator matching is UNPREDICTABLE. DWT_CRTRL bits [22,16,12] are reserved.
When the NOTRCPKT bit is clear, the CYCCNT feature is also required.

c. When the NOEXTTRIG bit is set, and DWT_FUNCTIONx[3:2] == ’10’, DWT comparator matching is
UNPREDICTABLE.

d. If NOCYCCNT == 1, DWT_CTRL[22,12:0] are reserved and DWT_FUNCTION0[7] is RAZ/WI.
e. If NOPRFCNT == 1, DWT_CTRL[21:17] are reserved

Table C1-24 DWT_CTRL (0xE0001000) (continued)

Bits R/W Name
Reset
Value Functiona

Table C1-25 DWT_CYCCNT (0xE0001004)

Bits R/W Name Function

[31:0] R/W CYCCNT 32-bit, incrementing (up) cycle counter. When enabled, this
counter counts the number of core cycles. Counting is suspended
when the core is halted in Debug state. The counter is UNKNOWN
on reset.

CYCCNT wraps to 0 on overflow.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-49
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
Initial value for the POSTCNT timer. See Cycle counter and PC sampling support on page C1-34 [PDF page 578] for more information.

----- Note -----
 • Issue D of this manual renames this field as POSTINIT
 • software cannot read the value of the POSTCNT counter.

ARMv7-M Debug
The counter can be used by applications and debuggers to measure elapsed execution time by taking the
difference between sampled start and stop values within the 232 clock tick dynamic range of the counter.

CPI Count Register (DWT_CPICNT)

This counter is not supported (DWT_CPICNT is RAZ/WI) if DWT_CTRL.NOPRFCNT == 1.

Exception Overhead Count Register (DWT_EXCCNT)

This counter is not supported (DWT_EXCCNT is RAZ/WI) if DWT_CTRL.NOPRFCNT == 1.

Table C1-26 DWT_CPICNT (0xE0001008)

Bits R/W Name Function

[31:8] Reserved

[7:0] R/W CPICNT The base CPI counter. The counter increments on any additional
cycles (the first cycle is not counted) required to execute
multi-cycle instructions except those recorded by
DWT_LSUCNT. The counter also increments on any instruction
fetch stalls. An event is emitted when the counter overflows.

This counter initializes to 0 when enabled (CPIEVTENA 0 => 1
transition).

Table C1-27 DWT_INTCNT (0xE000100C)

Bits R/W Name Function

[31:8] Reserved

[7:0] R/W EXCCNT The exception overhead counter. This counter counts the total
cycles spent in exception processing (entry stacking, return
unstacking, pre-emption, etc). An event is emitted on counter
overflow (every 256 cycles).

This counter initializes to 0 when enabled (EXCEVTENA 0 => 1
transition).
C1-50 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
Sleep Count Register (DWT_SLEEPCNT)

This counter is not supported (DWT_SLEEPCNT is RAZ/WI) if DWT_CTRL.NOPRFCNT == 1.

LSU Count Register (DWT_LSUCNT)

This counter is not supported (DWT_LSUCNT is RAZ/WI) if DWT_CTRL.NOPRFCNT == 1.

Table C1-28 DWT_SLEEPCNT (0xE0001010)

Bits R/W Name Function

[31:8] Reserved

[7:0] R/W SLEEPCNT Sleep counter. This counts the total number of cycles that the
processor is sleeping (initiated by WFI, WFE, Sleep on exit). An
event is emitted on counter overflow (every 256 cycles).

This counter initializes to 0 when enabled (SLEEPEVTENA 0 =>
1 transition).

Table C1-29 DWT_LSUCNT (0xE0001014)

Bits R/W Name Function

[31:8] Reserved

[7:0] R/W LSUCNT The load-store count. The counter increments on the additional
cycles (the first cycle is not counted) required to execute all
load-store instructions.An event is emitted on counter overflow
(every 256 cycles).

This counter initializes to 0 when enabled (LSUEVTENA 0 => 1
transition).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-51
Restricted Access Non-Confidential

ARMv7-M Debug
Folded-instruction Count Register (DWT_FOLDCNT)

This counter is not supported (DWT_FOLDCNT is RAZ/WI) if DWT_CTRL.NOPRFCNT == 1.

Program Counter Sample Register (DWT_PCSR)

The register value is UNKNOWN on reset. Bit [0] is RAZ and does not reflect instruction set state as is the
case with similar functionality in other ARM architecture profiles.

Table C1-30 DWT_FOLDCNT (0xE0001018)

Bits R/W Name Function

[31:8] Reserved

[7:0] R/W FOLDCNT Folded-instruction counter. The counter increments on each
instruction which takes 0 cycles. An event is emitted on counter
overflow (every 256 cycles).

This counter initializes to 0 when enabled (FOLDEVTENA 0 =>
1 transition).

If an implementation does not support instruction folding, this
counter can be RAZ/WI.

Table C1-31 DWT_PCSR (0xE000101C)

Bits R/W Name Function

[31:0] RO EIASAMPLE Executed Instruction Address sample value
C1-52 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
Comparator Register (DWT_COMPx)

Mask Register (DWT_MASKx)

Table C1-32 DWT_COMPx

Bits R/W Name Function

[31:0] R/W COMP Reference value for comparison against CMPin. See Comparator
support on page C1-37.

The value is UNKNOWN on reset.

Table C1-33 DWT_MASKx

Bits R/W Name Function

[31:5] - Reserved

[4:0] R/W MASK The size of the ignore mask (0-31 bits) applied to address range
matching. See Comparator support on page C1-37 for the usage
model.

The mask range is IMPLEMENTATION DEFINED. Writing all 1’s to
this field and reading it back can be used to determine the
maximum mask size supported.

The value is UNKNOWN on reset.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-53
Restricted Access Non-Confidential

ARMv7-M Debug
Function Register (DWT_FUNCTIONx)

This register controls the operation of the comparator DWT_COMPx.

Table C1-34 DWT_FUNCTIONx

Bits R/W Name Function

[31:25] - Reserved

[24] RO MATCHEDa This bit is set when the associated comparator matches. It
indicates that the operation defined by FUNCTION has
occurred since the bit was last read.

The bit is cleared on a read.

[23:20] R/W Reserved

[19:16] R/W DATAVADDR1b When DATAVMATCH == ‘1’ and LNK1ENA == ‘1’:c

value == x: DWT_COMPx used for data comparison
value != x: Identity of a 2nd linked address comparator

[15:12] R/W DATAVADDR0b When DATAVMATCH == ‘1’:c

value == x: DWT_COMPx used for data comparison
value != x: Identity of a linked address comparator

[11:10] R/W DATAVSIZE Defines the size of the data in the associated COMP
register for value matching:
00: byte
01: halfword
10: word
11: UNPREDICTABLE

[9] RO LNK1ENA 0: DATAVADDR1 not supported
1: DATAVADDR1 supported (enabled)

[8] R/W DATAVMATCH Optional feature, otherwise RAZ/WI.
0: perform address comparison
1: perform data value compare
See LNK1ENA, DATAVSIZE, LNKADDR0 and
LNKADDR1 for related information.

[7] R/W CYCMATCHd DWT_FUNCTION0 only, otherwise RAZ/WI.
When set, DWT_COMP0 will compare against the cycle
counter (DWT_CYCCNT).

[6] Reserved
C1-54 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
[5] - EMITRANGEe When set, emit Daddr[15;0] in a hardware event packet
according to Table C1-20 on page C1-39.

[4] - Reserved

[3:0] R/W FUNCTION Select action on comparator match:
0000: disabled or LinkAddr() - see LinkAddr() support on
page C1-43.
For non-zero values:
If CYCMATCH clear, see Table C1-20 on page C1-39
If CYCMATCH set, see Table C1-21 on page C1-41
If DATAVMATCH set, see Table C1-22 on page C1-42

This field is reset to zero.

a. See the footnotes in Table C1-24 on page C1-48 for details of comparator matching configurations
affecting this bit that are UNPREDICTABLE.

b. If DWT_FUNCx.DATAVMATCH == 1 and neither link address is configured all data transactions are
tested for a data value match.

c. otherwise the bit is ignored.
d. Only applies if DWT_CTRL.NOCYCCNT == 0 to indicate cycle counting supported, otherwise the bit is

RAZ/WI.
e. Only applies if DWT_CTRL.NOTRCPKT == 0, otherwise the bit is RAZ/WI.

Table C1-34 DWT_FUNCTIONx (continued)

Bits R/W Name Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-55
Restricted Access Non-Confidential

ARMv7-M Debug
C1.9 Embedded Trace (ETM) support

ETM is an optional feature in ARMv7-M. Where it is supported, a Trace Port Interface Unit must be
provided that is capable of formatting an output packet stream from the ETM and DWT/ITM packet sources.

An ETM implementation must be compliant with the ETM architecture v3.4 or a later version as defined in
the Embedded Trace Macrocell Architecture Specification. The CMPMATCH[N] signals from the DWT
block (see Table C1-20 on page C1-39 in Comparator support on page C1-37) are exported and available
as control inputs to the ETM block. The associated TPIU implementation should be CoreSight compliant
(see the CoreSight Architecture Specification) and align with the TPIU architecture for compatibility with
ARM and other CoreSight compatible debug solutions.

TRCENA from the Debug Exception and Monitor Control Register (see Debug Exception and Monitor
Control Register (DEMCR) on page C1-24) can be used as an enable signal for the ETM block.

Note
 Enabling the ETM with TRCENA is IMPLEMENTATION DEFINED, and could be inappropriate where the ETM
unit is a shared resource in a complex system.
C1-56 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.10 Trace Port Interface Unit (TPIU)

Hardware events from the DWT block and software events from the ITM block are multiplexed with
timestamp information into a packet stream. Control and Configuration of the timestamp information and
the packet stream is part of the DWT and ITM blocks. It is IMPLEMENTATION DEFINED whether the packets
are made visible (requires pins or a trace buffer and access mechanism to be provided) or terminate within
the core. Where a trace buffer is implemented, an Embedded Trace Buffer (ETB) solution should be
CoreSight Architecture compliant as described in the CoreSight Architecture Specification.

External visibility requires an implementation to provide a Trace Port Interface Unit (TPIU). The
ARMv7-M TPIU programmers’ model includes support for an asynchronous Serial Wire Output (SWO) or
a synchronous (single or multi-bit data path) trace port. The combination of the DWT/ITM packet stream
and a SWO is known as a Serial Wire Viewer (SWV).

The minimum TPIU support for ARMv7-M provides an output path for a DWT/ITM generated packet
stream of hardware and/or software generated event information. This is known as TPIU support for debug
trace with the TPIU operating in pass-through mode.

For inclusion of an ETM, or other CoreSight compliant options, see CoreSight Architecture Specification
and Embedded Trace Macrocell Architecture Specification for additional detail and options.

Synchronous trace ports can be supported in data path widths from 1 to 32 bits. Asynchronous serial ports
can be supported in two options:

• A low speed asynchronous mode (NRZ encoding). This operates like a traditional UART.

• A medium-speed asynchronous mode (Manchester encoding).

An implementation can support both synchronous and asynchronous interfaces, the active interface selected
by the Selected Pin Protocol Register as defined in Table C1-38 on page C1-59. It is recommended that both
synchronous and asynchronous ports are provided for maximum flexibility with external capture devices.
The reference clock for the synchronous port is generated internally, while the reference clock for the
asynchronous port is generated from the effective lineout clock rate. A prescale counter is defined in the
TPIU for the asynchronous port as part of the clock generation scheme for asynchronous operation.

C1.10.1 The TPIU Programmers’ Model

This section defines the registers that must be present in an ARMv7-M TPIU for a minimum TPIU
configuration. The register list is summarized in Table C1-35 on page C1-58.

TRCENA from the Debug Exception and Monitor Control register (see Debug Exception and Monitor
Control Register (DEMCR) on page C1-24) can be used as an enable signal for the TPIU block.

Note
 Enabling the TPIU with TRCENA is recommended in a minimal system but IMPLEMENTATION DEFINED. It
could be inappropriate where the TPIU unit is a shared resource in a complex system.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-57
Restricted Access Non-Confidential

ARMv7-M Debug
Supported Synchronous Port Sizes Register (TPIU_SSPSR, 0xE0040000)

Each bit location represents a supported port size. The bits set indicate the valid synchronous trace port sizes
for the implementation.

Current Synchronous Port Size Register (TPIU_CSPSR, 0xE0040004)

This has the same format as the Supported Port Sizes Register but only one bit is set (all others must be zero).
Writing values with more than one bit set is UNPREDICTABLE. Writes to unsupported bits are
UNPREDICTABLE.

On reset the register will default to the smallest supported port size.

Table C1-35 TPIU programmers’ model overview

Address Type Reset Value Name Notes

0xE0040000 RO IMP DEF TPIU_SSPSR Supported Synchronous Port Size

0xE0040004 R/W IMP DEF TPIU_CSPSR Current Synchronous Port Size

0xE0040010 R/W 0x0 TPIU_ACPR Asynchronous Clock Prescaler

0xE00400F0 R/W IMP DEF TPIU_SPPR Selected Pin Protocol

0xE0040FB4a

a. CoreSight compliance for the lock status register is required.

RO IMP DEF See Appendix B ARMv7-M infrastructure
IDs, Table B-2 on page AppxB-3

0xE0040FC8 RO IMP DEF TPIU_TYPE

0xE0040FD0 RO ID space:
See Appendix B ARMv7-M infrastructure
IDs for more information.…

0xE0040FFC

Table C1-36 Supported Synchronous Port Sizes Register (0xE0040000)

Bits R/W Reset Value Function

[31:0] RO IMP DEF bit [N] == 0, trace port width of (N+1) not supported
bit [N] == 1, trace port width of (N+1) supported
C1-58 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
Asynchronous Clock Prescaler Register (TPIU_ACPR, 0xE0040010)

This register is used to scale the baud rate of the Serial Wire Output. The asynchronous port reference clock
is prescaled according to the value of bits [15:0]. When the register is written, the prescale counter is
automatically updated (it is IMPLEMENTATION DEFINED whether it is preset and counts down or reset and
counts up), affecting the baud-rate of the serial data output immediately.

If the register is updated while data is being transmitted, the affect on the output stream is UNPREDICTABLE
and recovery is IMPLEMENTATION DEFINED.

Selected Pin Protocol Register (TPIU_SPPR, 0xE00400F0)

This register selects which protocol to use for trace output. The supported values allowed within the register
are determined by bits [11:9] of the TPIU Type Register (at address 0xE0040FC8).

If this register is changed whilst trace data is being output, the output behavior becomes UNPREDICTABLE
and recovery is IMPLEMENTATION DEFINED.

Table C1-37 Asynchronous Clock Prescaler Register (0xE0040010)

Bits R/W Reset Value Function

[31:16] - Reserved

[15:0] R/W UNKNOWN Value used as a division ratio (baud rate prescaler).
The available range is IMPLEMENTATION DEFINED with unused
bits RAZ/WI.
SWO output clock = Asynchronous_Reference_Clock/(value +1)

Table C1-38 Selected Pin Protocol Register (0xE00400F0)

Bits R/W Reset Value Function

[31:2] - Reserved

[1:0] R/W IMP DEF 00: Synchronous Trace Port Mode
01: Asynchronous Serial Wire Output (Manchester)
10: Asynchronous Serial Wire Output (NRZ)
11: Reserved
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-59
Restricted Access Non-Confidential

ARMv7-M Debug
TPIU Type Register (TPIU_TYPE, 0xE0040FC8)

This register defines the SWO supported options within the TPIU.

Table C1-39 TPIU Type Register (0xE0040FC8)

Bits R/W Function

[31:16] RO Reserved

[15:12] RO IMPLEMENTATION DEFINED

[11] RO Serial Wire Output (UART/NRZ) supported when the bit is set

[10] RO Serial Wire Output (Manchester encoding) supported when the bit is set

[9] RO RAZ, indicates that trace data and clock are supported

[8:6] RO Minimum output FIFO size for trace information (power of 2 bytes)
For example, a value of 0b010 indicates at least a 4 byte output FIFO

[5:0] RO IMPLEMENTATION DEFINED
C1-60 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
C1.11 Flash Patch and Breakpoint (FPB) support

The Flash Patch and Breakpoint (FPB) component can provide support for:

• remapping of specific literal locations from the Code region of system memory to an address in the
SRAM region. See Table B3-1 on page B3-3 for information on address regions.

• remapping of specific instruction locations from the Code region of system memory to an address in
the SRAM region. See Table B3-1 on page B3-3 for information on address regions.

• breakpoint functionality for instruction fetches.

The number of literal and instruction comparators are IMPLEMENTATION DEFINED and can be read from the
FP_CTRL register (see FlashPatch Control Register (FP_CTRL) on page C1-64). The valid combinations
of support are:

• no comparator support

• instruction comparator(s) with breakpoint support only

• instruction comparator(s) with breakpoint and remapping support

• a full feature set provided by instruction and literal comparator support.

Note
 The FPB is not restricted to debug use only. The FPB can be used to support product updates, as it behaves
the same under normal code execution conditions.

C1.11.1 Theory of operation

There are three types of register:

• a general control register FP_CTRL

• a Remap address register FP_REMAP

• FlashPatch comparator registers.

Separate comparators are used for instruction address comparison and literal address comparison.

The FlashPatch Control Register provides a global enable bit for the FPB, along with ID fields indicating
the numbers of Code comparison and literal comparison registers provided.

The FlashPatch Remap Register is used to program the base address for the remap vectors. Comparator N
will remap to address Remap_Base + 4N when configured for remapping and a match occurs. Bit [29] can
be used to determine if remapping (instruction or data) is supported, see FlashPatch Remap Register
(FP_REMAP) on page C1-64.

The instruction-matching FlashPatch Comparator Registers can be configured to remap the instruction or
generate a breakpoint. The literal-matching comparators have fixed functionality, only supporting the
remapping feature on data read accesses. Each comparator has its own enable bit which comes into effect
when the global enable bit is set.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-61
Restricted Access Non-Confidential

ARMv7-M Debug
All comparators match word-aligned addresses (mask out address bits [1:0]) within the Code memory
region (1st GB of the memory map), and only operate on read accesses. Data writes never match and will
go to the original location.

Instruction matching where remapping is configured will always compare a word and remap a word for
instruction issue. When instruction matching is configured to generate a breakpoint event, address matching
is performed on the upper halfword, lower halfword or both halfwords. A halfword match generates a
breakpoint event for a 16-bit instruction, and where the halfword match is on at least the first halfword of a
32-bit instruction. A halfword match on only the second halfword of a 32-bit instruction might generate a
breakpoint event.

Note
 It is IMPLEMENTATION DEFINED whether breakpoint events are generated when debug is disabled
(DHCSR.C_DEBUGEN == 0 and DEMCR.MON_EN == 0). When the breakpoint is not generated, the
breakpointed instruction exhibits its normal architectural behavior.

Literal matching on reads can be on a word, halfword or byte quantum of data. Matches will fetch the
appropriate data from the remapped location.

The following restrictions apply:

• Unaligned literal accesses affected by remapping are IMPLEMENTATION DEFINED.

• Where an MPU is enabled, the MPU checking is performed on the original address, and the attributes
applied to the remapped location. The remapped address is not checked by the MPU.

• Load exclusive accesses can be remapped, however, it is UNPREDICTABLE whether they are performed
as exclusive accesses or not.

• Instruction matches on 32-bit instructions configured as a breakpoint must be configured to match
the first halfword or both halfwords of the instruction. It is UNPREDICTABLE whether breakpoint
matches on only the address of the second halfword of a 32-bit instruction generate a debug event.

C1.11.2 Register support for the FPB

The FPB register support is listed in Table C1-40:

Table C1-40 Flash Patch and Breakpoint register summary

Address Type Name Reference

0xE0002000 R/W FP_CTRL FlashPatch control

0xE0002004 R/W FP_REMAP FlashPatch remapping address

0xE0002008 R/W FP_COMP0 FlashPatch comparator 0 control

… … Number of comparators defined in FP_CTRL
C1-62 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
See below for details on the FPB support registers.

0xE000223C R/W FP_COMP141 where NUM_CODE = 127 and NUM_LIT = 15

0xE0002FB4a RO See Appendix B ARMv7-M infrastructure IDs,
Table B-2 on page AppxB-3

0xE0002FD0 RO ID space:
See Appendix B ARMv7-M infrastructure IDs for
more information.…

0xE0002FFC

a. CoreSight compliance for the lock status register is required.

Table C1-40 Flash Patch and Breakpoint register summary (continued)

Address Type Name Reference
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-63
Restricted Access Non-Confidential

ARMv7-M Debug
FlashPatch Control Register (FP_CTRL)

FlashPatch Remap Register (FP_REMAP)

Table C1-41 FP_CTRL

Bits R/W Name Function

[31:15] - - Reserved

[14:12] RO NUM_CODE2 Number of code comparators - most significant bits
NUM_CODE = NUM_CODE2:NUM_CODE1

[11:8] RO NUM_LIT The number of literal comparators supported.
Literal comparators start at: FP_COMP[NUM_CODE]
Last literal comp: FP_COMP[NUM_CODE+NUM_LIT-1]
NUM_LIT == 0: no literal comparator support

[7:4] RO NUM_CODE1 Number of code comparators - least significant bits
Code comparators start at: FP_COMP0
Last code comp: FP_COMP[NUM_CODE-1]
NUM_CODE == 0: no code comparator support

[1] R/W KEY RAZ on reads, MBO (must-be-one) for writes, otherwise the
write to the register is ignored.

[0] R/W ENABLE Enables the Flash Patch unit when set. This bit is cleared on
a power-up reset.

Table C1-42 FP_REMAP

Bits R/W Name Function

[31:30] RO RAZ

[29] RO 0: Remapping not supported
1: Hard-wired remap to SRAM region

[28:5] R/W REMAP Remap base address in SRAM. The remap base address must be
naturally aligned with respect to the number of words required
to support (NUM_CODE+NUM_LIT-1) comparators, with a
minimum 8-word alignment boundary.

The field is UNKNOWN on reset and is RAZ/WI if only
breakpoint functionality is supported.

[4:0] - - Reserved. RAZ/WI
C1-64 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M Debug
FlashPatch Comparator Register – instruction comparison (FP_COMPx)

Instruction comparators can be configured to remap the instruction to SRAM or to behave as a breakpoint.

Table C1-43 FP_COMPx instruction comparison

Bits R/W Name Function

[31:30] R/W REPLACE Defines the behavior when the COMP address is matched:
00a: remap to remap address. See FP_REMAP register.
01: breakpoint on lower halfword, upper is unaffected
10: breakpoint on upper halfword, lower is unaffected
11: breakpoint on both lower and upper halfwords.
The field is UNKNOWN on reset.

a. If remapping is not supported, FP_CTRL.ENABLE == 1, and FP_COMPx.ENABLE bit == 1, the
behavior associated with the value 0b00 is UNPREDICTABLE.

[29] - - Reserved.

[28:2] R/W COMP Address to compare against within the Code segment of
memory. The address for comparison is ’000’:COMP:’00’. The
field is UNKNOWN on reset.

[1] - - Reserved.

[0] R/W ENABLE Comparator is enabled when this bit is set. This bit is cleared on
a power-up reset.

Note
 The master enable in FP_CTRL must also be set to enable a
comparator.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. C1-65
Restricted Access Non-Confidential

ARMv7-M Debug
FlashPatch Comparator Register – literal comparison (FP_COMPx)

Literal comparators can only be configured with a remapping capability, see FlashPatch Remap Register
(FP_REMAP) on page C1-64.

Table C1-44 FP_COMPx literal comparison

Bits R/W Name Function

[31:30] RO RAZ/WI

[29] - - Reserved.

[28:2] R/W COMP Variable address field to compare against within the Code
segment of memory. The field is UNKNOWN on reset.

The address for comparison is ’000’:COMP:’00’.

[1] - - Reserved.

[0] R/W ENABLE Comparator is enabled when this bit is set. This bit is cleared on
a power-up reset.

Note
 The master enable in FP_CTRL must also be set to enable a
comparator.
C1-66 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Part D
Appendices

Appendix A
CPUID

The CPUID scheme used on ARMv7-M aligns with the revised format ARM Architecture CPUID scheme.
An architecture variant of 0xF specified in the Main ID Register (see System ID register support in the SCS
on page B3-10) indicates the revised format is being used. All ID registers are privileged access only.
Privileged writes are ignored, and unprivileged data accesses cause a BusFault error. The appendix is made
up of the following sections:

• Core Feature ID Registers on page AppxA-2

• Processor Feature register0 (ID_PFR0) on page AppxA-4

• Processor Feature register1 (ID_PFR1) on page AppxA-5

• Debug Features register0 (ID_DFR0) on page AppxA-6

• Auxiliary Features register0 (ID_AFR0) on page AppxA-7

• Memory Model Feature registers on page AppxA-8

• Instruction Set Attribute registers – background information on page AppxA-10

• Instruction Set Attribute registers – details on page AppxA-12
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-1
Restricted Access Non-Confidential

CPUID
A.1 Core Feature ID Registers

The Core Feature ID registers are decoded in the System Control Space as defined in Table A-1.

Table A-1 Core Feature ID register support in the SCS

Address Type Reset Value Function

0xE000ED00 Read Only IMPLEMENTATION
DEFINED

CPUID Base Register

0xE000ED40 Read Only IMPLEMENTATION
DEFINED

PFR0: Processor Feature register0

0xE000ED44 Read Only IMPLEMENTATION
DEFINED

PFR1: Processor Feature register1

0xE000ED48 Read Only IMPLEMENTATION
DEFINED

DFR0: Debug Feature register0

0xE000ED4C Read Only IMPLEMENTATION
DEFINED

AFR0: Auxiliary Feature register0

0xE000ED50 Read Only IMPLEMENTATION
DEFINED

MMFR0: Memory Model Feature register0

0xE000ED54 Read Only IMPLEMENTATION
DEFINED

MMFR1: Memory Model Feature register1

0xE000ED58 Read Only IMPLEMENTATION
DEFINED

MMFR2: Memory Model Feature register2

0xE000ED5C Read Only IMPLEMENTATION
DEFINED

MMFR3: Memory Model Feature register3

0xE000ED60 Read Only IMPLEMENTATION
DEFINED

ISAR0: ISA Feature register0

0xE000ED64 Read Only IMPLEMENTATION
DEFINED

ISAR1: ISA Feature register1

0xE000ED68 Read Only IMPLEMENTATION
DEFINED

ISAR2: ISA Feature register2

0xE000ED6C Read Only IMPLEMENTATION
DEFINED

ISAR3: ISA Feature register3

0xE000ED70 Read Only IMPLEMENTATION
DEFINED

ISAR4: ISA Feature register4
AppxA-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
Two values of the version fields have special meanings:

Field[] == all 0’s the feature does not exist in this device, or the field is not allocated.

Field[] == all 1’s the field has overflowed, and is now defined elsewhere in the ID space.

Where attribute fields or specific values apply only to other ARM Architecture profiles, they are marked as
N/A (not applicable). All N/A values should be ignored, and the associated feature considered as not
present.

All RESERVED fields in the Core Feature ID registers Read-as-Zero (RAZ).

A.1.1 Convention for CPUID attribute descriptions

The following convention is adopted specific to this appendix:

ARMv7 RESERVED The attribute is allocated within the ARM architecture, but does not apply to
ARMv7-M. The attribute definition has been suppressed to minimize confusion.

RESERVED The attribute is not currently allocated within the ARM architecture.

N/A Not Applicable. The specific value of this attribute has been assigned within the
ARM architecture but does not apply to ARMv7-M. The attribute value definition
has been suppressed to minimize confusion.

0xE000ED74 Read Only IMPLEMENTATION
DEFINED

ISAR5: RESERVED (RAZ)

0xE000ED78 Read Only IMPLEMENTATION
DEFINED

RESERVED (RAZ)

0xE000ED7C Read Only IMPLEMENTATION
DEFINED

RESERVED (RAZ)

Table A-1 Core Feature ID register support in the SCS (continued)

Address Type Reset Value Function
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-3
Restricted Access Non-Confidential

CPUID
A.2 Processor Feature register0 (ID_PFR0)

ID_PFR0[3:0] = State0 (T-bit == 0)

• 0 == no ARM encoding

• 1 == N/A

ID_PFR0[7:4] = State1 (T-bit == 1)

• 0 == No support for the Thumb instruction set

• 1 == Support for Thumb encoding before the introduction of Thumb-2 technology:

— all instructions are 16-bit

— a BL or BLX instruction is a pair of 16-bit instructions

— 32-bit instructions other than BL and BLX cannot be encoded.

• 2 == Support for Thumb encoding after the introduction of Thumb-2 technology with B and BL 32-bit
instructions and all 16-bit basic Thumb instructions.

• 3 == Support for Thumb encoding after the introduction of Thumb-2 technology with all basic 16-bit
and 32-bit instructions.

ID_PFR0[15:8] = ARMv7 RESERVED

ID_PFR0[31:16] = RESERVED
AppxA-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
A.3 Processor Feature register1 (ID_PFR1)

ID_PFR1[7:0] = ARMv7 RESERVED

ID_PFR1[11:8] = Microcontroller programmers’ model

• 0 == not supported

• 1 == reserved

• 2 == two-stack support

ID_PFR1[31:12] = RESERVED
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-5
Restricted Access Non-Confidential

CPUID
A.4 Debug Features register0 (ID_DFR0)

This register provides a high level view of the debug system. Further details are provided in the debug
infrastructure itself.

ID_DFR0[19:0] = ARMv7 RESERVED

ID_DFR0[23:20] = Microcontroller Debug Model – memory mapped

• 0 == not supported

• 1 == Microcontroller debug v1 (ITMv1, DWTv1, optional ETM)

ID_DFR0[31:24] = RESERVED
AppxA-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
A.5 Auxiliary Features register0 (ID_AFR0)

This register provides some freedom for IMPLEMENTATION DEFINED features to be registered against the
CPUID. The field definitions are SUBJECT TO CHANGE, particularly across architecture licensees.
Features can migrate over time if they get absorbed into the main architecture.

ID_AFR0[3:0] = IMPLEMENTATION DEFINED (architecture licensee)

• 0 == not supported / not in use

ID_AFR0[7:4] = IMPLEMENTATION DEFINED (architecture licensee)

• 0 == not supported / not in use

ID_AFR0[11:8] = IMPLEMENTATION DEFINED (architecture licensee)

• 0 == not supported / not in use

ID_AFR0[15:12] = IMPLEMENTATION DEFINED (architecture licensee)

• 0 == not supported / not in use

ID_AFR0[31:16] = RESERVED
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-7
Restricted Access Non-Confidential

CPUID
A.6 Memory Model Feature registers

Four registers contain general information on the memory model and memory management support.

A.6.1 Memory Model Feature register0 (ID_MMFR0)

ID_MMFR0[3:0] = ARMv7 RESERVED

ID_MMFR0[7:4] = PMSA support

• 0 == not supported

• 1 == IMPLEMENTATION DEFINED (N/A)

• 2 == PMSA base (features as defined for ARMv6) (N/A)

• 3 == PMSAv7 (base plus subregion support)

ID_MMFR0[11:8] = cache coherence support

• 0 == no shared support

• 1 == partial-inner-shared coherency (coherency amongst some - but not all - of the entities within an
inner-coherent domain)

• 2 == full-inner-shared coherency (coherency amongst all of the entities within an inner-coherent
domain)

• 3 == full coherency (coherency amongst all of the entities)

The values 2 and 3 can only be distinguished when Outer non-sharable is supported

ID_MMFR0[15:12] = Outer non-sharable support

• 0 == Outer non-sharable not supported

• 1 == Outer sharable supported

ID_MMFR0[19:16] = ARMv7 RESERVED

ID_MMFR0[23:20] = Auxiliary register support

• 0 == not supported

• 1 == Auxiliary control register

ID_MMFR0[27:24] = ARMv7 RESERVED

ID_MMFR0[31:28] = RESERVED

A.6.2 Memory Model Feature register1 (ID_MMFR1)

ID_MMFR1[31:0] = ARMv7 RESERVED

A.6.3 Memory Model Feature register2 (ID_MMFR2)

ID_MMFR2[23:0] = ARMv7 RESERVED
AppxA-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
ID_MMFR2[27:24] = wait for interrupt stalling

• 0 == not supported

• 1 == wait for interrupt supported

ID_MMFR2[31:28] = ARMv7 RESERVED

A.6.4 Memory Model Feature register3 (ID_MMFR3)

ID_MMFR3[11:0] = ARMv7 RESERVED

ID_MMFR3[31:12] = RESERVED
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-9
Restricted Access Non-Confidential

CPUID
A.7 Instruction Set Attribute registers – background information

This section provides background information on the instructions which form the basic instruction set, and
some rules about the allocation of instructions to the different attribute fields in the Instruction Set Attribute
registers.

A.7.1 The basic instruction set

These instructions only depend on an "instruction encoding" attribute in the CPUID – i.e. if an instruction
encoding is present, all basic instructions that have encodings in that instruction set *must* be present.

A.7.2 General rules

The rules about an instruction being basic do not guarantee that it is available in any particular instruction
set - for instance, MOV R0,#123456789 is a basic instruction by the rules below, but is not available in any ARM
instruction sets to date.

Being conditional or unconditional never makes any difference to whether an instruction is a basic
instruction.

A.7.3 Q flag support

The Q flag is present in the APSR when:

(MultS_instrs 2) OR (Saturate_instrs 1) OR (SIMD_instrs 1)

Note
 This value of MultS_instrs and the Saturate_instrs attribute are ARMv7 RESERVED.

A.7.4 MOV instructions

These are in the basic instruction set if the source operand is an immediate or an unshifted register.

If their second operand is a shifted register, treat them as instead being an ASR, LSL, LSR, ROR or "RRX"
instruction, as described in the following section.

A.7.5 Non-MOV data-processing instructions

These are:

ADC ADD AND ASR BIC CMN CMP EOR LSL LSR MVN
NEG ORN ORR ROR RRX RSB RSC SBC SUB TEQ TST

These instructions are in the basic instruction set for ARMv7-M if the second (or only for MVN) source
operand is an immediate or an unshifted register.

If this condition is false, they are non-basic instructions, controlled by the PSR_instrs attribute and/or the
WithShifts_instrs attribute.
AppxA-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
A.7.6 Multiply instructions

MUL instructions are always basic; all other multiply instructions and all multiply-accumulate instructions are
non-basic.

A.7.7 Branches

All B and BL instructions are basic instructions.

A.7.8 Load/store single instructions

These are:

 LDR LDRB LDRH LDRSB LDRSH STR STRB STRH

These instructions are in the basic instruction set if the addressing mode is of one of the following forms:

[Rn, #immediate]
[Rn, #-immediate]
[Rn, Rm]
[Rn, -Rm]

A load/store single instruction with any other addressing mode is under the control of one or more of the
attributes WithShifts_instrs, Writeback_instrs or Unpriv_instrs.

A.7.9 Load/store multiple instructions

These are:

 LDM<mode> STM<mode> PUSH POP

Where <mode> is:

IA Rn,
IA Rn!,
DB Rn, DB Rn!,

or their corresponding FD/EA synonyms.

They are basic because they are fundamental to good code generation. In particular, PUSH and POP both have
the implied addressing mode FD R13! and are essential for good procedure prologues and epilogues. The
other addressing modes listed can make a considerable difference to the code density of structure copy, load
and store, and also to their performance on low-end implementations.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-11
Restricted Access Non-Confidential

CPUID
A.8 Instruction Set Attribute registers – details

Six registers are currently allocated for instruction set attributes.

A.8.1 Instruction Set Attributes Register0 (ID_ISAR0)

ID_ISAR0[3:0] = ARMv7 RESERVED

ID_ISAR0[7:4] = BitCount instructions

ID_ISAR0[11:8] = BitField instructions

ID_ISAR0[15:12] = CmpBranch instructions

ID_ISAR0[19:16] = Coprocessor instructions

ID_ISAR0[23:20] = Debug instructions

ID_ISAR0[27:24] = Divide instructions

ID_ISAR0[31:28] = reserved

BitCount_instrs:

• 0 if no bit-counting instructions present

• 1 adds CLZ

Bitfield_instrs:

• 0 if no bitfield instructions present

• 1 adds BFC, BFI, SBFX, UBFX

CmpBranch_instrs:

• 0 if no combined compare-and-branch instructions present

• 1 adds CB{N}Z

Coproc_instrs:

• 0 if no coprocessor support, other than for separately attributed architectures such as CP15 or VFP

• 1 adds generic CDP, LDC, MCR, MRC, STC

• 2 adds generic CDP2, LDC2, MCR2, MRC2, STC2

• 3 adds generic MCRR, MRRC,

• 4 adds generic MCRR2, MRRC2

Debug_instrs:

• 0 if no debug instructions present

• 1 adds BKPT

Divide_instrs:

• 0 if no divide instructions present

• 1 adds SDIV, UDIV (v1 – quotient only result)
AppxA-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
A.8.2 Instruction Set Attributes Register1 (ID_ISAR1)

ID_ISAR1[11:0] = ARMv7 RESERVED

ID_ISAR1[15:12] = Extend instructions

ID_ISAR1[19:16] = IfThen instructions

ID_ISAR1[23:20] = Immediate instructions

ID_ISAR1[27:24] = Interwork instructions

ID_ISAR1[31:28] = ARMv7 RESERVED

Extend_instrs:

0 if no scalar (i.e. non-SIMD) sign/zero-extend instructions present

• 1 adds SXTB, SXTH, UXTB, UXTH

• 2 == N/A

Note
 The shift options on these instructions are also controlled by the WithShifts_instrs attribute.

IfThen_instrs (T):

• 0 if IT instructions not present

• 1 adds IT instructions (and IT bits in PSRs)

Immediate_instrs:

• 0 if no special immediate-generating instructions present

• 1 adds ADDW, MOVW, MOVT, SUBW

Interwork_instrs:

• 0 if no interworking instructions supported

• 1 adds BX (and T bit in PSRs)

• 2 adds BLX, and PC loads have BX-like behavior

• 3 == N/A

A.8.3 Instruction Set Attributes Register2 (ID_ISAR2)

ID_ISAR2[3:0] = LoadStore instructions

ID_ISAR2[7:4] = MemoryHint instructions

ID_ISAR2[11:8] = Multi-Access interruptible instructions

ID_ISAR2[15:12] = Multiply instructions

ID_ISAR2[19:16] = Multiply instructions (advanced, signed)

ID_ISAR2[23:20] = Multiply instructions (advanced, unsigned)
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-13
Restricted Access Non-Confidential

CPUID
ID_ISAR2[27:24] = ARMv7 RESERVED

ID_ISAR2[31:28] = Reversal instructions

LoadStore_instrs:

• 0 if no additional normal load/store instructions present

• 1 adds LDRD/STRD

MemHint_instrs:

• 0 if no memory hint instructions present

• 1 adds PLD

• 2 adds PLD (ie a repeat on value 1)

• 3 adds PLI

MultiAccessInt_instrs:

• 0 if the (LDM/STM) instructions are non-interruptible

• 1 if the (LDM/STM) instructions are restartable

• 2 if the (LDM/STM) instructions are continuable

Mult_instrs:

• 0 if only MUL present

• 1 adds MLA

• 2 adds MLS

MultS_instrs:

• 0 if no signed multiply instructions present

• 1 adds SMULL, SMLAL

• 2 == N/A

• 3 == N/A

MultU_instrs:

• 0 if no unsigned multiply instructions present

• 1 adds UMULL, UMLAL

• 2 == N/A

Reversal_instrs:

• 0 if no reversal instructions present

• 1 adds REV, REV16, REVSH

• 2 adds RBIT

A.8.4 Instruction Set Attributes Register3 (ID_ISAR3)

ID_ISAR3[3:0] = Saturate instructions
AppxA-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

CPUID
ID_ISAR3[7:4] = SIMD instructions

ID_ISAR3[11:8] = SVC instructions

ID_ISAR3[15:12] = SyncPrim instructions

ID_ISAR3[19:16] = TableBranch instructions

ID_ISAR3[23:20] = ThumbCopy instructions

ID_ISAR3[27:24] = TrueNOP instructions

ID_ISAR3[31:28] = ARMv7 RESERVED

Saturate_instrs:

• 0 if no non-SIMD saturate instructions present

• 1 == N/A

SIMD_instrs:

• 0 if no SIMD instructions present

• 1 adds SSAT, USAT (and the Q flag in the PSRs)

• 2 reserved

• 3 == N/A

SVC_instrs:

• 0 if no SVC (SWI) instructions present

• 1 adds SVC (SWI)

SyncPrim_instrs:

• 0 if no synchronization primitives present

• 1 adds LDREX, STREX

• 2 adds LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, CLREX(N/A)

Note
 No LDREXD or STREXD in ARMv7-M. This attribute is used in conjunction with the

SyncPrim_instrs_frac attribute in ID_ISAR4[23:20].

TabBranch_instrs (T):

• 0 if no table-branch instructions present

• 1 adds TBB, TBH

ThumbCopy_instrs (T):

• 0 if Thumb MOV(register) instruction does not allow low reg -> low reg

• 1 adds Thumb MOV(register) low reg -> low reg and the CPY alias
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-15
Restricted Access Non-Confidential

CPUID
TrueNOP_instrs

• 0 if "true NOP" instructions not present - that is, NOP instructions with no register dependencies

• 1 adds "true NOP”, and the capability of additional “NOP compatible hints”

A.8.5 Instruction Set Attributes Register3 (ID_ISAR4)

ID_ISAR4[3:0] = Unprivileged instructions

ID_ISAR4[7:4] = WithShift instructions

ID_ISAR4[11:8] = Writeback instructions

ID_ISAR4[15:12] = ARMv7 RESERVED

ID_ISAR4[19:16] = Barrier instructions

ID_ISAR4[23:20] = SyncPrim_instrs_frac

ID_ISAR4[27:24] = PSR_M_instrs

ID_ISAR4[31:28] = RESERVED

Unpriv_instrs:

• 0 if no "T variant" instructions exist

• 1 adds LDRBT, LDRT, STRBT, STRT

• 2 adds LDRHT, LDRSBT, LDRSHT, STRHT

WithShifts_instrs:

• 0 if non-zero shifts only support MOV and shift instructions (see notes)

• 1 shifts of loads/stores over the range LSL 0-3

• 2 reserved

• 3 adds other constant shift options.

• 4 adds register-controlled shift options.

Note
 All additions only apply in cases where the encoding supports them - e.g. there is no difference between
levels 3 and 4 in the Thumb instruction set.

MOV instructions with shift options are treated as ASR, LSL, LSR, ROR or RRX instructions, as described in
Non-MOV data-processing instructions on page AppxA-10.

Writeback_instrs:

• 0 if only non-writeback addressing modes present, except that LDMIA/STMDB/PUSH/POP
instructions support writeback addressing.

• 1 adds all currently-defined writeback addressing modes in ARMv7.
AppxA-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
4

CPUID
Barrier_instrs

• 0 if no barrier instructions supported

• 1 adds DMB, DSB, ISB barrier instructions

Syncprim_instrs_frac:

• When SyncPrim_instrs = 1

— 0 if no additional support

— 1 reserved

— 2 reserved

— 3 adds CLREX, LDREXB, STREXB, LDREXH, STREXH

PSR_M_instrs

• 0 if instructions not present

• 1 adds CPS, MRS, and MSR instructions (M-profile forms)
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxA-17
Restricted Access Non-Confidential

CPUID
AppxA-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix B
ARMv7-M infrastructure IDs

ARMv7-M implementations support SCS, FPB, DWT and ITM blocks along with a ROM table as
illustrated in Table C1-3 on page C1-4. The CoreSight architecture programmers’ model is defined in [3]
with each 4KB register space subdivided into four sections:

• A component ID (offset 0xFF0 to 0xFFF)

• A peripheral ID (offset 0xFD0 to 0xFEF)

• CoreSight management registers (offset 0xF00 to 0xFCF)

• Device specific registers (offset 0x000 to 0xEFF)

For ARMv7-M, the component ID registers are required for the ROM table, and the CoreSight management
lock access mechanism is defined for the DWT, ITM, FPB and TPIU blocks. Otherwise all ID and
management registers are reserved, with the recommendation that they are CoreSight compliant or RAZ to
encourage commonality of support across debug toolchains.

Note
 The lock mechanism only applies to software access from the core to the affected block. DAP access is
always allowed, meaning the lock status register must RAZ from the DAP.

To determine the topology of the ARMv7-M debug infrastructure, ROM table entries indicate whether a
block is present. Presence of a block guarantees support of the ARMv7-M programming requirements for
DWT, ITM, FPB and TPIU. Additional functionality requires additional support, where CoreSight is the
recommended framework.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxB-1
Restricted Access Non-Confidential

ARMv7-M infrastructure IDs
The CPUID support in the SCS should be used to determine details of the architecture variant and features
supported by the core.

The component ID and peripheral ID register general formats are as shown in Table B-1.

Table B-1 Component and Peripheral ID register formats

Address
Offset

Value Symbol Name Reference

0xFFC 0x000000B1 CID3 Component ID3 Preamble

0xFF8 0x00000005 CID2 Component ID2 Preamble

0xFF4 0x000000X0 CID1 Component ID1 bits [7:4] Component Class
bits [3:0] Preamble

0xFF0 0x0000000D CID0 Component ID0 Preamble

0xFEC 0x000000YY PID3 Peripheral ID3 bits [7:4] RevAnd - minor revision field
bits [3:0] non-zero == Customer
modified block

0xFE8 0x000000YX PID2 Peripheral ID2 bits [7:4] Revision
bit [3] == 1: JEDEC assigned ID fields
bits [2:0] JEP106 ID code [6:4]

0xFE4 0x000000XY PID1 Peripheral ID1 bits [7:4] JEP106 ID code [3:0]
bits [3:0] Part Number [11:8]

0xFE0 0x000000YY PID0 Peripheral ID0 Part Number [7:0]

0xFDC 0x00000000 PID7 Peripheral ID7 Reserved

0xFD8 0x00000000 PID6 Peripheral ID6 Reserved

0xFD4 0x00000000 PID5 Peripheral ID5 Reserved

0xFD0 0x000000YX PID4 Peripheral ID4 bits [7:4] 4KB count
bits [3:0] JEP106 continuation code

1. For ARMv7-M, all CoreSight registers are accessed as words. Any 8-bit or 16-bit registers defined in the
CoreSight Architecture Specification are accessed as zero-extended words.

2. For the Value column:

• X: CoreSight architected values (fixed bit field, component class, JEDEC assigned).

• Y: IMPLEMENTATION DEFINED

3. The JEDEC defined fields refer to the block designer’s JEDEC code. The combination of part number,
designer and component class fields must be unique.

4. For more details on the bit fields, see the CoreSight programmers’ model in the CoreSight Architecture
Specification.
AppxB-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-M infrastructure IDs
The CoreSight management lock mechanism registers are summarized in Table B-2.

Table B-2 ARMv7-M and CoreSight management registers

Component
Classa

Address
Offset

Type Register Name Notes

0xFB8-0xFCF reserved

0x9 0xFB4 RO Lock Status (LSR) optional in ARMv7-M, or RAZ

0x9 0xFB0 WO Lock Access (LAR) optional in ARMv7-M, reads UNKNOWN

0xF00-0xFAF reserved

ARM recommends that all reserved space is CoreSight compliant or RAZ.

See the programmers’ model in the CoreSight Architecture Specification for a complete
CoreSight management register list and register format details.

a. For information on component classes, see the Component ID register information in the CoreSight Architecture
Specification.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxB-3
Restricted Access Non-Confidential

ARMv7-M infrastructure IDs
AppxB-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix C
Legacy Instruction Mnemonics

This appendix provides information about the Unified Assembler Language equivalents of older assembler
language instruction mnemonics.

It contains the following sections:

• Thumb instruction mnemonics on page AppxC-2

• Pre-UAL pseudo-instruction NOP on page AppxC-6.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxC-1
Restricted Access Non-Confidential

Legacy Instruction Mnemonics
C.1 Thumb instruction mnemonics

The following table shows the pre-UAL assembly syntax used for Thumb instructions before the
introduction of Thumb-2 technology and the equivalent UAL syntax for each instruction. It can be used to
translate correctly-assembling pre-UAL Thumb assembler code into UAL assembler code.

This table is not intended to be used for the reverse translation from UAL assembler code to pre-UAL
Thumb assembler code.

In this table, 3-operand forms of the equivalent UAL syntax are used, except in one case where a 2-operand
form needs to be used to ensure that the same instruction encoding is selected by a UAL assembler as was

selected by a pre-UAL Thumb assembler.

Table C-1 Pre-UAL assembly syntax

Pre-UAL Thumb syntax Equivalent UAL syntax Notes

ADC <Rd>, <Rm> ADCS <Rd>, <Rd>, <Rm>

ADD <Rd>, <Rn>, #<imm> ADDS <Rd>, <Rn>, #<imm>

ADD <Rd>, #<imm> ADDS <Rd>, #<imm>

ADD <Rd>, <Rn>, <Rm> ADDS <Rd>, <Rn>, <Rm>

ADD <Rd>, SP ADD <Rd>, SP, <Rd>

ADD <Rd>, <Rm> ADDS <Rd>, <Rd>, <Rm>

ADD <Rd>, <Rd>, <Rm>

If <Rd> and <Rm> are both
R0-R7,
otherwise
(and <Rm> is not SP)

ADD <Rd>, PC, #<imm>
ADR <Rd>, <label>

ADD <Rd>, PC, #<imm>
ADR <Rd>, <label>

ADR form preferred where
possible

ADD <Rd>, SP, #<imm> ADD <Rd>, SP, #<imm>

ADD SP, #<imm> ADD SP, SP, #<imm>

AND <Rd>, <Rm> ANDS <Rd>, <Rd>, <Rm>

ASR <Rd>, <Rm>, #<imm> ASRS <Rd>, <Rm>, #<imm>

ASR <Rd>, <Rs> ASRS <Rd>, <Rd>, <Rs>

B<cond> <label> B<cond> <label>

B <label> B <label>

BIC <Rd>, <Rm> BICS <Rd>, <Rd>, <Rm>

BKPT <imm> BKPT <imm>
AppxC-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

Legacy Instruction Mnemonics
BL <label> BL <label>

BLX <Rm> BLX <Rm> <Rm> can be a high register

BX <Rm> BX <Rm> <Rm> can be a high register

CMN <Rn>, <Rm> CMN <Rn>, <Rm>

CMP <Rn>, #<imm> CMP <Rn>, #<imm>

CMP <Rn>, <Rm> CMP <Rn>, <Rm> <Rd> and <Rm> can be high
registers.

CPS<effect> <iflags> CPS<effect> <iflags>

CPY <Rd>, <Rm> MOV <Rd>, <Rm>

EOR <Rd>, <Rm> EORS <Rd>, <Rd>, <Rm>

LDMIA <Rn>!, <registers> LDMIA <Rn>, <registers>
LDMIA <Rn>!, <registers>

If <Rn> listed in <registers>,
otherwise

LDR <Rd>, [<Rn>, #<imm>] LDR <Rd>, [<Rn>, #<imm>] <Rn> can be SP

LDR <Rd>, [<Rn>, <Rm>] LDR <Rd>, [<Rn>, <Rm>]

LDR <Rd>, [PC, #<imm>]
LDR <Rd>, <label>

LDR <Rd>, [PC, #<imm>]
LDR <Rd>, <label>

<label> form preferred
where possible

LDRB <Rd>, [<Rn>, #<imm>] LDRB <Rd>, [<Rn>, #<imm>]

LDRB <Rd>, [<Rn>, <Rm>] LDRB <Rd>, [<Rn>, <Rm>]

LDRH <Rd>, [<Rn>, #<imm>] LDRH <Rd>, [<Rn>, #<imm>]

LDRH <Rd>, [<Rn>, <Rm>] LDRH <Rd>, [<Rn>, <Rm>]

LDRSB <Rd>, [<Rn>, <Rm>] LDRSB <Rd>, [<Rn>, <Rm>]

LDRSH <Rd>, [<Rn>, <Rm>] LDRSH <Rd>, [<Rn>, <Rm>]

LSL <Rd>, <Rm>, #<imm> MOVS <Rd>, <Rm>
LSLS <Rd>, <Rm>, #<imm>

If <imm> == 0,
otherwise

LSL <Rd>, <Rs> LSLS <Rd>, <Rd>, <Rs>

LSR <Rd>, <Rm>, #<imm> LSRS <Rd>, <Rm>, #<imm>

LSR <Rd>, <Rs> LSRS <Rd>, <Rd>, <Rs>

Table C-1 Pre-UAL assembly syntax (continued)

Pre-UAL Thumb syntax Equivalent UAL syntax Notes
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxC-3
Restricted Access Non-Confidential

Legacy Instruction Mnemonics
MOV <Rd>, #<imm> MOVS <Rd>, #<imm>

MOV <Rd>, <Rm> ADDS <Rd>, <Rm>, #0

MOV <Rd>, <Rm>

If <Rd> and <Rm> are both
R0-R7,
otherwise

MUL <Rd>, <Rm> MULS <Rd>, <Rm>, <Rd>

MVN <Rd>, <Rm> MVNS <Rd>, <Rm>

NEG <Rd>, <Rm> RSBS <Rd>, <Rm>, #0

ORR <Rd>, <Rm> ORRS <Rd>, <Rd>, <Rm>

POP <registers> POP <registers> <registers> can include PC

PUSH <registers> PUSH <registers> <registers> can include LR

REV <Rd>, <Rn> REV <Rd>, <Rn

REV16 <Rd>, <Rn> REV16 <Rd>, <Rn

REVSH <Rd>, <Rn> REVSH <Rd>, <Rn

ROR <Rd>, <Rs> RORS <Rd>, <Rd>, <Rs>

SBC <Rd>, <Rm> SBCS <Rd>, <Rd>, <Rm>

STMIA <Rn>!, <registers> STMIA <Rn>!, <registers>

STR <Rd>, [<Rn>, #<imm>] STR <Rd>, [<Rn>, #<imm>] <Rn> can be SP

STR <Rd>, [<Rn>, <Rm>] STR <Rd>, [<Rn>, <Rm>]

STRB <Rd>, [<Rn>, #<imm>] STRB <Rd>, [<Rn>, #<imm>]

STRB <Rd>, [<Rn>, <Rm>] STRB <Rd>, [<Rn>, <Rm>]

STRH <Rd>, [<Rn>, #<imm>] STRH <Rd>, [<Rn>, #<imm>]

STRH <Rd>, [<Rn>, <Rm>] STRH <Rd>, [<Rn>, <Rm>]

SUB <Rd>, <Rn>, #<imm> SUBS <Rd>, <Rn>, #<imm>

SUB <Rd>, #<imm> SUBS <Rd>, #<imm>

SUB <Rd>, <Rn>, <Rm> SUBS <Rd>, <Rn>, <Rm>

SUB SP, #<imm> SUB SP, SP, #<imm>

Table C-1 Pre-UAL assembly syntax (continued)

Pre-UAL Thumb syntax Equivalent UAL syntax Notes
AppxC-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
>

ARM_2009_Q4
Inserted Text
>

ARM_2009_Q4
Inserted Text
>

Legacy Instruction Mnemonics
SWI <imm> SVC <imm>

SXTB <Rd>, <Rm> SXTB <Rd>, <Rm>

SXTH <Rd>, <Rm> SXTH <Rd>, <Rm>

TST <Rn>, <Rm> TST <Rn>, <Rm>

UXTB <Rd>, <Rm> UXTB <Rd>, <Rm>

UXTH <Rd>, <Rm> UXTH <Rd>, <Rm>

Table C-1 Pre-UAL assembly syntax (continued)

Pre-UAL Thumb syntax Equivalent UAL syntax Notes
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxC-5
Restricted Access Non-Confidential

Legacy Instruction Mnemonics
C.2 Pre-UAL pseudo-instruction NOP

In pre-UAL assembler code, NOP is a pseudo-instruction, equivalent to MOV R8,R8 in Thumb code.

Assembling the NOP mnemonic as UAL will not change the functionality of the code, but will change:

• the instruction encoding selected

• the architecture variants on which the resulting binary will execute successfully, because the Thumb
version of the NOP instruction was introduced in ARMv6T2.

To avoid the change in Thumb code, replace NOP in the assembler source code with MOV R8,R8, before
assembling as UAL.

Note
 The pre-UAL pseudo-instruction is different for ARM code where it is equivalent to MOV R0,R0.
AppxC-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix D
Deprecated Features in ARMv7-M

Some features of the Thumb instruction set are deprecated in ARMv7. Deprecated features affecting
instructions supported by ARMv7-M are as follows:

• use of the PC as <Rd> or <Rm> in a 16-bit ADD (SP plus register) instruction

• use of the SP as <Rm> in a 16-bit ADD (SP plus register) instruction

• use of the SP as <Rm> in a 16-bit CMP (register) instruction

• use of MOV (register) instructions in which both <Rd> and <Rm> are the SP or PC.

• use of <Rn> as the lowest-numbered register in the register list of a 16-bit STM instruction with base
register writeback

The following additional feature in ARMv7-M is deprecated:

• support of a 4-byte aligned stack (CCR.STKALIGN == ’0’).
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxD-1
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text

• Setting both DWT_CTRL.PCSAMPLENA and DWT_CTRL.CYCEVTENA to 1

Deprecated Features in ARMv7-M
AppxD-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix E
Debug ITM and DWT packet protocol

The ITM emits packets to the TPIU when a stimulus register is written, or a timestamp issued.

The DWT emits packets when a data trace event triggers, PC sampling occurs, or one of the profile counters
wraps. The packet protocol used is described in this appendix. This appendix consists of the following
sections:

• Packet Types on page AppxE-2

• DWT packet formats on page AppxE-8
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-1
Restricted Access Non-Confidential

Debug ITM and DWT packet protocol
E.1 Packet Types

Diagnostic information is output in packets with a byte protocol. These packets are 1-5 bytes in size,
comprising:

• one byte header

• 0-4 byte payload.

Synchronization packets are the exception, comprising a unique 6-byte sequence for bit & byte
synchronization.

The header encodings are shown below:

Apart from synchronization, the maximum packet size is five bytes. A maximum of four continuation bits
can be set within a packet. Packets with five or more continuation bits set are UNPREDICTABLE.

All packets are transmitted over a serial port least significant bit (LSB) first. Where bytes are illustrated in
the following subsections, the figure convention is to indicate the most significant bit (MSB) to the left, and
the LSB to the right.

Table E-1 ITM and DWT general packet formats

Description Value Payload Category Remarks

Sync S0000000 None Synchronization {47{1’b0}} followed by 1’b1
(Matches ETM protocol)

Overflow 01110000 0 Protocol Overflow

Time Stamp CDDD0000 0 to 4 bytes Protocol D = data (!=000) – time
C = continuation

Extension CDDD1S00 0 to 4 bytes Protocol S = source (ITM / DWT)
D = data – page info
C = continuation

Reserved Cxxx0100 0 to 4 bytes Reserved C = continuation

Instrumentation AAAAA0SS 1, 2 or 4 bytes Software Source
(Application)

SS = size (!=00) of payload
A = SW Source Address

Hardware Source AAAAA1SS 1, 2 or 4 bytes Hardware Source
(Diagnostics)

SS = size (!=00) of payload
A = HW packet type discriminator

bit [7]
(MSB)

bit [6] bit [5] bit [4] bit [3] bit [2] bit [1] bit [0]
(LSB)
AppxE-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Debug ITM and DWT packet protocol
E.1.1 Sync Packet

Sync packets are unique patterns in the bit-stream that allow capture hardware to identify bit-to-byte
alignment. While Sync packets can be emitted on an asynchronous interface, they are only necessary on a
synchronous port. See the CoreSight Architecture Specification for more information. A sync packet is at
least forty-seven 1’b0 followed by one 1’b1. Any page event register (see Software Instrumentation Packet
on page AppxE-5) is cleared when a sync packet is generated.

E.1.2 Overflow Packet

Overflow packets are generated under the following conditions:

• a Stimulus Port register write when the Stimulus port output buffer is full

• timestamp counter overflow

• DWT (Hardware Source) packet generation when the DWT output buffer is full.

Table E-2 Sync packet (matches ETM format)

bit [7] bit [0]

byte 1 0 0 0 0 0 0 0 0

byte 2 0 0 0 0 0 0 0 0

byte 3 0 0 0 0 0 0 0 0

byte 4 0 0 0 0 0 0 0 0

byte 5 0 0 0 0 0 0 0 0

byte 6 1 0 0 0 0 0 0 0

Table E-3 Overflow packet format

bit [7] bit [0]

0 1 1 1 0 0 0 0
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-3
Restricted Access Non-Confidential

Debug ITM and DWT packet protocol
E.1.3 Timestamp Packet

Time stamp packets encode timestamp information, generic control and synchronization. The compression
scheme uses delta timestamps, where the timestamp value represents the interval since the previous
timestamp packet value was output. Each time a timestamp packet is output, the timestamp counter is
cleared to zero.

Packet format 1 is a multi-byte packet (identified by bit [7] == bit [6] == 1), with the TC[1:0] field
interpreted as follows:

0 The timestamp value is emitted synchronously to ITM/DWT data. The value in the TS[]
field is the timestamp counter value at the time the ITM/DWT packet(s) is/are generated.

1 The timestamp value emitted is delayed with respect to the event data. The value in the TS[]
field is the timestamp counter value at the time the timestamp packet is generated.

Note
 The timestamp value that correlates with the previous ITM/DWT packet is UNKNOWN,

however, its value is within the range governed by the previous and current timestamp
values.

2 The emission of the ITM/DWT packet that is associated with this timestamp packet was
delayed with respect to the event. The value in the TS[] field is the timestamp counter value
at the time the ITM/DWT packet(s) is/are generated.

This encoding indicates that the ITM/DWT packet was delayed with respect to other TPIU
output packets.

3 The associated ITM/DWT packet is delayed with respect to the event and this timestamp
packet is delayed with respect to the event packet. This is a combination of the events
indicated by values 1 and 2.

Table E-4 Timestamp packet format 1

bit [7] bit [0]

byte 1 1 1 TC[1] TC[0] 0 0 0 0

byte 2 C TS[6] TS[5] TS[4] TS[3] TS[2] TS[1] TS[0]

byte 3 C TS[13] TS[12] TS[11] TS[10] TS[9] TS[8] TS[7]

byte 4 C TS[20] TS[19] TS[18] TS[17] TS[16] TS[15] TS[14]

byte 5 0 TS[27] TS[26] TS[25] TS[24] TS[23] TS[22] TS[21]
AppxE-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Debug ITM and DWT packet protocol
Note
 If the trace system is fully utilized by higher priority trace data, then timestamp packets might be lost. This
can result in a block (or blocks) of ITM/DWT data that do not have any timestamp information available.
Timing information is then uncertain until the next timestamp packet is output.

Packet format 2 is a single byte packet (identified by bit [7] == 0). The format is an optimization and is
equivalent to a format 1 packet containing TC[1:0] == 0 and a timestamp value in the range 1..6.

The TS[2:0] field is interpreted as follows:

0 See Sync Packet on page AppxE-3.

1 to 6 The timestamp value is emitted synchronously to ITM/DWT data. The value in the TS[]
field is the timestamp counter value at the time the ITM/DWT packet(s) is/are generated.

7 See Overflow Packet on page AppxE-3.

E.1.4 Software Instrumentation Packet

Software instrumentation (event) packets are generated by writing to a stimulus port of the ITM.

SS = Payload Size in bits

01 8-bit payload, 2 byte packet

10 16-bit payload, 3 byte packet

11 32-bit payload, 5 byte packet

00 invalid

Table E-5 Timestamp packet format 2

bit [7] bit [0]

byte 1 0 TS[2] TS[1] TS[0] 0 0 0 0

Table E-6 Software instrumentation packet format

bit [7] bit [0]

byte 1 A[4] A[3] A[2] A[1] A[0] 0 S S

byte 2 Payload[7:0]

byte 3 Payload[15:8]

byte 4 Payload[23:16]

byte 5 Payload[31:24]
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-5
Restricted Access Non-Confidential

Debug ITM and DWT packet protocol
A[4:0] = the stimulus port number (0-31). A single-byte software extension packet indicates which page
subsequent stimulus packets are applied to (1 of 8, supporting up to 256 stimulus ports).

Any page register implemented is cleared on receipt of a synchronization packet.

Payload[{31:0}, {15:0}, {7:0}] = Data written (the software event value) by the application

E.1.5 Hardware Source Packet

Hardware events are generated from the DWT block. For more details on the defined packet formats, see
DWT packet formats on page AppxE-8.

SS = Payload Size in bits:

01 8-bit payload, 2 byte packet

10 16-bit payload, 3 byte packet

11 32-bit payload, 5 byte packet

00 invalid

Payload[{31:0}, {15:0}, {7:0}] = Data written from the hardware source

E.1.6 Extension Packets

Extension packets always follow the source. Extension packets are used to add additional sideband
information to the source.

Table E-7 Hardware source packet format

bit [7] bit [0]

byte 1 A[4] A[3] A[2] A[1] A[0] 1 S S

byte 2 Payload[7:0]

byte 3 Payload[15:8]

byte 4 Payload[23:16]

byte 5 Payload[31:24]

Table E-8 Extension packet format

bit [7] bit [0]

byte 1 C EX[2] EX[1] EX[0] 1 SH 0 0

byte 2 C EX[9] EX[8] EX[7] EX[6] EX[5] EX[4] EX[3]
AppxE-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Debug ITM and DWT packet protocol
C = continuation bit – a byte follows.

EX[N:0] = byte packing of extension information.

SH = software source(0), hardware source(1)

A single byte software extension packet is defined as providing a page register capability for stimulus ports.
All other extension packets (C == 1, or SH == 1) are reserved.

E.1.7 Reserved Encodings

E.1.8 Multiple Source Arbitration

Trace packets are generated from three sources – ITM derived software events, timestamps (TS) and DWT
derived hardware events. When multiple sources are trying to emit data, arbitration is performed in
accordance with the following priority assignments.

ITM (Highest) Priority Level 0

DWT Priority Level 1

TS (Lowest) Priority Level 2

This ensures a quality of service for ITM output over hardware generated DWT events, and that timestamps
are emitted once other source queues are empty.

byte 3 C EX[16] EX[15] EX[14] EX[13] EX[12] EX[11] EX[10]

byte 4 C EX[23] EX[22] EX[21] EX[20] EX[19] EX[18] EX[17]

byte 5 EX[31] EX[30] EX[29] EX[28] EX[27] EX[26] EX[25] EX[24]

Table E-8 Extension packet format (continued)

Table E-9 Reserved packet encodings

bit [7] bit [0]

byte 1 C E2 E1 E0 0 1 0 0

byte 2 C x x x x x x x

byte 3 C x x x x x x x

byte 4 C x x x x x x x

byte 5 x x x x x x x x
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-7
Restricted Access Non-Confidential

Debug ITM and DWT packet protocol
E.2 DWT packet formats

DWT generated packets adopt the general Hardware Source packet format defined in Hardware Source
Packet on page AppxE-6. No extension packets are defined for ARMv7-M, all packets reside in the primary
A[4:0] packet ID address space.

For ARMv7-M, the following packet discriminator values are defined:

0 event counter wrapping

1 exception tracing

2 PC sampling

8 to 23 data tracing

E.2.1 Event Packets – Discriminator ID0

An event packet contains a set of bits to show which event counters have overflowed (wrapped). The packet
is emitted when a counter overflows. Typically a single counter will overflow, however combinations of
counter overflow can occur causing multiple bits to be set. The event counters each have an enable bit in the
DWT_CTRL register. The event packet format is shown below:

The association of flags in the event packet and the DWT counters is summarized in Table E-11.

Table E-10 Event packet (discriminator ID0) format

bit [7] bit [0]

byte 1 0 0 0 0 0 1 0 1

byte 2 x x Cyc Fold LSU Sleep Exc CPI

Table E-11 Event flag support

Flag Controlled by Counter Interpretation

Cyc CYCEVTENA
(PCSAMPLENA == 0)

POSTCNT Triggers when POSTCNT == 0, the cycle counter is
enabled, and PC sampling is disabled.

Fold FOLDEVTENA FOLDCNT Counts 0 cycle (folded) instructions

LSU LSUEVTENA LSUCNT Counts LSU overhead.

Sleep SLEEPEVTENA SLEEPCNT Counts cycles where the core is sleeping

Exc EXCEVTENA EXCCNT Counts exception overhead

CPI CPIEVTENA CPICNT Counts all non-LSU instruction overhead

For more information see Cycle counter and PC sampling support on page C1-34.
AppxE-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Debug ITM and DWT packet protocol
E.2.2 Exception Trace Packets – Discriminator ID1

An Interrupt trace packet is emitted whenever an exception is entered, exited (returned-from), and
returned-to. The packet contains the exception number (see Exception number definition on page B1-16)
and an indicator of which action it is (A). Exception tracing is enabled using the EXCTRCENA bit.

Fn<1:0> is one of:

E.2.3 PC Sample Packets – Discriminator ID2

PC samples are emitted at fixed time intervals (accurate to a clock cycle). The rate per second can be
configured using the CYCTAP control field and the POSTCNT counter in DWT_CTRL (see Control
Register (DWT_CTRL) on page C1-48). PC Sampling is enabled using PCSAMPLENA. Each sample
contains the PC address or a sleep marker (if the processor is asleep).

The full PC packet is shown below.

Table E-12 Event packet (discriminator ID1) format

bit [7] bit [0]

byte 1 0 0 0 0 1 1 1 0

byte 2 ExceptionNumber[7:0]

byte 3 0 0 Fn<1> Fn<0> 0 0 0 ExcNum[8]

Value Function (Fn)

00 Not used – invalid

01 Entry to ExceptionNumber

10 Exit from ExceptionNumber

11 Return to ExceptionNumber

Table E-13 Event packet (discriminator ID2) format

bit [7] bit [0]

byte 1 0 0 0 1 0 1 1 1

byte 2 PC[7:0] (halfword aligned)

byte 3 PC[15:8]

byte 4 PC[23:16]

byte 5 PC[31:24]
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-9
Restricted Access Non-Confidential

Debug ITM and DWT packet protocol
The sleep packet is shown below.

E.2.4 Data Trace (Watchpoint) Packets – Discriminator ID8 to ID23

Data trace packets are emitted when a data trace directive as specified in the DWT_FUNCTIONx registers
requires sampled data to be captured on a comparator match. For information on the comparator support,
and the directives that generate data trace packets, see Table C1-20 on page C1-39 and Table C1-21 on
page C1-41.

Note
 The data trace packet protocol is currently only defined for DWT_FUNCTIONx registers, where 0 ≤ x ≤ 3.

The packet combinations that can be emitted are:

• PC-sample

• Data-value (what was read or written, including size).

• PC-sample followed by data-value.

• Address-offset followed by data-value.

The packet format for a data value is shown below.

Where the size may be 8, 16, or 32, depending on the access size (load or store size). WnR is 1 if write, 0 if
read.

Table E-14 Sleep packet format

bit [7] bit [0]

byte 1 0 0 0 1 0 1 0 1

byte 2 0 - reserved

Table E-15 Event packet (discriminator ID16 to ID23) format

bit [7] bit [0]

byte 1 1 0 COMP number[1:0] WnR 1 S S

byte 2 VALUE[7:0]

byte 3 VALUE[15:8]

byte 4 VALUE[23:16]

byte 5 VALUE[31:24]
AppxE-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text

• Address-offset.

Debug ITM and DWT packet protocol
Packet format - data trace PC sampling

The packet format for a PC associated with a data trace is shown below.

Packet format - data trace address offset

The packet format for a data address offset (when EMITRANGE=1) is shown below.

Table E-16 Event packet (discriminator ID8, ID10, ID12, ID14) format

bit [7] bit [0]

byte 1 0 1 COMP number[1:0] 0 1 1 1

byte 2 PC[7:0]

byte 3 PC[15:8]

byte 4 PC[23:16]

byte 5 PC[31:24]

Table E-17 Event packet (discriminator ID9, ID11, ID13, ID15) format

bit [7] bit [0]

byte 1 0 1 COMP number[1:0] 1 1 1 0

byte 2 OFFSET[7:0]

byte 3 OFFSET[15:8]
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxE-11
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text
 This packet contains the PC value for the instruction that caused the successful address comparison.

Debug ITM and DWT packet protocol
AppxE-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix F
ARMv7-R differences

While Thumb-2 technology is common across all the ARMv7 profiles, there are other key similarities
between the ARMv7-M and ARMv7-R profiles. By understanding the similarities and differences, it is
possible to minimize the effort in supporting software on both profiles, or to generate a system architecture
allowing straightforward migration from one profile to the other.

A system tradeoff that needs to be made as part of the profile decision is absolute performance versus
interrupt latency.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxF-1
Restricted Access Non-Confidential

ARMv7-R differences
F.1 Endian support

ARMv7-R supports instruction fetches in big and little endian formats, using the IE bit in the ARMv7-R
System Control register. ARMv7-M only supports instruction fetches in little endian format. Where a big
endian instruction format is required with ARMv7-M, byte swapping within a halfword is required in the
bus fabric. The byte swap is required for instruction fetches only and must not occur on data accesses.

By example, for instruction fetches over a 32-bit bus:

PrefetchInstr<31:24> -> PrefetchInstr<23:16>
PrefetchInstr<23:16> -> PrefetchInstr<31:24>
PrefetchInstr<15:8> -> PrefetchInstr<7:0>
PrefetchInstr<7:0> -> PrefetchInstr<15:8>

A configurable endian model (see Endian support on page A3-5) is supported by both ARMv7-M and
ARMv7-R. While ARMv7-R supports dynamic endian control via a control bit in its xPSR and System
Control register EE bit, ARMv7-M is statically configured on reset.
AppxF-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-R differences
F.2 Application level support

At the application level, ARMv7-M can be considered as a subset of ARMv7-R. All the ARMv7-M
application level instructions are supported in ARMv7-R, along with the same flag and general purpose
register support. However, the LDM and STM instructions are always restartable in ARMv7-R and do not
support the continuation (xPSR ICI bits) feature. Privileged access execution will expose the system level
differences.

ARMv7-R has additional support for:

• SIMD instructions and saturated arithmetic. ARMv7-M only supports the SSAT and USAT saturation
instructions.

• ARM and Thumb instruction set support. ARMv7-M is Thumb only.

• ARMv7-M only supports load and store exclusive instructions (bytes, halfwords and words) for
synchronization. ARMv7-R supports LDREXD and STREXD too, along with the older swap (SWP
and SWPB) instructions.

Both ARMv7-R and ARMv7-M support hardware divide (SDIV and UDIV) instructions, introduced to the
architecture in these profiles.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxF-3
Restricted Access Non-Confidential

ARMv7-R differences
F.3 System level support

The programmers’ model is the key difference

• ARMv7-R supports banked registers and a modal system with fixed entry points (addresses) for
exception handling. Control and configuration is through the System Coprocessor interface. Stacking
and unstacking is under software control.

• ARMv7-M only banks the stack pointer. It uses a combination of special-purpose registers and
memory mapped resources for system configuration and execution management.
Auto-stacking/unstacking on exception entry and exit is a key difference from ARMv7-R.

System level instruction support is different, reflecting the different programmers’ models. CPS, MRS and
MSR are common instructions, but execute differently. There are additional system level instructions in
ARMv7-R, for example SRS and RFE. WFE and WFI behavior differs too due to the exception model
differences.

Both profiles support the Protected Memory System Architecture (PMSAv7), offering the same features sets
where implemented. The register access mechanisms are different, however, the register layouts are
generally the same with the notable exception of fault handling. Fault handling differences are due to the
different exception models. When PMSAv7 is not supported or is disabled, both profiles have a default
memory map. The default memory maps offer similar breakdown of memory with different attributes, but
the maps are not identical.

ARMv7-R is designed for higher performance (higher clock rate) parts and includes support for closely
coupled caches. ARMv7-M only supports memory-mapped system caches.

Interrupt control is an integral part of the ARMv7-M exception model. While not part of the ARMv7-R
architecture, ARM’s General Interrupt Controller (GIC) offers a common prioritization and interrupt
handling model to ARMv7-M. Use of a GIC with an ARMv7-R processor mitigates many of the exception
model differences.

ARMv7-M defines a system timer. A similar timer can be used with ARMv7-R, and its interrupt routed
through a GIC for maximum compatibility.
AppxF-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARMv7-R differences
F.4 Debug support

Both profiles logically support halting and monitor debug. The mechanisms for breakpoint and watchpoint
handling are different. There are also different degrees of counter support for profiling. Both support an
optional trace (ETM) feature. ARMv7-M is generally less invasive in its debug support, and offers
additional software and hardware event generation trace capabilities as part of the basic architecture.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxF-5
Restricted Access Non-Confidential

ARMv7-R differences
AppxF-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix G
Pseudocode definition

This appendix provides a formal definition of the pseudocode used in this book, and lists the helper
procedures and functions used by pseudocode to perform useful architecture-specific jobs. It contains the
following sections:

• Instruction encoding diagrams and pseudocode on page AppxG-2

• Data Types on page AppxG-5

• Expressions on page AppxG-9

• Operators and built-in functions on page AppxG-11

• Statements and program structure on page AppxG-17

• Miscellaneous helper procedures and functions on page AppxG-22.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-1
Restricted Access Non-Confidential

Pseudocode definition
G.1 Instruction encoding diagrams and pseudocode

Instruction descriptions in this book contain:

• An Encoding section, containing one or more encoding diagrams, each followed by some
encoding-specific pseudocode that translates the fields of the encoding into inputs for the common
pseudocode of the instruction, and picks out any encoding-specific special cases.

• An Operation section, containing common pseudocode that applies to all of the encodings being
described. The Operation section pseudocode contains a call to the EncodingSpecificOperations()
function, either at its start or after only a condition check performed by if ConditionPassed() then.

An encoding diagram specifies each bit of the instruction as one of the following:

• An obligatory 0 or 1, represented in the diagram as 0 or 1. If this bit does not have this value, the
encoding corresponds to a different instruction.

• A should be 0 or 1, represented in the diagram as (0) or (1). If this bit does not have this value, the
instruction is UNPREDICTABLE.

• A named single bit or a bit within a named multi-bit field.

An encoding diagram matches an instruction if all obligatory bits are identical in the encoding diagram and
the instruction.

The execution model for an instruction is:

1. Find all encoding diagrams that match the instruction. It is possible that no encoding diagrams match.
In that case, abandon this execution model and consult the relevant instruction set chapter instead to
find out how the instruction is to be treated. (The bit pattern of such an instruction is usually reserved
and UNDEFINED, though there are some other possibilities. For example, unallocated hint instructions
are documented as being reserved and to be executed as NOPs.)

2. If the operation pseudocode for the matching encoding diagrams starts with a condition check,
perform that condition check. If the condition check fails, abandon this execution model and treat the
instruction as a NOP. (If there are multiple matching encoding diagrams, either all or none of their
corresponding pieces of common pseudocode start with a condition check.)

3. Perform the encoding-specific pseudocode for each of the matching encoding diagrams
independently and in parallel. Each such piece of encoding-specific pseudocode starts with a bitstring
variable for each named bit or multi-bit field within its corresponding encoding diagram, named the
same as the bit or multi-bit field and initialized with the values of the corresponding bit(s) from the
bit pattern of the instruction.

In a few cases, the encoding diagram contains more than one bit or field with the same name. When
this occurs, the values of all of those bits or fields are expected to be identical, and the
encoding-specific pseudocode contains a special case using the Consistent() function to specify what
happens if this is not the case. This function returns TRUE if all instruction bits or fields with the same
name as its argument have the same value, and FALSE otherwise.
AppxG-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
If there are multiple matching encoding diagrams, all but one of the corresponding pieces of
pseudocode must contain a special case that indicates that it does not apply. Discard the results of all
such pieces of pseudocode and their corresponding encoding diagrams.

There is now one remaining piece of pseudocode and its corresponding encoding diagram left to
consider. This pseudocode might also contain a special case (most commonly one indicating that it
is UNPREDICTABLE). If so, abandon this execution model and treat the instruction according to the
special case.

4. Check the should be bits of the encoding diagram against the corresponding bits of the bit pattern of
the instruction. If any of them do not match, abandon this execution model and treat the instruction
as UNPREDICTABLE.

5. Perform the rest of the operation pseudocode for the instruction description that contains the
encoding diagram. That pseudocode starts with all variables set to the values they were left with by
the encoding-specific pseudocode.

The ConditionPassed() call in the common pseudocode (if present) performs step 2, and the
EncodingSpecificOperations() call performs steps 3 and 4.

G.1.1 Pseudocode

The pseudocode provides precise descriptions of what instructions do. Instruction fields are referred to by
the names shown in the encoding diagram for the instruction.

The pseudocode is described in detail in the following sections.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-3
Restricted Access Non-Confidential

Pseudocode definition
G.2 Limitations of pseudocode

The pseudocode descriptions of instruction functionality have a number of limitations. These are mainly due
to the fact that, for clarity and brevity, the pseudocode is a sequential and mostly deterministic language.

These limitations include:

• Pseudocode does not describe the ordering requirements when an instruction generates multiple
memory accesses. For a description of the ordering requirements on memory accesses see Memory
access order on page A3-30.

• Pseudocode does not describe the exact rules when an UNDEFINED instruction fails its condition
check. In such cases, the UNDEFINED pseudocode statement lies inside the if ConditionPassed()
then ... structure, either directly or within the EncodingSpecificOperations() function call, and so
the pseudocode indicates that the instruction executes as a NOP. See Conditional execution of
undefined instructions on page A6-9 for more information.

• The pseudocode statements UNDEFINED, UNPREDICTABLE and SEE indicate behavior that differs from that
indicated by the pseudocode being executed. If one of them is encountered:

— Earlier behavior indicated by the pseudocode is only specified as occurring to the extent
required to determine that the statement is executed.

— No subsequent behavior indicated by the pseudocode occurs. This means that these statements
terminate pseudocode execution.

For more information see Simple statements on page AppxG-17.
AppxG-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
G.3 Data Types

This section describes:

• General data type rules

• Bitstrings

• Integers on page AppxG-6

• Reals on page AppxG-6

• Booleans on page AppxG-6

• Enumerations on page AppxG-6

• Lists on page AppxG-7

• Arrays on page AppxG-8.

G.3.1 General data type rules

ARM Architecture pseudocode is a strongly-typed language. Every constant and variable is of one of the
following types:

• bitstring

• integer

• boolean

• real

• enumeration

• list

• array.

The type of a constant is determined by its syntax. The type of a variable is normally determined by
assignment to the variable, with the variable being implicitly declared to be of the same type as whatever is
assigned to it. For example, the assignments x = 1, y = '1', and z = TRUE implicitly declare the variables
x, y and z to have types integer, length-1 bitstring and boolean respectively.

Variables can also have their types declared explicitly by preceding the variable name with the name of the
type. This is most often done in function definitions for the arguments and the result of the function.

These data types are described in more detail in the following sections.

G.3.2 Bitstrings

A bitstring is a finite-length string of 0s and 1s. Each length of bitstring is a different type. The minimum
allowed length of a bitstring is 1.

The type name for bitstrings of length N is bits(N). A synonym of bits(1) is bit.

Bitstring constants are written as a single quotation mark, followed by the string of 0s and 1s, followed by
another single quotation mark. For example, the two constants of type bit are '0' and '1'. Spaces can be
included in the bitstring for clarity.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-5
Restricted Access Non-Confidential

Pseudocode definition
A special form of bitstring constant with 'x' bits is permitted in bitstring comparisons. See Equality and
non-equality testing on page AppxG-11 for details.

Every bitstring value has a left-to-right order, with the bits being numbered in standard little-endian order.
That is, the leftmost bit of a bitstring of length N is bit N-1 and its rightmost bit is bit 0. This order is used
as the most-significant-to-least-significant bit order in conversions to and from integers. For bitstring
constants and bitstrings derived from encoding diagrams, this order matches the way they are printed.

Bitstrings are the only concrete data type in pseudocode, in the sense that they correspond directly to the
contents of registers, memory locations, instructions, and so on. All of the remaining data types are abstract.

G.3.3 Integers

Pseudocode integers are unbounded in size and can be either positive or negative. That is, they are
mathematical integers rather than what computer languages and architectures commonly call integers.
Computer integers are represented in pseudocode as bitstrings of the appropriate length, associated with
suitable functions to interpret those bitstrings as integers.

The type name for integers is integer.

Integer constants are normally written in decimal, such as 0, 15, -1234. They can also be written in C-style
hexadecimal, such as 0x55 or 0x80000000. Hexadecimal integer constants are treated as positive unless they
have a preceding minus sign. For example, 0x80000000 is the integer +231. If -231 needs to be written in
hexadecimal, it should be written as -0x80000000.

G.3.4 Reals

Pseudocode reals are unbounded in size and precision. That is, they are mathematical real numbers, not
computer floating-point numbers. Computer floating-point numbers are represented in pseudocode as
bitstrings of the appropriate length, associated with suitable functions to interpret those bitstrings as reals.

The type name for reals is real.

Real constants are written in decimal with a decimal point (so 0 is an integer constant, but 0.0 is a real
constant).

G.3.5 Booleans

A boolean is a logical true or false value.

The type name for booleans is boolean. This is not the same type as bit, which is a length-1 bitstring.

Boolean constants are TRUE and FALSE.

G.3.6 Enumerations

An enumeration is a defined set of symbolic constants, such as:

enumeration SRType (SRType_None, SRType_LSL, SRType_LSR,
 SRType_ASR, SRType_ROR, SRType_RRX);
AppxG-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
An enumeration always contains at least one symbolic constant, and symbolic constants are not allowed to
be shared between enumerations.

Enumerations must be declared explicitly, though a variable of an enumeration type can be declared
implicitly as usual by assigning one of the symbolic constants to it. By convention, each of the symbolic
constants starts with the name of the enumeration followed by an underscore. The name of the enumeration
is its type name, and the symbolic constants are its possible constants.

Note
 Booleans are basically a pre-declared enumeration:

enumeration boolean {FALSE, TRUE};

that does not follow the normal naming convention and that has a special role in some pseudocode
constructs, such as if statements.

G.3.7 Lists

A list is an ordered set of other data items, separated by commas and enclosed in parentheses, such as:

(bits(32) shifter_result, bit shifter_carry_out)

A list always contains at least one data item.

Lists are often used as the return type for a function that returns multiple results. For example, this particular
list is the return type of the function Shift_C() that performs a standard ARM shift or rotation, when its first
operand is of type bits(32).

Some specific pseudocode operators use lists surrounded by other forms of bracketing than parentheses.
These are:

• Bitstring extraction operators, which use lists of bit numbers or ranges of bit numbers surrounded by
angle brackets "<...>".

• Array indexing, which uses lists of array indexes surrounded by square brackets "[...]".

• Array-like function argument passing, which uses lists of function arguments surrounded by square
brackets "[...]".

Each combination of data types in a list is a separate type, with type name given by just listing the data types
(that is, (bits(32),bit) in the above example). The general principle that types can be declared by
assignment extends to the types of the individual list items within a list. For example:

(shift_t, shift_n) = ('00', 0);

implicitly declares shift_t, shift_n and (shift_t,shift_n) to be of types bits(2), integer and
(bits(2),integer) respectively.

A list type can also be explicitly named, with explicitly named elements in the list. For example:

type ShiftSpec is (bits(2) shift, integer amount);
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-7
Restricted Access Non-Confidential

Pseudocode definition
After this definition and the declaration:

ShiftSpec abc;

the elements of the resulting list can then be referred to as "abc.shift" and "abc.amount". This sort of
qualified naming of list elements is only permitted for variables that have been explicitly declared, not for
those that have been declared by assignment only.

Explicitly naming a type does not alter what type it is. For example, after the above definition of ShiftSpec,
ShiftSpec and (bits(2),integer) are two different names for the same type, not the names of two different
types. In order to avoid ambiguity in references to list elements, it is an error to declare a list variable
multiple times using different names of its type or to qualify it with list element names not associated with
the name by which it was declared.

An item in a list that is being assigned to may be written as "-" to indicate that the corresponding item of
the assigned list value is discarded. For example:

(shifted, -) = LSL_C(operand, amount);

List constants are written as a list of constants of the appropriate types, like ('00', 0) in the above example.

G.3.8 Arrays

Pseudocode arrays are indexed by either enumerations or integer ranges (represented by the lower inclusive
end of the range, then "..", then the upper inclusive end of the range). For example:

enumeration PhysReg {
 PhysReg_R0, PhysReg_R1, PhysReg_R2, PhysReg_R3,
 PhysReg_R4, PhysReg_R5, PhysReg_R6, PhysReg_R7,
 PhysReg_R8, PhysReg_R9, PhysReg_R10, PhysReg_R11,
 PhysReg_R12, PhysReg_SP_Process, PhysReg_SP_Main,
 PhysReg_LR, PhysReg_PC};

array bits(32) _R[PhysReg];

array bits(8) _Memory[0..0xFFFFFFFF];

Arrays are always explicitly declared, and there is no notation for a constant array. Arrays always contain at
least one element, because enumerations always contain at least one symbolic constant and integer ranges
always contain at least one integer.

Arrays do not usually appear directly in pseudocode. The items that syntactically look like arrays in
pseudocode are usually array-like functions such as R[i], MemU[address,size] or Element[i,type]. These
functions package up and abstract additional operations normally performed on accesses to the underlying
arrays, such as register banking, memory protection, endian-dependent byte ordering, exclusive-access
housekeeping and vector element processing.
AppxG-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
G.4 Expressions

This section describes:

• General expression syntax

• Operators and functions - polymorphism and prototypes on page AppxG-10

• Precedence rules on page AppxG-10.

G.4.1 General expression syntax

An expression is one of the following:

• a constant

• a variable, optionally preceded by a data type name to declare its type

• the word UNKNOWN preceded by a data type name to declare its type

• the result of applying a language-defined operator to other expressions

• the result of applying a function to other expressions.

Variable names normally consist of alphanumeric and underscore characters, starting with an alphabetic or
underscore character.

Each register described in the text is to be regarded as declaring a correspondingly named bitstring variable,
and that variable has the stated behavior of the register. For example, if a bit of a register is stated to read as
0 and ignore writes, then the corresponding bit of its variable reads as 0 and ignore writes.

An expression like "bits(32) UNKNOWN" indicates that the result of the expression is a value of the given type,
but the architecture does not specify what value it is and software must not rely on such values. The value
produced must not constitute a security hole and must not be promoted as providing any useful information
to software. (This was called an UNPREDICTABLE value in previous ARM Architecture documentation. It is
related to but not the same as UNPREDICTABLE, which says that the entire architectural state becomes similarly
unspecified.)

A subset of expressions are assignable. That is, they can be placed on the left-hand side of an assignment.
This subset consists of:

• Variables

• The results of applying some operators to other expressions. The description of each
language-defined operator that can generate an assignable expression specifies the circumstances
under which it does so. (For example, those circumstances might include one or more of the
expressions the operator operates on themselves being assignable expressions.)

• The results of applying array-like functions to other expressions. The description of an array-like
function specifies the circumstances under which it can generate an assignable expression.

Every expression has a data type. This is determined by:

• For a constant, the syntax of the constant.

• For a variable, there are three possible sources for the type

— its optional preceding data type name
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-9
Restricted Access Non-Confidential

Pseudocode definition
— a data type it was given earlier in the pseudocode by recursive application of this rule

— a data type it is being given by assignment (either by direct assignment to it, or by assignment
to a list of which it is a member).

It is a pseudocode error if none of these data type sources exists for a variable, or if more than one of
them exists and they do not agree about the type.

• For a language-defined operator, the definition of the operator.

• For a function, the definition of the function.

G.4.2 Operators and functions - polymorphism and prototypes

Operators and functions in pseudocode can be polymorphic, producing different functionality when applied
to different data types. Each of the resulting forms of an operator or function has a different prototype
definition. For example, the operator + has forms that act on various combinations of integers, reals and
bitstrings.

One particularly common form of polymorphism is between bitstrings of different lengths. This is
represented by using bits(N), bits(M), and so on, in the prototype definition.

G.4.3 Precedence rules

The precedence rules for expressions are:

1. Constants, variables and function invocations are evaluated with higher priority than any operators
using their results.

2. Expressions on integers follow the normal exponentiation before multiply/divide before add/subtract
operator precedence rules, with sequences of multiply/divides or add/subtracts evaluated left-to-right.

3. Other expressions must be parenthesized to indicate operator precedence if ambiguity is possible, but
need not be if all allowable precedence orders under the type rules necessarily lead to the same result.
For example, if i, j and k are integer variables, i > 0 && j > 0 && k > 0 is acceptable, but i > 0 &&
j > 0 || k > 0 is not.
AppxG-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
G.5 Operators and built-in functions

This section describes:

• Operations on generic types

• Operations on booleans

• Bitstring manipulation

• Arithmetic on page AppxG-14.

G.5.1 Operations on generic types

The following operations are defined for all types.

Equality and non-equality testing

Any two values x and y of the same type can be tested for equality by the expression x == y and for
non-equality by the expression x != y. In both cases, the result is of type boolean.

A special form of comparison with a bitstring constant that includes 'x' bits as well as '0' and '1' bits is
permitted. The bits corresponding to the 'x' bits are ignored in determining the result of the comparison.
For example, if opcode is a 4-bit bitstring, opcode == '1x0x' is equivalent to opcode<3> == '1' && opcode<1>
== '0'. This special form is also permitted in the implied equality comparisons in when parts of case ... of
... structures.

Conditional selection

If x and y are two values of the same type and t is a value of type boolean, then if t then x else y is an
expression of the same type as x and y that produces x if t is TRUE and y if t is FALSE.

G.5.2 Operations on booleans

If x is a boolean, then !x is its logical inverse.

If x and y are booleans, then x && y is the result of ANDing them together. As in the C language, if x is FALSE,
the result is determined to be FALSE without evaluating y.

If x and y are booleans, then x || y is the result of ORing them together. As in the C language, if x is TRUE,
the result is determined to be TRUE without evaluating y.

If x and y are booleans, then x ^ y is the result of exclusive-ORing them together.

G.5.3 Bitstring manipulation

The following bitstring manipulation functions are defined:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-11
Restricted Access Non-Confidential

Pseudocode definition
Bitstring length and top bit

If x is a bitstring, the bitstring length function Len(x) returns its length as an integer, and TopBit(x) is the
leftmost bit of x (= x<Len(x)-1> using bitstring extraction.

Bitstring concatenation and replication

If x and y are bitstrings of lengths N and M respectively, then x:y is the bitstring of length N+M constructed by
concatenating x and y in left-to-right order.

If x is a bitstring and n is an integer with n > 0, Replicate(x,n) is the bitstring of length n*Len(x) consisting
of n copies of x concatenated together and:

• Zeros(n) = Replicate(’0’,n)

• Ones(n) = Replicate(’1’,n)

Bitstring extraction

The bitstring extraction operator extracts a bitstring from either another bitstring or an integer. Its syntax is
x<integer_list>, where x is the integer or bitstring being extracted from, and <integer_list> is a list of
integers enclosed in angle brackets rather than the usual parentheses. The length of the resulting bitstring is
equal to the number of integers in <integer_list>.

In x<integer_list>, each of the integers in <integer_list> must be:

• >= 0

• < Len(x) if x is a bitstring.

The definition of x<integer_list> depends on whether integer_list contains more than one integer. If it
does, x<i,j,k,...,n> is defined to be the concatenation:

x<i> : x<j> : x<k> : ... : x<n>

If integer_list consists of just one integer i, x<i> is defined to be:

• if x is a bitstring, '0' if bit i of x is a zero and '1' if bit i of x is a one.

• if x is an integer, let y be the unique integer in the range 0 to 2^(i+1)-1 that is congruent to x modulo
2^(i+1). Then x<i> is '0' if y < 2^i and '1' if y >= 2^i.

Loosely, this second definition treats an integer as equivalent to a sufficiently long 2's complement
representation of it as a bitstring.

In <integer_list>, the notation i:j with i >= j is shorthand for the integers in order from i down to j, both
ends inclusive. For example, instr<31:28> is shorthand for instr<31,30,29,28>.

The expression x<integer_list> is assignable provided x is an assignable bitstring and no integer appears
more than once in <integer_list>. In particular, x<i> is assignable if x is an assignable bitstring and 0 <= i
< Len(x).
AppxG-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
Encoding diagrams for registers frequently show named bits or multi-bit fields. For example, the encoding
diagram for the APSR shows its bit<31> as N. In such cases, the syntax APSR.N is used as a more readable
synonym for APSR<31>.

Logical operations on bitstrings

If x is a bitstring, NOT(x) is the bitstring of the same length obtained by logically inverting every bit of x.

If x and y are bitstrings of the same length, x AND y, x OR y, and x EOR y are the bitstrings of that same length
obtained by logically ANDing, ORing, and exclusive-ORing corresponding bits of x and y together.

Bitstring count

If x is a bitstring, BitCount(x) produces an integer result equal to the number of bits of x that are ones.

Testing a bitstring for being all zero or all ones

If x is a bitstring, IsZero(x) produces TRUE if all of the bits of x are zeros and FALSE if any of them are ones,
and IsZeroBit(x) produces '1' if all of the bits of x are zeros and '0' if any of them are ones. IsOnes(x) and
IsOnesBit(x) work in the corresponding way. So:

IsZero(x) = (BitCount(x) == 0)

IsOnes(x) = (BitCount(x) == Len(x))

IsZeroBit(x) = if IsZero(x) then '1' else '0'

IsOnesBit(x) = if IsOnes(x) then '1' else '0'

Lowest and highest set bits of a bitstring

If x is a bitstring, and N = Len(x):

• LowestSetBit(x) is the minimum bit number of any of its bits that are ones. If all of its bits are zeros,
LowestSetBit(x) = N.

• HighestSetBit(x) is the maximum bit number of any of its bits that are ones. If all of its bits are zeros,
HighestSetBit(x) = -1.

• CountLeadingZeroBits(x) = N - 1 - HighestSetBit(x) is the number of zero bits at the left end of x,
in the range 0 to N.

• CountLeadingSignBits(x) = CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>) is the number of copies
of the sign bit of x at the left end of x, excluding the sign bit itself, and is in the range 0 to N-1.

Zero-extension and sign-extension of bitstrings

If x is a bitstring and i is an integer, then ZeroExtend(x,i) is x extended to a length of i bits, by adding
sufficient zero bits to its left. That is, if i == Len(x), then ZeroExtend(x,i) = x, and if i > Len(x), then:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-13
Restricted Access Non-Confidential

Pseudocode definition
ZeroExtend(x,i) = Zeros(i-Len(x)) : x

If x is a bitstring and i is an integer, then SignExtend(x,i) is x extended to a length of i bits, by adding
sufficient copies of its leftmost bit to its left. That is, if i == Len(x), then SignExtend(x,i) = x, and if i >
Len(x), then:

SignExtend(x,i) = Replicate(TopBit(x), i-Len(x)) : x

It is a pseudocode error to use either ZeroExtend(x,i) or SignExtend(x,i) in a context where it is possible
that i < Len(x).

Converting bitstrings to integers

If x is a bitstring, SInt(x) is the integer whose 2's complement representation is x:

// SInt()
// ======

integer SInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ’1’ then result = result + 2^i;
 if x<N-1> == ’1’ then result = result - 2^N;
 return result;

UInt(x) is the integer whose unsigned representation is x:

// UInt()
// ======

integer UInt(bits(N) x)
 result = 0;
 for i = 0 to N-1
 if x<i> == ’1’ then result = result + 2^i;
 return result;

Int(x, unsigned) returns either SInt(x) or UInt(x) depending on the value of its second argument:

// Int()
// =====

integer Int(bits(N) x, boolean unsigned)
 result = if unsigned then UInt(x) else SInt(x);
 return result;

G.5.4 Arithmetic

Most pseudocode arithmetic is performed on integer or real values, with operands being obtained by
conversions from bitstrings and results converted back to bitstrings afterwards. As these data types are the
unbounded mathematical types, no issues arise about overflow or similar errors.
AppxG-14 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
Unary plus, minus and absolute value

If x is an integer or real, then +x is x unchanged, -x is x with its sign reversed, and ABS(x) is the absolute value
of x. All three are of the same type as x.

Addition and subtraction

If x and y are integers or reals, x+y and x-y are their sum and difference. Both are of type integer if x and y
are both of type integer, and real otherwise.

Addition and subtraction are particularly common arithmetic operations in pseudocode, and so it is also
convenient to have definitions of addition and subtraction acting directly on bitstring operands.

If x and y are bitstrings of the same length N = Len(x) = Len(y), then x+y and x-y are the least significant N
bits of the results of converting them to integers and adding or subtracting them. Signed and unsigned
conversions produce the same result:

x+y = (SInt(x) + SInt(y))<N-1:0>
 = (UInt(x) + UInt(y))<N-1:0>

x-y = (SInt(x) - SInt(y))<N-1:0>
 = (UInt(x) - UInt(y))<N-1:0>

If x is a bitstring of length N and y is an integer, x+y and x-y are the bitstrings of length N defined by x+y = x
+ y<N-1:0> and x-y = x - y<N-1:0>. Similarly, if x is an integer and y is a bitstring of length M, x+y and x-y
are the bitstrings of length M defined by x+y = x<M-1:0> + y and x-y = x<M-1:0> - y.

Comparisons

If x and y are integers or reals, then x == y, x != y, x < y, x <= y, x > y, and x >= y are equal, not equal,
less than, less than or equal, greater than, and greater than or equal comparisons between them, producing
boolean results. In the case of == and !=, this extends the generic definition applying to any two values of
the same type to also act between integers and reals.

Multiplication

If x and y are integers or reals, then x * y is the product of x and y, of type integer if both x and y are of type
integer and otherwise of type real.

Division and modulo

If x and y are integers or reals, then x / y is the result of dividing x by y, and is always of type real.

If x and y are integers, then x DIV y and x MOD y are defined by:

x DIV y = RoundDown(x / y)
x MOD y = x - y * (x DIV y)

It is a pseudocode error to use any x / y, x MOD y, or x DIV y in any context where y can be zero.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-15
Restricted Access Non-Confidential

Pseudocode definition
Square Root

If x is an integer or a real, Sqrt(x) is its square root, and is always of type real.

Rounding and aligning

If x is a real:

• RoundDown(x) produces the largest integer n such that n <= x.

• RoundUp(x) produces the smallest integer n such that n >= x.

• RoundTowardsZero(x) produces RoundDown(x) if x > 0.0, 0 if x == 0.0, and RoundUp(x) if x < 0.0.

If x and y are integers, Align(x,y) = y * (x DIV y) is an integer.

If x is a bitstring and y is an integer, Align(x,y) = (Align(UInt(x),y))<Len(x)-1:0> is a bitstring of the same
length as x.

It is a pseudocode error to use either form of Align(x,y) in any context where y can be 0. In practice,
Align(x,y) is only used with y a constant power of two, and the bitstring form used with y = 2^n has the
effect of producing its argument with its n low-order bits forced to zero.

Scaling

If n is an integer, 2^n is the result of raising 2 to the power n and is of type real.

If x and n are integers, then:

• x << n = RoundDown(x * 2^n)

• x >> n = RoundDown(x * 2^(-n)).

Maximum and minimum

If x and y are integers or reals, then Max(x,y) and Min(x,y) are their maximum and minimum respectively.
Both are of type integer if both x and y are of type integer and of type real otherwise.
AppxG-16 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
G.6 Statements and program structure

This section describes the control statements used in the pseudocode.

G.6.1 Simple statements

The following simple statements must all be terminated with a semicolon, as shown.

Assignments

An assignment statement takes the form:

<assignable_expression> = <expression>;

Procedure calls

A procedure call takes the form:

<procedure_name>(<arguments>);

Return statements

A procedure return takes the form:

return;

and a function return takes the form:

return <expression>;

where <expression> is of the type the function prototype line declared.

UNDEFINED

The statement:

UNDEFINED;

indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is that the Undefined
Instruction exception is taken.

UNPREDICTABLE

The statement:

UNPREDICTABLE;
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-17
Restricted Access Non-Confidential

Pseudocode definition
indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is not architecturally defined
and must not be relied upon by software. It must not constitute a security hole or halt or hang the system,
and must not be promoted as providing any useful information to software.

SEE...

The statement:

SEE <reference>;

indicates a special case that replaces the behavior defined by the current pseudocode (apart from behavior
required to determine that the special case applies). The replacement behavior is that nothing occurs as a
result of the current pseudocode because some other piece of pseudocode defines the required behavior. The
<reference> indicates where that other pseudocode can be found.

IMPLEMENTATION_DEFINED

The statement:

IMPLEMENTATION_DEFINED <text>;

indicates a special case that specifies that the behavior is IMPLEMENTATION DEFINED. Following text can
give more information.

SUBARCHITECTURE_DEFINED

The statement:

SUBARCHITECTURE_DEFINED <text>;

indicates a special case that specifies that the behavior is SUBARCHITECTURE DEFINED. Following text can
give more information.

G.6.2 Compound statements

Indentation is normally used to indicate structure in compound statements. The statements contained in
structures such as if ... then ... else ... or procedure and function definitions are indented more deeply
than the statement itself, and their end is indicated by returning to the original indentation level or less.

Indentation is normally done by four spaces for each level.

if ... then ... else ...

A multi-line if ... then ... else ... structure takes the form:

if <boolean_expression> then
<statement 1>
<statement 2>
...
AppxG-18 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
<statement n>
elsif <boolean_expression> then

<statement a>
<statement b>
...
<statement z>

else
<statement A>
<statement B>
...
<statement Z>

The else and its following statements are optional.

if <boolean_expression> then
<statement 1>
<statement 2>
...
<statement n>

elsif <boolean_expression> then
<statement a>
<statement b>
...
<statement z>

else
<statement A>
<statement B>
...
<statement Z>

The block of lines consisting of elsif and its indented statements is optional, and multiple such blocks can
be used.

The block of lines consisting of else and its indented statements is optional.

Abbreviated one-line forms can be used when there are only simple statements in the then part and (if
present) the else part, as follows:

if <boolean_expression> then <statement 1>

if <boolean_expression> then <statement 1> else <statement A>

if <boolean_expression> then <statement 1> <statement 2> else <statement A>

Note
 In these forms, <statement 1>, <statement 2> and <statement A> must be terminated by semicolons. This and
the fact that the else part is optional are differences from the if ... then ... else ... expression.

repeat ... until ...

A repeat ... until ... structure takes the form:
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-19
Restricted Access Non-Confidential

Pseudocode definition
repeat
 <statement 1>
 <statement 2>
 ...
 <statement n>
until <boolean_expression>;

while ... do

A while ... do structure takes the form:

while <boolean_expression> do
<statement 1>
<statement 2>
...
<statement n>

for ...

A for ... structure takes the form:

for <assignable_expression> = <integer_expr1> to <integer_expr2>
 <statement 1>
 <statement 2>
 ...
 <statement n>

case ... of ...

A case ... of ... structure takes the form:

case <expression> of
 when <constant values>
 <statement 1>
 <statement 2>
 ...
 <statement n>
 ... more "when" groups ...
 otherwise
 <statement A>
 <statement B>
 ...
 <statement Z>

where <constant values> consists of one or more constant values of the same type as <expression>, separated
by commas. Abbreviated one line forms of when and otherwise parts can be used when they contain only
simple statements.

If <expression> has a bitstring type, <constant values> can also include bitstring constants containing 'x'
bits. See Equality and non-equality testing on page AppxG-11 for details.
AppxG-20 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode definition
Procedure and function definitions

A procedure definition takes the form:

<procedure name>(<argument prototypes>)
 <statement 1>
 <statement 2>
 ...
 <statement n>

where the <argument prototypes> consists of zero or more argument definitions, separated by commas. Each
argument definition consists of a type name followed by the name of the argument.

Note
 This first prototype line is not terminated by a semicolon. This helps to distinguish it from a procedure call.

A function definition is similar, but also declares the return type of the function:

<return type> <function name>(<argument prototypes>)
 <statement 1>
 <statement 2>
 ...
 <statement n>

An array-like function is similar, but with square brackets:

<return type> <function name>[<argument prototypes>]
<statement 1>
<statement 2>
...
<statement n>

An array-like function also usually has an assignment prototype:

<function name>[<argument prototypes>] = <value prototypes>
<statement 1>
<statement 2>
...
<statement n>

G.6.3 Comments

Two styles of pseudocode comment exist:

• // starts a comment that is terminated by the end of the line.

• /* starts a comment that is terminated by */.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-21
Restricted Access Non-Confidential

Pseudocode definition
G.7 Miscellaneous helper procedures and functions

The functions described in this section are not part of the pseudocode specification. They are helper
procedures and functions used by pseudocode to perform useful architecture-specific jobs. Each has a brief
description and a pseudocode prototype. Some have had a pseudocode definition added.

G.7.1 ArchVersion()

This function returns the major version number of the architecture.

integer ArchVersion()

G.7.2 BadReg()

This function performs the check for the register numbers 13 and 15 that are disallowed for many Thumb
register specifiers.

boolean BadReg(integer n)

return n == 13 || n == 15;

G.7.3 BreakPoint()

This procedure causes a debug breakpoint to occur.

G.7.4 CallSupervisor()

In the M profile, this procedure causes an SVCall exception.

G.7.5 ConditionPassed()

This function performs the condition test for an instruction, based on:

• the two Thumb conditional branch encodings (encodings T1 andT3 of the B instruction)

• the current values of the xPSR.IT[7:0] bits for other Thumb instructions.

boolean ConditionPassed()

G.7.6 Coproc_Accepted()

This function determines whether a coprocessor accepts an instruction.

boolean Coproc_Accepted(integer cp_num, bits(32) instr)

G.7.7 Coproc_DoneLoading()

This function determines for an LDC instruction whether enough words have been loaded.
AppxG-22 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text

G.7.2a BKPTInstrDebugEvent()

 This procedure generates a debug event for a BKPT instruction.

Pseudocode definition
boolean Coproc_DoneLoading(integer cp_num, bits(32) instr)

G.7.8 Coproc_DoneStoring()

This function determines for an STC instruction whether enough words have been stored.

boolean Coproc_DoneStoring(integer cp_num, bits(32) instr)

G.7.9 Coproc_GetOneWord()

This function obtains the word for an MRC instruction from the coprocessor.

bits(32) Coproc_GetOneWord(integer cp_num, bits(32) instr)

G.7.10 Coproc_GetTwoWords()

This function obtains the two words for an MRRC instruction from the coprocessor.

(bits(32), bits(32)) Coproc_GetTwoWords(integer cp_num, bits(32) instr)

G.7.11 Coproc_GetWordToStore()

This function obtains the next word to store for an STC instruction from the coprocessor

bits(32) Coproc_GetWordToStore(integer cp_num, bits(32) instr)

G.7.12 Coproc_InternalOperation()

This procedure instructs a coprocessor to perform the internal operation requested by a CDP instruction.

Coproc_InternalOperation(integer cp_num, bits(32) instr)

G.7.13 Coproc_SendLoadedWord()

This procedure sends a loaded word for an LDC instruction to the coprocessor.

Coproc_SendLoadedWord(bits(32) word, integer cp_num, bits(32) instr)

G.7.14 Coproc_SendOneWord()

This procedure sends the word for an MCR instruction to the coprocessor.

Coproc_SendOneWord(bits(32) word, integer cp_num, bits(32) instr)

G.7.15 Coproc_SendTwoWords()

This procedure sends the two words for an MCRR instruction to the coprocessor.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-23
Restricted Access Non-Confidential

Pseudocode definition
Coproc_SendTwoWords(bits(32) word1, bits(32) word2, integer cp_num,

 bits(32) instr)

G.7.16 DataMemoryBarrier()

This procedure produces a Data Memory Barrier.

DataMemoryBarrier(bits(4) option)

G.7.17 DataSynchronizationBarrier()

This procedure produces a Data Synchronization Barrier.

DataSynchronizationBarrier(bits(4) option)

G.7.18 EncodingSpecificOperations()

This procedure invokes the encoding-specific pseudocode for an instruction encoding and checks the
’should be’ bits of the encoding, as described in Instruction encoding diagrams and pseudocode on
page AppxG-2.

G.7.19 GenerateCoprocessorException()

This procedure raises a UsageFault exception for a rejected coprocessor instruction.

G.7.20 GenerateIntegerZeroDivide()

This procedure raises the appropriate exception for a division by zero in the integer division instructions
SDIV and UDIV.

In the M profile, this is a UsageFault exception.

G.7.21 Hint_Debug()

This procedure supplies a hint to the debug system.

Hint_Debug(bits(4) option)

G.7.22 Hint_PreloadData()

This procedure performs a preload data hint.

Hint_PreloadData(bits(32) address)

G.7.23 Hint_PreloadDataForWrite()

This procedure performs a preload data hint with a probability that the use will be for a write.
AppxG-24 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Inserted Text
G.7.nn CurrentModeIsPrivileged() New section

This function returns TRUE if current software execution is privileged.

CurrentModeIsPrivileged()

ARM_2009_Q4
Cross-Out
ARMv7-M does not use this pseudocode function.

Pseudocode definition
Hint_PreloadDataForWrite(bits(32) address)

G.7.24 Hint_PreloadInstr()

This procedure performs a preload instructions hint.

Hint_PreloadInstr(bits(32) address)

G.7.25 Hint_SendEvent()

This procedure performs a send event hint.

G.7.26 Hint_Yield()

This procedure performs a Yield hint.

G.7.27 InstructionSynchronizationBarrier()

This procedure produces an Instruction Synchronization Barrier.

InstructionSynchronizationBarrier(bits(4) option)

G.7.28 IntegerZeroDivideTrappingEnabled()

This function returns TRUE if the trapping of divisions by zero in the integer division instructions SDIV and
UDIV is enabled, and FALSE otherwise.

In the M profile, this is controlled by the DIV_0_TRP bit in the Configuration Control register. TRUE is
returned if the bit is 1 and FALSE if it is 0.

G.7.29 ProcessorID()

Identifies the executing processor.

G.7.30 SetPending()

This procedure sets the associated exception state to Pending. For a definition of the different exception
states see Exceptions on page B1-5.

G.7.31 ThisInstr()

This function returns the currently-executing instruction. It is only used on 32-bit instruction encodings at
present.

bits(32) ThisInstr()
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxG-25
Restricted Access Non-Confidential

Pseudocode definition
AppxG-26 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix H
Pseudocode Index

This appendix provides an index to pseudocode operators and functions that occur elsewhere in the
document. It contains the following sections:

• Pseudocode operators and keywords on page AppxH-2

• Pseudocode functions and procedures on page AppxH-5.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-1
Restricted Access Non-Confidential

Pseudocode Index
H.1 Pseudocode operators and keywords

Table H-1 lists the pseudocode operators and keywords, and is an index to their descriptions:

Table H-1 Pseudocode operators and keywords

Operator Meaning See

- Unary minus on integers or reals Unary plus, minus and absolute value on
page AppxG-15

- Subtraction of integers, reals and
bitstrings

Addition and subtraction on page AppxG-15

+ Unary plus on integers or reals Unary plus, minus and absolute value on
page AppxG-15

+ Addition of integers, reals and bitstrings Addition and subtraction on page AppxG-15

(...) Around arguments of procedure Procedure calls on page AppxG-17, Procedure
and function definitions on page AppxG-21

(...) Around arguments of function General expression syntax on page AppxG-9,
Procedure and function definitions on
page AppxG-21

. Extract named member from a list Lists on page AppxG-7

. Extract named bit or field from a register Bitstring extraction on page AppxG-12

! Boolean NOT Operations on booleans on page AppxG-11

!= Compare for non-equality (any type) Equality and non-equality testing on
page AppxG-11

!= Compare for non-equality (between
integers and reals)

Comparisons on page AppxG-15

&& Boolean AND Operations on booleans on page AppxG-11

* Multiplication of integers and reals Multiplication on page AppxG-15

/ Division of integers and reals (real
result)

Division and modulo on page AppxG-15

/*...*/ Comment delimiters Comments on page AppxG-21

// Introduces comment terminated by end
of line

Comments on page AppxG-21

: Bitstring concatenation Bitstring concatenation and replication on
page AppxG-12

: Integer range in bitstring extraction
operator

Bitstring extraction on page AppxG-12

[...] Around array index Arrays on page AppxG-8
AppxH-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode Index
[...] Around arguments of array-like
function

General expression syntax on page AppxG-9,
Procedure and function definitions on
page AppxG-21

^ Boolean exclusive-OR Operations on booleans on page AppxG-11

|| Boolean OR Operations on booleans on page AppxG-11

< Less than comparison of integers and
reals

Comparisons on page AppxG-15

<...> Extraction of specified bits of bitstring
or integer

Bitstring extraction on page AppxG-12

<< Multiply integer by power of 2 (with
rounding towards -infinity)

Scaling on page AppxG-16

<= Less than or equal comparison of
integers and reals

Comparisons on page AppxG-15

= Assignment Assignments on page AppxG-17

== Compare for equality (any type) Equality and non-equality testing on
page AppxG-11

== Compare for equality (between integers
and reals)

Comparisons on page AppxG-15

> Greater than comparison of integers and
reals

Comparisons on page AppxG-15

>= Greater than or equal comparison of
integers and reals

Comparisons on page AppxG-15

>> Divide integer by power of 2 (with
rounding towards -infinity)

Scaling on page AppxG-16

2^N Power of two (real result) Scaling on page AppxG-16

AND Bitwise AND of bitstrings Logical operations on bitstrings on
page AppxG-13

array Keyword introducing array type
definition

Arrays on page AppxG-8

bit Bitstring type of length 1 Bitstrings on page AppxG-5

bits(N) Bitstring type of length N Bitstrings on page AppxG-5

boolean Boolean type Booleans on page AppxG-6

case ... of ... Control structure case ... of ... on page AppxG-20

DIV Quotient from integer division Division and modulo on page AppxG-15

enumeration Keyword introducing enumeration type
definition

Enumerations on page AppxG-6

Table H-1 Pseudocode operators and keywords (continued)

Operator Meaning See
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-3
Restricted Access Non-Confidential

Pseudocode Index
EOR Bitwise EOR of bitstrings Logical operations on bitstrings on
page AppxG-13

FALSE Boolean constant Booleans on page AppxG-6

for ... Control structure for ... on page AppxG-20

if ... then ... else ... Expression selecting between two
values

Conditional selection on page AppxG-11

if ... then ... else ... Control structure if ... then ... else ... on page AppxG-18

IMPLEMENTATION_DEFINED Describes IMPLEMENTATION DEFINED
behavior

IMPLEMENTATION_DEFINED on
page AppxG-18

integer Unbounded integer type Integers on page AppxG-6

MOD Remainder from integer division Division and modulo on page AppxG-15

OR Bitwise OR of bitstrings Logical operations on bitstrings on
page AppxG-13

otherwise Introduces default case in case ...

of ... control structure
case ... of ... on page AppxG-20

real Real number type Reals on page AppxG-6

repeat ... until ... Control structure repeat ... until ... on page AppxG-19

return Procedure or function return Return statements on page AppxG-17

SEE Points to other pseudocode to use
instead

SEE... on page AppxG-18

SUBARCHITECTURE_DEFINED Describes SUBARCHITECTURE DEFINED
behavior

SUBARCHITECTURE_DEFINED on
page AppxG-18

TRUE Boolean constant Booleans on page AppxG-6

UNDEFINED Cause Undefined Instruction exception UNDEFINED on page AppxG-17

UNKNOWN Unspecified value General expression syntax on page AppxG-9

UNPREDICTABLE Unspecified behavior UNPREDICTABLE on page AppxG-17

when Introduces specific case in case ...

of ... control structure
case ... of ... on page AppxG-20

while ... do ... Control structure while ... do on page AppxG-20

Table H-1 Pseudocode operators and keywords (continued)

Operator Meaning See
AppxH-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode Index
H.2 Pseudocode functions and procedures

Table H-2 lists the pseudocode functions and procedures used in this manual, and is an index to their
descriptions:

Table H-2 Pseudocode functions and procedures

Function Meaning See

_Mem[] Basic memory accesses Basic memory accesses on page B2-4

Abs() Absolute value of an integer or real Unary plus, minus and absolute value on
page AppxG-15

AddWithCarry() Addition of bitstrings, with carry input and
carry/overflow outputs

Pseudocode details of addition and
subtraction on page A2-8

Align() Align integer or bitstring to multiple of an
integer

Rounding and aligning on
page AppxG-16

ALUWritePC() Write value to PC, with interworking for
ARM only from ARMv7

Pseudocode details of ARM core register
operations on page A2-11

ArchVersion() Major version number of the architecture ArchVersion() on page AppxG-22

ASR() Arithmetic shift right of a bitstring Shift and rotate operations on page A2-5

ASR_C() Arithmetic shift right of a bitstring, with
carry output

Shift and rotate operations on page A2-5

BadReg() Test for register number 13 or 15 BadReg() on page AppxG-22

BigEndianReverse() Endian-reverse the bytes of a bitstring Reverse endianness on page B2-7

BitCount() Count number of ones in a bitstring Bitstring count on page AppxG-13

BranchTo() Continue execution at specified address Pseudocode details for ARM core register
access in the Thumb instruction set on
page B1-12

BranchWritePC() Write value to PC, without interworking Pseudocode details of ARM core register
operations on page A2-11BXWritePC() Write value to PC, with interworking

CallSupervisor() Generate exception for SVC instruction CallSupervisor() on page AppxG-22

CheckPermission() Memory system check of access permission Access permission checking on
page B2-10

ClearEventRegister() Clear the Event Register of the current
processor

Pseudocode details of the Wait For Event
lock mechanism on page B1-50

ClearExclusiveByAddress() Clear local exclusive monitor records for an
address range

Pseudocode details of operations on
exclusive monitors on page B2-8

ClearExclusiveLocal() Clear global exclusive monitor record for a
processor

ConditionPassed() Returns TRUE if the current instruction
passes its condition check

Pseudocode details of conditional
execution on page A6-9
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-5
Restricted Access Non-Confidential

ARM_2009_Q2
Sticky Note
Add the following new entry to the table:

Function: BLXWritePC()
Meaning: Write value to PC, with interworking.
See: Pseudocode details of ARM core register operations on page A2-11 [PDF page 40].

ARM_2009_Q4
Sticky Note
Add the following new entry to the table:

Function: BKPTInstrDebugEvent()
Meaning: Generate a debug event for a BKPT instruction
See: The inserted new section after section G.7.2 on page AppxG-22 [PDF page 682].

[Editorial note: That definition is identical to the Meaning entry given here.]

Pseudocode Index
Consistent() Test identically-named instruction bits or
fields are identical

Instruction encoding diagrams and
pseudocode on page AppxG-2

Coproc_Accepted() Determine whether a coprocessor accepts an
instruction.

Coproc_Accepted() on page AppxG-22

Coproc_DoneLoading() Returns TRUE if enough words have been
loaded, for an LDC or LDC2 instruction

Coproc_DoneLoading() on
page AppxG-22

Coproc_DoneStoring() Returns TRUE if enough words have been
stored, for an STC or STC2 instruction

Coproc_DoneStoring() on
page AppxG-23

Coproc_GetOneWord() Get word from coprocessor, for an MRC or
MRC2 instruction

Coproc_GetOneWord() on
page AppxG-23

Coproc_GetTwoWords() Get two words from coprocessor, for an
MRRC or MRRC2 instruction

Coproc_GetTwoWords() on
page AppxG-23

Coproc_GetWordToStore() Get next word to store from coprocessor, for
STC or STC2 instruction

Coproc_GetWordToStore() on
page AppxG-23

Coproc_InternalOperation() Instruct coprocessor to perform an internal
operation, for a CDP or CDP2 instruction

Coproc_InternalOperation() on
page AppxG-23

Coproc_SendLoadedWord() Send next loaded word to coprocessor, for
LDC or LDC2 instruction

Coproc_SendLoadedWord() on
page AppxG-23

Coproc_SendOneWord() Send word to coprocessor, for an MCR or
MCR2 instruction

Coproc_SendOneWord() on
page AppxG-23

Coproc_SendTwoWords() Send two words to coprocessor, for an
MCRR or MCRR2 instruction

Coproc_SendTwoWords() on
page AppxG-23

CountLeadingSignBits() Number of identical sign bits at left end of
bitstring, excluding the leftmost bit itself

Lowest and highest set bits of a bitstring
on page AppxG-13

CountLeadingZeroBits() Number of zeros at left end of bitstring

CurrentCond() Returns condition for current instruction Pseudocode details of conditional
execution on page A6-9

DataAddressMatch() DWT comparator data address matching Comparator support - data address
matching on page C1-44

DataMemoryBarrier() Perform a Data Memory Barrier operation DataMemoryBarrier() on
page AppxG-24

DataSynchronizationBarrier() Perform a Data Synchronization Barrier
operation

DataSynchronizationBarrier() on
page AppxG-24

Deactivate() Removal of Active state from an exception
as part of the exception return

Exception return behavior on page B1-25

DecodeImmShift() Decode shift type and amount for an
immediate shift

Shift operations on page A6-13

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxH-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Sticky Note
Add the following new entry to the table:

Function: CurrentModeIsPrivileged()
Meaning: Returns TRUE if current software execution is privileged
See: The inserted new section after section G.7.15 on page AppxG-24 [PDF page 684].

[Editorial note: That definition is identical to the Meaning entry given here.]

Pseudocode Index
DecodeRegShift() Decode shift type for a register-controlled
shift

Shift operations on page A6-13

DefaultTEXDecode() Determine memory attributes for a set of
TEX[2:0], C, B bits

MPU access control decode on
page B2-10

DefaultAttributes() Determine memory attributes for an address
in the default memory map

Default memory access decode on
page B2-11

EncodingSpecificOperations() Invoke encoding-specific pseudocode and
should be checks

Instruction encoding diagrams and
pseudocode on page AppxG-2

EventRegistered() Determine whether the Event Register of the
current processor is set

Pseudocode details of the Wait For Event
lock mechanism on page B1-50

ExceptionEntry() Exception entry behavior Exception entry behavior on page B1-21

ExceptionIN() Determine exception entry status External interrupt input behavior on
page B3-29

ExceptionOUT() Determine exception return status External interrupt input behavior on
page B3-29

ExceptionReturn() Exception return behavior Exception return behavior on page B1-25

ExceptionTaken() Part of ExceptionEntry() behavior Exception entry behavior on page B1-21

ExclusiveMonitorsPass() Check whether Store-Exclusive operation
has control of exclusive monitors

Pseudocode details of operations on
exclusive monitors on page B2-8

FindPriv() Determine access privilege Interfaces to memory system specific
pseudocode on page B2-4

HighestSetBit() Position of leftmost 1 in a bitstring Lowest and highest set bits of a bitstring
on page AppxG-13

Hint_Debug() Perform function of DBG hint instruction Hint_Debug() on page AppxG-24

Hint_PreloadData() Perform function of PLD memory hint
instruction

Hint_PreloadData() on page AppxG-24

Hint_PreloadData() Perform function of PLDW memory hint
instruction

Hint_PreloadDataForWrite() on
page AppxG-24

Hint_PreloadInstr() Perform function of PLI memory hint
instruction

Hint_PreloadInstr() on page AppxG-25

Hint_SendEvent() Perform function of SEV hint instruction Hint_SendEvent() on page AppxG-25

Hint_Yield() Perform function of YIELD hint instruction Hint_Yield() on page AppxG-25

GenerateCoprocessorException() Generate the exception for an
unclaimed coprocessor instruction

GenerateCoprocessorException() on
page AppxG-24

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-7
Restricted Access Non-Confidential

ARM_2009_Q2 and ARM_2009_Q4
Sticky Note
Add the following new entry to the table:

Function: ExecutionPriority()

Meaning: Return the execution priority of the current active handler or thread

See: Execution priority on page B1-19 [PDF page 437].
 [This is a new subsection inserted as a markup on that page.]

[Editorial note: Cross-reference corrected in ARM_2009_Q3 release.]

ARM_2009_Q2 and ARM_2009_Q4
Sticky Note
Add the following new entry to the table:

Function: ExceptionActiveBitCount()
Meaning: Return the number of bits set to 1 in the ExceptionActive[*] array
See: Exception return operation on page B1-27 [PDF page 445]

[Editorial note: Cross-reference corrected in ARM_2009_Q3 release.]

ARM_2009_Q4
Sticky Note
Add the following new entry to the table:

Function: DerivedLateArrival()
Meaning: Derived late arrival exception handling.
See: Derived exceptions on page B1-34 [PDF page 452].

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
DefaultMemoryAttributes

ARM_2009_Q4
Cross-Out

Pseudocode Index
GenerateIntegerZeroDivide() Generate the exception for a trapped
divide-by-zero on execution of an integer
divide instruction

GenerateIntegerZeroDivide() on
page AppxG-24

ITAdvance() Advance the ITSTATE bits to their values
for the next instruction

Pseudocode details of ITSTATE
operation on page A6-11,

InITBlock() Return TRUE if current instruction is in an
IT block.

InterruptAssertion() Determine status of an external interrupt External interrupt input behavior on
page B3-29

InstrAddressMatch() DWT comparator instruction address
matching

Comparator support - instruction address
matching on page C1-43

InstructionSynchronizationBarrier() Perform an Instruction
Synchronization Barrier operation

InstructionSynchronizationBarrier() on
page AppxG-25

Int() Convert bitstring to integer in
argument-specified fashion

Converting bitstrings to integers on
page AppxG-14

IntegerZeroDivideTrappingEnabled() Check whether divide-by-zero
trapping is enabled for integer divide
instructions

IntegerZeroDivideTrappingEnabled() on
page AppxG-25

IsExclusiveGlobal() Check a global exclusive access record on page B2-8Pseudocode details of
operations on exclusive monitors on
page B2-8

IsExclusivelocal() Check a local exclusive access record

IsOnes() Test for all-ones bitstring (Boolean result) Testing a bitstring for being all zero or all
ones on page AppxG-13IsOnesBit() Test for all-ones bitstring (bit result)

IsZero() Test for all-zeros bitstring (Boolean result) Testing a bitstring for being all zero or all
ones on page AppxG-13IsZeroBit() Test for all-zeros bitstring (bit result)

LastInITBlock() Return TRUE if current instruction is the last
instruction in an IT block.

Pseudocode details of ITSTATE
operation on page A6-11

LateArrival() Late arrival exception handling Late arriving exceptions on page B1-33

Len() Bitstring length Bitstring length and top bit on
page AppxG-12

LoadWritePC() Write value to PC, with
interworking (without it before ARMv5T)

Pseudocode details of ARM core register
operations on page A2-11

LookUpSP() Select the current SP Pseudocode details for ARM core register
access in the Thumb instruction set on
page B1-12

LowestSetBit() Position of rightmost 1 in a bitstring Lowest and highest set bits of a bitstring
on page AppxG-13

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxH-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Pseudocode Index
LSL() Logical shift left of a bitstring Shift and rotate operations on page A2-5

LSL_C() Logical shift left of a bitstring, with carry
output

LSR() Logical shift right of a bitstring

LSR_C() Logical shift right of a bitstring, with carry
output

MarkExclusiveGlobal() Set a global exclusive access record on page B2-8Pseudocode details of
operations on exclusive monitors on
page B2-8

IMarkExclusivelocal() Set a local exclusive access record

Max() Maximum of integers or reals Maximum and minimum on
page AppxG-16

MemA[] Memory access that must be aligned, at
current privilege level

Aligned memory accesses on page B2-5

MemA_unpriv[] Memory access that must be aligned,
unprivileged

MemA_with_priv[] Memory access that must be aligned, at
specified privilege level

MemU[] Memory access without alignment
requirement, at current privilege level

Unaligned memory accesses on
page B2-6

MemU_unpriv[] Memory access without alignment
requirement, unprivileged

MemU_with_priv[] Memory access without alignment
requirement, at specified privilege level

Min() Minimum of integers or reals Maximum and minimum on
page AppxG-16

NOT() Bitwise inversion of a bitstring Logical operations on bitstrings on
page AppxG-13

Ones() All-ones bitstring Bitstring concatenation and replication
on page AppxG-12

ProcessorID() Return integer identifying the processor ProcessorID() on page AppxG-25

PopStack() Stack restore sequence on an exception
return

Exception return behavior on page B1-25

PushStack() Stack save sequence on exception entry Exception entry behavior on page B1-21

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-9
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Inserted Text
MarkExclusiveLocal()

Pseudocode Index
R[] Access the main ARM core register bank Pseudocode details of ARM core register
operations on page A2-11
Pseudocode details for ARM core register
access in the Thumb instruction set on
page B1-12

Replicate() Bitstring replication Bitstring concatenation and replication
on page AppxG-12

ReturnAddress() Return address stacked on exception entry Exception entry behavior on page B1-21

ROR() Rotate right of a bitstring Shift and rotate operations on page A2-5

ROR_C() Rotate right of a bitstring, with carry output

RRX() Rotate right with extend of a bitstring

RRX_C() Rotate right with extend of a bitstring, with
carry output

Sat() Convert integer to bitstring with specified
saturation

Pseudocode details of saturation on
page A2-9

SatQ() Convert integer to bitstring with specified
saturation, with saturated flag output

SendEvent() Create a WFE wake up event that sets the
Event Register(s) on execution of an SEV
instruction.

Pseudocode details of the Wait For Event
lock mechanism on page B1-50

SetEventRegister() Set the Event Register of the current
processor

Pseudocode details of the Wait For Event
lock mechanism on page B1-50

SetExclusiveMonitors() Set exclusive monitors for a local exclusive
operation

Pseudocode details of operations on
exclusive monitors on page B2-8

Shift() Perform a specified shift by a specified
amount on a bitstring

Shift operations on page A6-13

Shift_C() Perform a specified shift by a specified
amount on a bitstring, with carry output

SignedSat() Convert integer to bitstring with signed
saturation

Pseudocode details of saturation on
page A2-9

SignedSatQ() Convert integer to bitstring with signed
saturation, with saturated flag output

SignExtend() Extend bitstring to left with copies of its
leftmost bit

Zero-extension and sign-extension of
bitstrings on page AppxG-13

SInt() Convert bitstring to integer in signed (two's
complement) fashion

Converting bitstrings to integers on
page AppxG-14

TailChain() Tail chaining exception behavior Tail-chaining on page B1-36

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
AppxH-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q2
Sticky Note
Add the following new entry to the table:

Function: SleepOnExit()
Meaning: Optionally returns processor to a power-saving mode on return from the only active exception
See: Exception return operation on page B1-27 [PDF page 445].

Pseudocode Index
TakeReset() Reset behavior Reset behavior on page B1-20

ThisInstr() Returns the bitstring encoding of the current
instruction

ThisInstr() on page AppxG-25

ThumbExpandImm() Expansion of immediates for Thumb
instructions

Operation on page A5-16

ThumbExpandImmWithC() Expansion of immediates for Thumb
instructions, with carry output

TopBit() Leftmost bit of a bitstring Bitstring length and top bit on
page AppxG-12

UInt() Convert bitstring to integer in unsigned
fashion

Converting bitstrings to integers on
page AppxG-14

UnsignedSat() Convert integer to bitstring with unsigned
saturation

Pseudocode details of saturation on
page A2-9

UnsignedSatQ() Convert integer to bitstring with unsigned
saturation, with saturated flag output

ValidateAddress() Resolve the permissions and memory
attributes for a PMSA memory access

MPU pseudocode on page B3-36

WaitForEvent() Wait until WFE instruction completes Pseudocode details of the Wait For Event
lock mechanism on page B1-50

WaitForInterrupt() Wait until WFI instruction completes Pseudocode details of Wait For Interrupt
on page B1-52

WriteToRegField() Indicate a write of ’1’ to a specified field in
a system control register

External interrupt input behavior on
page B3-29

ZeroExtend() Extend bitstring to left with zero bits Zero-extension and sign-extension of
bitstrings on page AppxG-13

Zeros() All-zeros bitstring Bitstring concatenation and replication
on page AppxG-12

Table H-2 Pseudocode functions and procedures (continued)

Function Meaning See
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxH-11
Restricted Access Non-Confidential

Pseudocode Index
AppxH-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Appendix I
Register Index

This appendix provides an index to the descriptions of the ARM registers (core and memory mapped) in the
document. It contains the following sections:

• ARM core registers on page AppxI-2

• Memory mapped system registers on page AppxI-3

• Memory mapped debug registers on page AppxI-5
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxI-1
Restricted Access Non-Confidential

Register Index
I.1 ARM core registers

Table I-1 provides an index to the main descriptions of the ARM core registers defined in ARMv7-M.

Table I-1 ARM core register index

Register Description, see

R0, R1, R2, R3, R4, R5,
R6, R7, R8, R9, R10, R11,
R12

Registers on page B1-8

SP_main, SP_process The SP registers on page B1-8

LR (R14) Registers on page B1-8

PC (R15) Registers on page B1-8

APSRa

a. xPSR = APSR | IPSR | EPSR

The special-purpose program status registers (xPSR) on page B1-8

IPSRa The special-purpose program status registers (xPSR) on page B1-8

EPSRa The special-purpose program status registers (xPSR) on page B1-8

PRIMASK The special-purpose mask registers on page B1-10

FAULTMASK The special-purpose mask registers on page B1-10

BASEPRI The special-purpose mask registers on page B1-10

CONTROL The special-purpose control register on page B1-11
AppxI-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Register Index
I.2 Memory mapped system registers

Table I-2 provides an index to the main descriptions of the memory mapped system control registers defined
in ARMv7-M. The registers are listed in the order they are described in this manual.

Table I-2 Memory-mapped control register index

Register Description, see

ACTLR Auxiliary Control Register – (0xE000E008) on page B3-9

CPUID CPUID Base Register – (CPUID, 0xE000ED00) on page B3-10

ICSR Interrupt Control and State Register – (0xE000ED04) on page B3-12

VTOR Vector Table Offset Register – (0xE000ED08) on page B3-13

AIRCR Application Interrupt and Reset Control Register – (0xE000ED0C) on page B3-14

SCR System Control Register (0xE000ED10) on page B3-15

CCR Configuration and Control Register (0xE000ED14) on page B3-16

SHPR1 System Handler Priority Register 1 – (0xE000ED18) on page B3-17

SHPR2 System Handler Priority Register 2 – (0xE000ED1C) on page B3-17

SHPR3 System Handler Priority Register 3 – (0xE000ED20) on page B3-17

SHCSR System Handler Control and State Register – (0xE000ED24) on page B3-18

CFSR Configurable Fault Status Registers (CFSR, 0xE000ED28) on page B3-19

MMSR MemManage Status Register (MMFSR, 0xE000D28) on page B3-19

BFSR BusFault Status Register (BFSR, 0xE000ED29) on page B3-20

UFSR UsageFault Status Register (UFSR, 0xE000ED2A) on page B3-20

HFSR HardFault Status Register (0xE000ED2C) on page B3-21

MMAR MemManage Address Register (0xE000ED34) on page B3-22

BFAR BusFault Address Register (0xE000ED38) on page B3-22

CAR Coprocessor Access Control Register– (0xE000ED88) on page B3-22

STIR Software Trigger Interrupt Register – (0xE000EF00) on page B3-23

STCSR SysTick Control and Status Register – (0xE000E010) on page B3-26

STRVR SysTick Reload Value Register – (0xE000E014) on page B3-26
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxI-3
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
SYST_CSR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
SYST_RVR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
CPACR

Register Index
STCVR SysTick Current Value Register – (0xE000E018) on page B3-27

STCR SysTick Calibration Value Register – (0xE000E01C) on page B3-27

ICTR Interrupt Controller Type Register – (0xE000E004) on page B3-32

ISER[x] Interrupt Set-Enable Registers – (0xE000E100-E17C) on page B3-33

ICER[x] Interrupt Clear-Enable Registers – (0xE000E180-E1FC) on page B3-33

ISPR[x] Interrupt Set-Pending Registers – (0xE000E200-E27C) on page B3-33

ICPR[x] Interrupt Clear-Pending Registers – (0xE000E280-E2FC) on page B3-34

IABR[x] Interrupt Active Bit Registers – (0xE000E300-E37C) on page B3-34

IPR[x] Interrupt Priority Registers – (0xE000E400-E7F8) on page B3-34

MPUTR MPU Type Register – (0xE000ED90) on page B3-39

MPUCR MPU Control Register – (0xE000ED94) on page B3-40

MPURNR MPU Region Number Register – (0xE000ED98) on page B3-41

MPURBAR MPU Region Base Address Register – (0xE000ED9C) on page B3-41

MPURASR MPU Region Attribute and Size Register – (0xE000EDA0) on page B3-42

Table I-2 Memory-mapped control register index (continued)

Register Description, see
AppxI-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
SYST_CVR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
SYST_CALIB

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_ISERx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_ICERx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_ISPRx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_ICPRx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_IABRx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
NVIC_IPRx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_TYPE

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_CTRL

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RNR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RBAR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
MPU_RASR

Register Index
I.3 Memory mapped debug registers

Table I-3 provides an index to the main descriptions of the memory mapped debug registers defined in the
ARMv7-M Debug Extension. The registers are listed in the order they are described in this manual.

Table I-3 Memory-mapped debug register index

Registera Description, see

General infrastructure
and CoreSight registers

For general infrastructure and CoreSight register support, see Table C1-2 on page C1-4,
Appendix B ARMv7-M infrastructure IDs and CoreSight® Architecture Specification.

DFSR Debug Fault Status Register (0xE000ED30) on page C1-19

DHCSR Debug Halting Control and Status Register – (0xE000EDF0) on page C1-20

DCRSR Debug Core Register Selector Register – (0xE000EDF4) on page C1-22

DCRDR Debug Core Register Data Register (DCRDR) on page C1-23

DEMCR Debug Exception and Monitor Control Register – (0xE000EDFC) on page C1-24

STIMx (ITM support) Stimulus Portx Register - ITM_STIM[255:0] (0xE0000000 to 0xE00003FC) on
page C1-30

TERx (ITM support) Trace Enable Register - ITM_TER[7:0] (0xE0000E00 to 0xE0000E1C) on page C1-30

TPR (ITM support) Trace Privilege Register - ITM_TPR (0xE0000E40) on page C1-31

TCR (ITM support) Trace Control Register – ITM_TCR (0xE0000E80) on page C1-31

DWT_CTRL Control Register (DWT_CTRL) on page C1-48

DWT_CYCCNT Cycle Count Register (DWT_CYCCNT) on page C1-49

DWT_CPICNT CPI Count Register (DWT_CPICNT) on page C1-50

DWT_EXCCNT Exception Overhead Count Register (DWT_EXCCNT) on page C1-50

DWT_SLEEPCNT Sleep Count Register (DWT_SLEEPCNT) on page C1-51

DWT_LSUCNT LSU Count Register (DWT_LSUCNT) on page C1-51

DWT_FOLDCNT Folded-instruction Count Register (DWT_FOLDCNT) on page C1-52

DWT_PCSR Program Counter Sample Register (DWT_PCSR) on page C1-52

DWT_COMPx Comparator Register (DWT_COMPx) on page C1-53

DWT_MASKx Mask Register (DWT_MASKx) on page C1-53

DWT_FUNCTIONx Function Register (DWT_FUNCTIONx) on page C1-54
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. AppxI-5
Restricted Access Non-Confidential

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ITM_TERx

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ITM_TPR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ITM_TCR

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
ITM_STIMx

Register Index
ETM registers For ETM related registers, see Embedded Trace Macrocell Architecture Specification.

TPIU_SSPSR Supported Synchronous Port Sizes Register (TPIU_SSPSR, 0xE0040000) on
page C1-58

TPIU_CSPSR Current Synchronous Port Size Register (TPIU_CSPSR, 0xE0040004) on page C1-58

TPIU_ACPR Asynchronous Clock Prescaler Register (TPIU_ACPR, 0xE0040010) on page C1-59

TPIU_SPPR Selected Pin Protocol Register (TPIU_SPPR, 0xE00400F0) on page C1-59

TPIU_TR TPIU Type Register (TPIU_TYPE, 0xE0040FC8) on page C1-60

FP_CTRL FlashPatch Control Register (FP_CTRL) on page C1-64

FP_REMAP FlashPatch Remap Register (FP_REMAP) on page C1-64

FP_COMPx FlashPatch Comparator Register – instruction comparison (FP_COMPx) on
page C1-65 and FlashPatch Comparator Register – literal comparison (FP_COMPx)
on page C1-66

a. In addition to the registers listed, debug support includes bits in the ICSR, see Interrupt Control State Register (ICSR)
on page B3-12.

Table I-3 Memory-mapped debug register index (continued)

Registera Description, see
AppxI-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
TPIU_TYPE

Glossary

AAPCS
Procedure Call Standard for the ARM Architecture.

Addressing mode
Means a method for generating the memory address used by a load/store instruction.

Aligned Refers to data items stored in such a way that their address is divisible by the highest power of 2 that divides
their size. Aligned halfwords, words and doublewords therefore have addresses that are divisible by 2, 4 and
8 respectively.

An aligned access is one where the address of the access is aligned to the size of an element of the access

APSR See Application Program Status Register.

Application Program Status Register
The register containing those bits that deliver status information about the results of instructions, the N, Z,
C, and V bits of the xPSR. See The special-purpose program status registers (xPSR) on page B1-8.

Atomicity
Is a term that describes either single-copy atomicity or multi-copy atomicity. The forms of atomicity used
in the ARM architecture are defined in Atomicity in the ARM architecture on page A3-20.

See also Multi-copy Atomicity, Single-copy atomicity.

Banked register
Is a register that has multiple instances, with the instance that is in use depending on the processor mode,
security state, or other processor state.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-1
Restricted Access Non-Confidential

Glossary
Base register
Is a register specified by a load/store instruction that is used as the base value for the instruction's address
calculation. Depending on the instruction and its addressing mode, an offset can be added to or subtracted
from the base register value to form the virtual address that is sent to memory.

Base register write-back
Describes writing back a modified value to the base register used in an address calculation.

Big-endian memory
Means that:

• a byte or halfword at a word-aligned address is the most significant byte or halfword in the word at
that address

• a byte at a halfword-aligned address is the most significant byte in the halfword at that address.

Blocking
Describes an operation that does not permit following instructions to be executed before the operation is
completed.

A non-blocking operation can permit following instructions to be executed before the operation is
completed, and in the event of encountering an exception do not signal an exception to the core. This enables
implementations to retire following instructions while the non-blocking operation is executing, without the
need to retain precise processor state.

Branch prediction
Is where a processor chooses a future execution path to prefetch along (see Prefetching). For example, after
a branch instruction, the processor can choose to prefetch either the instruction following the branch or the
instruction at the branch target.

Breakpoint
Is a debug event triggered by the execution of a particular instruction, specified in terms of the address of
the instruction and/or the state of the processor when the instruction is executed.

Byte Is an 8-bit data item.

Cache Is a block of high-speed memory locations whose addresses are changed automatically in response to which
memory locations the processor is accessing, and whose purpose is to increase the average speed of a
memory access.

Cache contention
Is when the number of frequently-used memory cache lines that use a particular cache set exceeds the
set-associativity of the cache. In this case, main memory activity goes up and performance drops.

Cache hit
Is a memory access that can be processed at high speed because the data it addresses is already in the cache.

Cache line
Is the basic unit of storage in a cache. Its size is always a power of two (usually 4 or 8 words), and must be
aligned to a suitable memory boundary. A memory cache line is a block of memory locations with the same
size and alignment as a cache line. Memory cache lines are sometimes loosely just called cache lines.
Glossary-2 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Glossary
Cache miss
Is a memory access that cannot be processed at high speed because the data it addresses is not in the cache.

Callee-save registers
Are registers that a called procedure must preserve. To preserve a callee-save register, the called procedure
would normally either not use the register at all, or store the register to the stack during procedure entry and
re-load it from the stack during procedure exit.

Caller-save registers
Are registers that a called procedure need not preserve. If the calling procedure requires their values to be
preserved, it must store and reload them itself.

Clear Relates to registers or register fields. Indicates the bit has a value of zero (or bit field all 0s), or is being
written with zero or all 0s.

Conditional execution
Means that if the condition code flags indicate that the corresponding condition is true when the instruction
starts executing, it executes normally. Otherwise, the instruction does nothing.

Configuration
Settings made on reset, or immediately after reset, and normally expected to remain static throughout
program execution.

Context switch
Is the saving and restoring of computational state when switching between different threads or processes. In
this manual, the term context switch is used to describe any situations where the context is switched by an
operating system and might or might not include changes to the address space.

DCB Debug Control Block - a region within the System Control Space (see SCS) specifically assigned to register
support of debug features.

Digital signal processing (DSP)
Refers to a variety of algorithms that are used to process signals that have been sampled and converted to
digital form. Saturated arithmetic is often used in such algorithms.

Direct Memory Access
Is an operation that accesses main memory directly, without the processor performing any accesses to the
data concerned.

Do-not-modify fields (DNM)
Means the value must not be altered by software. DNM fields read as UNKNOWN values, and can only be
written with the same value read from the same field on the same processor.

Doubleword
Is a 64-bit data item. Doublewords are normally at least word-aligned in ARM systems.

Doubleword-aligned
Means that the address is divisible by 8.

DSP See Digital signal processing

DWT Data Watchpoint and Trace - part of the ARM debug architecture.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-3
Restricted Access Non-Confidential

Glossary
Endianness
Is an aspect of the system’s memory mapping. See big-endian and little-endian.

EPSR See Execution Program Status Register.

ETM Embedded Trace Macrocell - part of the ARM debug architecture

Exception
Handles an event. For example, an exception could handle an external interrupt or an Undefined Instruction.

Exception vector
Is one of a number of fixed addresses in low memory, or in high memory if high vectors are configured.

Execution Program Status Register
The register that contains the execution state bits and is part of the xPSR. See The special-purpose program
status registers (xPSR) on page B1-8.

Execution stream
The stream of instructions that would have been executed by sequential execution of the program.

Explicit access
A read from memory, or a write to memory, generated by a load or store instruction executed in the CPU.
Reads and writes generated by L1 DMA accesses or hardware translation table accesses are not explicit
accesses.

Fault An exception due to some form of system error.

General-purpose register
Is one of the 32-bit general-purpose integer registers, R0 to R15. Note that R15 holds the Program Counter,
and there are often limitations on its use that do not apply to R0 to R14.

Halfword
Is a 16-bit data item. Halfwords are normally halfword-aligned in ARM systems.

Halfword-aligned
Means that the address is divisible by 2.

High registers
Are ARM core registers 8 to 15, that can be accessed by some Thumb instructions.

Immediate and offset fields
Are unsigned unless otherwise stated.

Immediate values
Are values that are encoded directly in the instruction and used as numeric data when the instruction is
executed. Many ARM and Thumb instructions permit small numeric values to be encoded as immediate
values in the instruction that operates on them.

IMP Is an abbreviation used in diagrams to indicate that the bit or bits concerned have IMPLEMENTATION
DEFINED behavior.
Glossary-4 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

ARM_2009_Q4
Cross-Out

ARM_2009_Q4
Replacement Text
UNDEFINED

Glossary
IMPLEMENTATION DEFINED
Means that the behavior is not architecturally defined, but should be defined and documented by individual
implementations.

Index register
Is a register specified in some load/store instructions. The value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally permit the index register value to be shifted before the addition or subtraction.

Inline literals
These are constant addresses and other data items held in the same area as the code itself. They are
automatically generated by compilers, and can also appear in assembler code.

Interrupt Program Status Register
The register that provides status information on whether an application thread or exception handler is
currently executing on the processor. If an exception handler is executing, the register provides information
on the exception type. The register is part of the xPSR. See The special-purpose program status registers
(xPSR) on page B1-8.

Interworking
Is a method of working that permits branches between ARM and Thumb code in architecture variants that
support both execution states.

IPSR See Interrupt Program Status Register.

IT block An IT block is a block of up to four instructions following an If-Then (IT) instruction. Each instruction in
the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse
of others. See IT on page A6-78 for additional information.

ITM Instrumentation Trace Macrocell - part of the ARM debug architecture

Little-endian memory
Means that:

• a byte or halfword at a word-aligned address is the least significant byte or halfword in the word at
that address

• a byte at a halfword-aligned address is the least significant byte in the halfword at that address.

Load/Store architecture
Is an architecture where data-processing operations only operate on register contents, not directly on
memory contents.

Long branch
Is the use of a load instruction to branch to anywhere in the 4GB address space.

Memory barrier
See Memory barriers on page A3-35.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-5
Restricted Access Non-Confidential

Glossary
Memory coherency
Is the problem of ensuring that when a memory location is read (either by a data read or an instruction fetch),
the value actually obtained is always the value that was most recently written to the location. This can be
difficult when there are multiple possible physical locations, such as main memory, a write buffer and/or
cache(s).

Memory hint
A memory hint instruction allows you to provide advance information to memory systems about future
memory accesses, without actually loading or storing any data to or from the register file. PLD and PLI are
the only memory hint instructions defined in ARMv7-M.

Memory-mapped I/O
Uses special memory addresses that supply I/O functions when they are loaded from or stored to.

Memory Protection Unit (MPU)
Is a hardware unit whose registers provide simple control of a limited number of protection regions in
memory.

MPU See Memory Protection Unit.

NRZ Non-Return-to-Zero - physical layer signalling scheme used on asynchronous communication ports.

Multi-copy atomicity
Is the form of atomicity described in Multi-copy atomicity on page A3-21.

See also Atomicity, Single-copy atomicity.

Offset addressing
Means that the memory address is formed by adding or subtracting an offset to or from the base register
value.

Physical address
Identifies a main memory location.

Post-indexed addressing
Means that the memory address is the base register value, but an offset is added to or subtracted from the
base register value and the result is written back to the base register.

Prefetching
Is the process of fetching instructions from memory before the instructions that precede them have finished
executing. Prefetching an instruction does not mean that the instruction has to be executed.

Pre-indexed addressing
Means that the memory address is formed in the same way as for offset addressing, but the memory address
is also written back to the base register.

Privileged access
Memory systems typically check memory accesses from privileged modes against supervisor access
permissions rather than the more restrictive user access permissions. The use of some instructions is also
restricted to privileged modes.
Glossary-6 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Glossary
Protection region
Is a memory region whose position, size, and other properties are defined by Memory Protection Unit
registers.

Protection Unit
See Memory Protection Unit.

Pseudo-instruction
UAL assembler syntax that assembles to an instruction encoding that is expected to disassemble to a
different assembler syntax, and is described in this manual under that other syntax. For example,
MOV <Rd>,<Rm>, LSL #<n> is a pseudo-instruction that is expected to disassemble as LSL <Rd>,<Rm>,#<n>

PSR Program Status Register. See APSR, EPSR, IPSR and xPSR.

RAZ See Read-As-Zero fields.

RAO/SBOP field
Read-As-One, Should-Be-One-or-Preserved on writes.

In any implementation, the bit must read as 1 (or all 1s for a bit field), and writes to the field must be ignored.

Software can rely on the field reading as 1 (or all 1s), but must use an SBOP policy to write to the field.

RAZ/SBZP field
Read-As-Zero, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0 (or all 0s for a bit field), and writes to the field must be ignored.

Software can rely on the field reading as zero, but must use an SBZP policy to write to the field.

Read-As-Zero fields (RAZ)
Appear as zero when read.

Read-Modify-Write fields (RMW)
Are read to a general-purpose register, the relevant fields updated in the register, and the register value
written back.

Reserved
Unless otherwise stated:

• instructions that are reserved or that access reserved registers have UNPREDICTABLE behavior

• bit positions described as Reserved are UNK/SBZP.

Return Link
a value relating to the return address

R/W1C register bits marked R/W1C can be read normally and support write-one-to-clear. A read then write of the
result back to the register will clear all bits set. R/W1C protects against read-modify-write errors occurring
on bits set between reading the register and writing the value back (since they are written as zero, they will
not be cleared).

RAZ/WI Relates to registers or register fields. Read as zero, ignore writes. RAZ can be used on its own.

RO Read only register or register field. RO bits are ignored on write accesses.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-7
Restricted Access Non-Confidential

Glossary
RISC Reduced Instruction Set Computer.

RMW See Read-Modify-Write fields.

Rounding error
Is defined to be the value of the rounded result of an arithmetic operation minus the exact result of the
operation.

Saturated arithmetic
Is integer arithmetic in which a result that would be greater than the largest representable number is set to
the largest representable number, and a result that would be less than the smallest representable number is
set to the smallest representable number. Signed saturated arithmetic is often used in DSP algorithms. It
contrasts with the normal signed integer arithmetic used in ARM processors, in which overflowing results
wrap around from +231–1 to –231 or vice versa.

SBO See Should-Be-One fields.

SBOP See Should-Be-One-or-Preserved fields.

SBZ See Should-Be-Zero fields.

SBZP See Should-Be-Zero-or-Preserved fields.

SCB System Control Block - an address region within the System Control Space used for key feature control and
configuration associated with the exception model.

SCS System Control Space - a 4kB region of the memory map reserved for system control and configuration.

Security hole
Is a mechanism that bypasses system protection.

Set Relates to registers or register fields. Indicates the bit has a value of 1 (or bit field all 1s), or is being written
with 1 or all 1s, unless explicitly stated otherwise.

SWO Serial Wire Output - an asynchronous TPIU port supporting NRZ and/or Manchester encoding.

SWV Serial Wire Viewer - the combination of an SWO and DWT/ITM data tracing capability

Self-modifying code
Is code that writes one or more instructions to memory and then executes them. This type of code cannot be
relied on without the use of barrier instructions to ensure synchronization.

Should-Be-One fields (SBO)
Should be written as 1 (or all 1s for a bit field) by software. Values other than 1 produce UNPREDICTABLE
results.

Should-Be-One-or-Preserved fields (SBOP)
Should be written as 1 (or all 1s for a bit field) by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read, the value
in the field should be preserved by writing the same value that has been previously read from the same field
on the same processor.

Hardware must ignore writes to these fields.
Glossary-8 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Glossary
If a value is written to the field that is neither 1 (or all 1s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

Should-Be-Zero fields (SBZ)
Should be written as 0 (or all 0s for a bit field) by software. Values other than 0 produce UNPREDICTABLE
results.

Should-Be-Zero-or-Preserved fields (SBZP)
Should be written as 0 (or all 0s for a bit field) by software if the value is being written without having been
previously read, or if the register has not been initialized. Where the register was previously read, the value
in the field should be preserved by writing the same value that has been previously read from the same field
on the same processor.

Hardware must ignore writes to these fields.

If a value is written to the field that is neither 0 (or all 0s for a bit field), nor a value previously read for the
same field on the same processor, the result is UNPREDICTABLE.

Signed data types
Represent an integer in the range −2N−1 to +2N−1– 1, using two's complement format.

Signed immediate and offset fields
Are encoded in two’s complement notation unless otherwise stated.

SIMD Means Single-Instruction, Multiple-Data operations.

Single-copy atomicity
Is the form of atomicity described in Single-copy atomicity on page A3-20.

See also Atomicity, Multi-copy atomicity.

Spatial locality
Is the observed effect that after a program has accessed a memory location, it is likely to also access nearby
memory locations in the near future. Caches with multi-word cache lines exploit this effect to improve
performance.

SUBARCHITECTURE DEFINED
Means that the behavior is expected to be specified by a subarchitecture definition. Typically, this will be
shared by multiple implementations, but it must only be relied on by specified types of code. This minimizes
the software changes required when a new subarchitecture has to be developed.

SVC Is a supervisor call.

SWI Is a former term for SVC.

Status registers
See APSR, EPSR, IPSR and xPSR.

Temporal locality
Is the observed effect that after a program has accesses a memory location, it is likely to access the same
memory location again in the near future. Caches exploit this effect to improve performance.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-9
Restricted Access Non-Confidential

ARM_2009_Q4
Inserted Text

Simple sequential execution
The behavior of an implementation that fetches, decodes and completely executes each instruction before proceeding to the next instruction. Such an implementation performs no speculative accesses to memory, including to instruction memory. The implementation does not pipeline any phase of execution. In practice, this is the theoretical execution model that the architecture is based on, and ARM does not expect this model to correspond to a realistic implementation of the architecture.

ARM_2009_Q4
Sticky Note
New entry added.

Glossary
Thumb instruction
Is one or two halfwords that specify an operation for a processor in Thumb state to perform. Thumb
instructions must be halfword-aligned.

TPIU Trace Port Interface Unit - part of the ARM debug architecture

UAL See Unified Assembler Language.

Unaligned
An unaligned access is an access where the address of the access is not aligned to the size of an element of
the access.

Unaligned memory accesses
Are memory accesses that are not, or might not be, appropriately halfword-aligned, word-aligned, or
doubleword-aligned.

Unallocated
Except where otherwise stated, an instruction encoding is unallocated if the architecture does not assign a
specific function to the entire bit pattern of the instruction, but instead describes it as UNDEFINED,
UNPREDICTABLE, or an unallocated hint instruction.

A bit in a register is unallocated if the architecture does not assign a function to that bit.

UNDEFINED
Indicates an instruction that generates an Undefined Instruction exception.

Unified Assembler Language
The assembler language introduced with Thumb-2 technology and used in this document. See Unified
Assembler Language on page A4-4 for details.

Unified cache
Is a cache used for both processing instruction fetches and processing data loads and stores.

Unindexed addressing
Means addressing in which the base register value is used directly as the address to send to memory, without
adding or subtracting an offset. In most types of load/store instruction, unindexed addressing is performed
by using offset addressing with an immediate offset of 0. The LDC, LDC2, STC, and STC2 instructions have an
explicit unindexed addressing mode that permits the offset field in the instruction to be used to specify
additional coprocessor options.

UNKNOWN
An UNKNOWN value does not contain valid data, and can vary from moment to moment, instruction to
instruction, and implementation to implementation. An UNKNOWN value must not be a security hole.
UNKNOWN values must not be documented or promoted as having a defined value or effect.

UNK/SBOP field
UNKNOWN on reads, Should-Be-One-or-Preserved on writes.

In any implementation, the bit must read as 1 (or all 1s for a bit field), and writes to the field must be ignored.

Software must not rely on the field reading as 1 (or all 1s), and must use an SBOP policy to write to the field.
Glossary-10 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

Glossary
UNK/SBZP field
UNKNOWN on reads, Should-Be-Zero-or-Preserved on writes.

In any implementation, the bit must read as 0 (or all 0s for a bit field), and writes to the field must be ignored.

Software must not rely on the field reading as zero, and must use an SBZP policy to write to the field.

UNK field
Contains an UNKNOWN value.

UNPREDICTABLE
Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not represent security holes.
UNPREDICTABLE behavior must not halt or hang the processor, or any parts of the system. UNPREDICTABLE
behavior must not be documented or promoted as having a defined effect.

Unsigned data types
Represent a non-negative integer in the range 0 to +2N−1, using normal binary format.

Watchpoint
Is a debug event triggered by an access to memory, specified in terms of the address of the location in
memory being accessed.

Word Is a 32-bit data item. Words are normally word-aligned in ARM systems.

WO Write only register or register field. WO bits are UNKNOWN on read accesses.

Word-aligned
Means that the address is divisible by 4.

Write buffer
Is a block of high-speed memory whose purpose is to optimize stores to main memory.

WYSIWYG
What You See Is What You Get, an acronym for describing predictable behavior of the output generated.
Display to printed form and software source to executable code are examples of common use.

xPSR Is the term used to describe the combination of the APSR, EPSR and IPSR into a single 32-bit Program
Status Register. See The special-purpose program status registers (xPSR) on page B1-8.
ARM DDI 0403C Copyright © 2006-2008 ARM Limited. All rights reserved. Glossary-11
Restricted Access Non-Confidential

Glossary
Glossary-12 Copyright © 2006-2008 ARM Limited. All rights reserved. ARM DDI 0403C
Non-Confidential Restricted Access

	ARMv7-M Architecture Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this manual
	Using this manual
	Part A, Application level architecture
	Part B, system level architecture
	Part C, debug architecture
	Part D, appendices

	Conventions
	General typographic conventions

	Further reading
	ARM publications

	Feedback
	Feedback on this book

	Application Level Architecture
	Introduction
	A1.1 The ARM Architecture – M profile

	Application Level Programmers’ Model
	A2.1 About the Application level programmers’ model
	A2.1.1 Privileged execution
	A2.1.2 System level architecture

	A2.2 ARM core data types and arithmetic
	A2.2.1 Integer arithmetic
	Shift and rotate operations
	Pseudocode details of addition and subtraction
	Pseudocode details of saturation

	A2.3 Registers and execution state
	A2.3.1 ARM core registers
	Pseudocode details of ARM core register operations

	A2.3.2 The Application Program Status Register (APSR)
	A2.3.3 Execution state support
	A2.3.4 Privileged execution

	A2.4 Exceptions, faults and interrupts
	A2.4.1 System related events

	A2.5 Coprocessor support

	ARM Architecture Memory Model
	A3.1 Address space
	A3.1.1 Virtual versus physical addressing

	A3.2 Alignment support
	A3.2.1 Alignment behavior
	Alignment and data access
	Alignment and updates to the PC

	A3.3 Endian support
	A3.3.1 Control of the Endian Mapping in ARMv7-M
	Instruction alignment and byte ordering

	A3.3.2 Element size and Endianness
	A3.3.3 Instructions to reverse bytes in a general-purpose register

	A3.4 Synchronization and semaphores
	A3.4.1 Exclusive access instructions and Non-shareable memory regions
	A3.4.2 Exclusive access instructions and Shareable memory regions
	Operation of the global monitor

	A3.4.3 Tagging and the size of the tagged memory block
	A3.4.4 Context switch support
	A3.4.5 Load-Exclusive and Store-Exclusive usage restrictions
	A3.4.6 Synchronization primitives and the memory order model

	A3.5 Memory types and attributes and the memory order model
	A3.5.1 Memory types
	A3.5.2 Summary of ARMv7 memory attributes
	A3.5.3 Atomicity in the ARM architecture
	Single-copy atomicity
	Multi-copy atomicity

	A3.5.4 Normal memory
	Non-shareable Normal memory
	Shareable Normal memory
	Write-Through cacheable, Write-Back cacheable and Non-cacheable Normal memory

	A3.5.5 Device memory
	Shareable attribute for Device memory regions

	A3.5.6 Strongly-ordered memory
	A3.5.7 Memory access restrictions

	A3.6 Access rights
	A3.6.1 Privilege level access controls for data accesses
	A3.6.2 Privilege level access controls for instruction accesses

	A3.7 Memory access order
	A3.7.1 Reads and writes
	Reads
	Writes
	Synchronization primitives
	Observability and completion

	A3.7.2 Ordering requirements for memory accesses
	Program order for instruction execution

	A3.7.3 Memory barriers
	Data Memory Barrier (DMB)
	Data Synchronization Barrier (DSB)
	Instruction Synchronization Barrier (ISB)

	A3.8 Caches and memory hierarchy
	A3.8.1 Introduction to caches
	A3.8.2 Implication of caches to the application programmer
	A3.8.3 Preloading caches

	The ARMv7-M Instruction Set
	A4.1 About the instruction set
	A4.1.1 ARMv7-M and interworking support
	A4.1.2 Conditional execution

	A4.2 Unified Assembler Language
	A4.2.1 Conditional instructions
	A4.2.2 Use of labels in UAL instruction syntax

	A4.3 Branch instructions
	A4.4 Data-processing instructions
	A4.4.1 Standard data-processing instructions
	A4.4.2 Shift instructions
	A4.4.3 Multiply instructions
	A4.4.4 Saturating instructions
	A4.4.5 Packing and unpacking instructions
	A4.4.6 Miscellaneous data-processing instructions
	A4.4.7 Divide instructions

	A4.5 Status register access instructions
	A4.6 Load and store instructions
	A4.6.1 Loads to the PC
	A4.6.2 Halfword and byte loads and stores
	A4.6.3 Unprivileged loads and stores
	A4.6.4 Exclusive loads and stores
	A4.6.5 Addressing modes

	A4.7 Load/store multiple instructions
	A4.7.1 Loads to the PC

	A4.8 Miscellaneous instructions
	A4.9 Exception-generating instructions
	A4.10 Coprocessor instructions

	Thumb Instruction Set Encoding
	A5.1 Thumb instruction set encoding
	A5.1.1 UNDEFINED and UNPREDICTABLE instruction set space
	A5.1.2 Use of 0b1111 as a register specifier
	A5.1.3 Use of 0b1101 as a register specifier
	R13[1:0] definition
	32-bit Thumb instruction support for R13
	16-bit Thumb instruction support for R13

	A5.2 16-bit Thumb instruction encoding
	A5.2.1 Shift (immediate), add, subtract, move, and compare
	A5.2.2 Data processing
	A5.2.3 Special data instructions and branch and exchange
	A5.2.4 Load/store single data item
	A5.2.5 Miscellaneous 16-bit instructions
	If-Then, and hints

	A5.2.6 Conditional branch, and supervisor call

	A5.3 32-bit Thumb instruction encoding
	A5.3.1 Data processing (modified immediate)
	A5.3.2 Modified immediate constants in Thumb instructions
	Carry out
	Operation

	A5.3.3 Data processing (plain binary immediate)
	A5.3.4 Branches and miscellaneous control
	Hint instructions
	Miscellaneous control instructions

	A5.3.5 Load/store multiple
	A5.3.6 Load/store dual or exclusive, table branch
	A5.3.7 Load word
	A5.3.8 Load halfword, unallocated memory hints
	A5.3.9 Load byte, memory hints
	A5.3.10 Store single data item
	A5.3.11 Data processing (shifted register)
	Move register and immediate shifts

	A5.3.12 Data processing (register)
	A5.3.13 Miscellaneous operations
	A5.3.14 Multiply, and multiply accumulate
	A5.3.15 Long multiply, long multiply accumulate, and divide
	A5.3.16 Coprocessor instructions

	Thumb Instruction Details
	A6.1 Format of instruction descriptions
	A6.1.1 Instruction section title
	A6.1.2 Introduction to the instruction
	A6.1.3 Instruction encodings
	A6.1.4 Assembler syntax
	Assembler syntax prototype line conventions

	A6.1.5 Pseudocode describing how the instruction operates
	A6.1.6 Exception information
	A6.1.7 Notes

	A6.2 Standard assembler syntax fields
	A6.3 Conditional execution
	A6.3.1 Pseudocode details of conditional execution
	A6.3.2 Conditional execution of undefined instructions
	A6.3.3 ITSTATE
	Pseudocode details of ITSTATE operation

	A6.4 Shifts applied to a register
	A6.4.1 Constant shifts
	Encoding

	A6.4.2 Register controlled shifts
	A6.4.3 Shift operations

	A6.5 Memory accesses
	A6.6 Hint Instructions
	A6.6.1 Memory hints
	A6.6.2 NOP-compatible hints

	A6.7 Alphabetical list of ARMv7-M Thumb instructions
	A6.7.1 ADC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.2 ADC (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.3 ADD (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.4 ADD (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.5 ADD (SP plus immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.6 ADD (SP plus register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.7 ADR
	Assembler syntax
	Operation
	Exceptions

	A6.7.8 AND (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.9 AND (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.10 ASR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.11 ASR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.12 B
	Assembler syntax
	Operation
	Exceptions
	Related encodings

	A6.7.13 BFC
	Assembler syntax
	Operation
	Exceptions

	A6.7.14 BFI
	Assembler syntax
	Operation
	Exceptions

	A6.7.15 BIC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.16 BIC (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.17 BKPT
	Assembler syntax
	Operation
	Exceptions

	A6.7.18 BL
	Assembler syntax
	Operation
	Exceptions
	Note

	A6.7.19 BLX (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.20 BX
	Assembler syntax
	Operation
	Exceptions

	A6.7.21 CBNZ, CBZ
	Assembler syntax
	Operation
	Exceptions

	A6.7.22 CDP, CDP2
	Assembler syntax
	Operation
	Exceptions
	Notes

	A6.7.23 CLREX
	Assembler syntax
	Operation
	Exceptions

	A6.7.24 CLZ
	Assembler syntax
	Operation
	Exceptions

	A6.7.25 CMN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.26 CMN (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.27 CMP (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.28 CMP (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.29 CPS
	Note

	A6.7.30 CPY
	Assembler syntax
	Exceptions

	A6.7.31 DBG
	Assembler syntax
	Operation
	Exceptions

	A6.7.32 DMB
	Assembler syntax
	Operation
	Exceptions

	A6.7.33 DSB
	Assembler syntax
	Operation
	Exceptions

	A6.7.34 EOR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.35 EOR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.36 ISB
	Assembler syntax
	Operation
	Exceptions

	A6.7.37 IT
	Assembler syntax
	Operation
	Exceptions
	Related encodings

	A6.7.38 LDC, LDC2 (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.39 LDC, LDC2 (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.40 LDM / LDMIA / LDMFD
	Assembler syntax
	Operation
	Exceptions

	A6.7.41 LDMDB / LDMEA
	Assembler syntax
	Operation
	Exceptions

	A6.7.42 LDR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.43 LDR (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.44 LDR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.45 LDRB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.46 LDRB (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.47 LDRB (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.48 LDRBT
	Assembler syntax
	Operation
	Exceptions

	A6.7.49 LDRD (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.50 LDRD (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.51 LDREX
	Assembler syntax
	Operation
	Exceptions

	A6.7.52 LDREXB
	Assembler syntax
	Operation
	Exceptions

	A6.7.53 LDREXH
	Assembler syntax
	Operation
	Exceptions

	A6.7.54 LDRH (immediate)
	Assembler syntax
	Operation
	Exceptions
	Unallocated memory hints

	A6.7.55 LDRH (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.56 LDRH (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.57 LDRHT
	Assembler syntax
	Operation
	Exceptions

	A6.7.58 LDRSB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.59 LDRSB (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.60 LDRSB (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.61 LDRSBT
	Assembler syntax
	Operation
	Exceptions

	A6.7.62 LDRSH (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.63 LDRSH (literal)
	Assembler syntax
	Operation
	Exceptions
	Unallocated memory hints

	A6.7.64 LDRSH (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.65 LDRSHT
	Assembler syntax
	Operation
	Exceptions

	A6.7.66 LDRT
	Assembler syntax
	Operation
	Exceptions

	A6.7.67 LSL (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.68 LSL (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.69 LSR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.70 LSR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.71 MCR, MCR2
	Assembler syntax
	Operation
	Exceptions
	Notes

	A6.7.72 MCRR, MCRR2
	Assembler syntax
	Operation
	Exceptions

	A6.7.73 MLA
	Assembler syntax
	Operation
	Exceptions

	A6.7.74 MLS
	Assembler syntax
	Operation
	Exceptions

	A6.7.75 MOV (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.76 MOV (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.77 MOV (shifted register)
	Assembler syntax
	Exceptions

	A6.7.78 MOVT
	Assembler syntax
	Operation
	Exceptions

	A6.7.79 MRC, MRC2
	Assembler syntax
	Operation
	Exceptions

	A6.7.80 MRRC, MRRC2
	Assembler syntax
	Operation
	Exceptions

	A6.7.81 MRS
	Note

	A6.7.82 MSR (register)
	Note

	A6.7.83 MUL
	Assembler syntax
	Operation
	Exceptions

	A6.7.84 MVN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.85 MVN (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.86 NEG
	Assembler syntax
	Exceptions

	A6.7.87 NOP
	Assembler syntax
	Operation
	Exceptions

	A6.7.88 ORN (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.89 ORN (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.90 ORR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.91 ORR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.92 PLD, PLDW (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.93 PLD (literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.94 PLD (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.95 PLI (immediate, literal)
	Assembler syntax
	Operation
	Exceptions

	A6.7.96 PLI (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.97 POP
	Assembler syntax
	Operation
	Exceptions

	A6.7.98 PUSH
	Assembler syntax
	Operation
	Exceptions

	A6.7.99 RBIT
	Assembler syntax
	Operation
	Exceptions

	A6.7.100 REV
	Assembler syntax
	Operation
	Exceptions

	A6.7.101 REV16
	Assembler syntax
	Operation
	Exceptions

	A6.7.102 REVSH
	Assembler syntax
	Operation
	Exceptions

	A6.7.103 ROR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.104 ROR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.105 RRX
	Assembler syntax
	Operation
	Exceptions

	A6.7.106 RSB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.107 RSB (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.108 SBC (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.109 SBC (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.110 SBFX
	Assembler syntax
	Operation
	Exceptions

	A6.7.111 SDIV
	Assembler syntax
	Operation
	Exceptions
	Notes

	A6.7.112 SEV
	Assembler syntax
	Operation
	Exceptions

	A6.7.113 SMLAL
	Assembler syntax
	Operation
	Exceptions

	A6.7.114 SMULL
	Assembler syntax
	Operation
	Exceptions

	A6.7.115 SSAT
	Assembler syntax
	Operation
	Exceptions

	A6.7.116 STC, STC2
	Assembler syntax
	Operation
	Exceptions

	A6.7.117 STM / STMIA / STMEA
	Assembler syntax
	Operation
	Exceptions

	A6.7.118 STMDB / STMFD
	Assembler syntax
	Operation
	Exceptions

	A6.7.119 STR (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.120 STR (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.121 STRB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.122 STRB (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.123 STRBT
	Assembler syntax
	Operation
	Exceptions

	A6.7.124 STRD (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.125 STREX
	Assembler syntax
	Operation
	Exceptions

	A6.7.126 STREXB
	Assembler syntax
	Operation
	Exceptions

	A6.7.127 STREXH
	Assembler syntax
	Operation
	Exceptions

	A6.7.128 STRH (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.129 STRH (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.130 STRHT
	Assembler syntax
	Operation
	Exceptions

	A6.7.131 STRT
	Assembler syntax
	Operation
	Exceptions

	A6.7.132 SUB (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.133 SUB (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.134 SUB (SP minus immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.135 SUB (SP minus register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.136 SVC (formerly SWI)
	Assembler syntax
	Operation
	Exceptions

	A6.7.137 SXTB
	Assembler syntax
	Operation
	Exceptions

	A6.7.138 SXTH
	Assembler syntax
	Operation
	Exceptions

	A6.7.139 TBB, TBH
	Assembler syntax
	Operation
	Exceptions

	A6.7.140 TEQ (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.141 TEQ (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.142 TST (immediate)
	Assembler syntax
	Operation
	Exceptions

	A6.7.143 TST (register)
	Assembler syntax
	Operation
	Exceptions

	A6.7.144 UBFX
	Assembler syntax
	Operation
	Exceptions

	A6.7.145 UDIV
	Assembler syntax
	Operation
	Exceptions

	A6.7.146 UMLAL
	Assembler syntax
	Operation
	Exceptions

	A6.7.147 UMULL
	Assembler syntax
	Operation
	Exceptions

	A6.7.148 USAT
	Assembler syntax
	Operation
	Exceptions

	A6.7.149 UXTB
	Assembler syntax
	Operation
	Exceptions

	A6.7.150 UXTH
	Assembler syntax
	Operation
	Exceptions

	A6.7.151 WFE
	Assembler syntax
	Operation
	Exceptions

	A6.7.152 WFI
	Assembler syntax
	Operation
	Exceptions
	Notes

	A6.7.153 YIELD
	Assembler syntax
	Operation
	Exceptions

	System Level Architecture
	System Level Programmers’ Model
	B1.1 Introduction to the system level
	B1.2 ARMv7-M: a memory mapped architecture
	B1.3 System level operation and terminology overview
	B1.3.1 Modes, Privilege and Stacks
	B1.3.2 Exceptions
	Priority Levels and Execution Pre-emption
	Exception Return

	B1.3.3 Execution State
	B1.3.4 Debug State

	B1.4 Registers
	B1.4.1 The SP registers
	B1.4.2 The special-purpose program status registers (xPSR)
	B1.4.3 The special-purpose mask registers
	B1.4.4 The special-purpose control register
	B1.4.5 Reserved special-purpose register bits
	B1.4.6 Special-purpose register updates and the memory order model
	B1.4.7 Register related definitions for pseudocode
	Pseudocode details for ARM core register access in the Thumb instruction set

	B1.5 Exception model
	B1.5.1 Overview of the exceptions supported
	B1.5.2 Exception number definition
	B1.5.3 The vector table
	B1.5.4 Exception priorities and pre-emption
	Priority grouping
	Execution priority and priority boosting within the core
	Priority escalation
	SVCall, PendSV and critical region code avoidance

	B1.5.5 Reset behavior
	B1.5.6 Exception entry behavior
	B1.5.7 Stack alignment on exception entry
	Theory of operation
	Compatibility

	B1.5.8 Exception return behavior
	Integrity checks on exception returns
	Exception return operation

	B1.5.9 Exceptions in single-word load operations
	B1.5.10 Exceptions in LDM and STM operations
	Load multiple and PC in load list
	Load-store multiple, base register update and the ICI bits

	B1.5.11 Exceptions on exception entry
	Late arriving exceptions
	Derived exceptions

	B1.5.12 Tail-chaining and exceptions on exception return
	Derived exceptions
	Tail-chaining
	Use of tail-chaining as an optimization for pending exceptions
	Late arrival pre-emption and tail-chaining during exception returns

	B1.5.13 Exception status and control
	B1.5.14 Fault behavior
	Fault status and address information

	B1.5.15 Unrecoverable exception cases
	B1.5.16 Reset management
	Reset and debug

	B1.5.17 Power management
	B1.5.18 Wait For Event and Send Event
	WFE wake-up events
	The Event Register
	The Send Event instruction
	The Wait For Event instruction
	Pseudocode details of the Wait For Event lock mechanism

	B1.5.19 Wait For Interrupt
	Using WFI to indicate an idle state on bus interfaces
	Pseudocode details of Wait For Interrupt

	System Memory Model
	B2.1 Introduction
	B2.2 Pseudocode details of general memory system operations
	B2.2.1 Memory data type definitions
	B2.2.2 Basic memory accesses
	B2.2.3 Interfaces to memory system specific pseudocode
	B2.2.4 Aligned memory accesses
	B2.2.5 Unaligned memory accesses
	B2.2.6 Reverse endianness
	B2.2.7 Pseudocode details of operations on exclusive monitors
	B2.2.8 Access permission checking
	B2.2.9 MPU access control decode
	B2.2.10 Default memory access decode
	B2.2.11 MemManage fault handling

	System Address Map
	B3.1 The system address map
	B3.1.1 General rules applying to PPB register access

	B3.2 System Control Space (SCS)
	B3.2.1 System control and ID blocks
	The Interrupt Controller Type Register (ICTR)
	The Auxiliary Control Register (ACTLR)

	B3.2.2 System ID register support in the SCS
	CPU attribute ID registers

	B3.2.3 The System Control Block (SCB)
	Interrupt Control State Register (ICSR)
	Vector Table Offset Register (VTOR)
	Application Interrupt and Reset Control Register (AIRCR)
	System Control Register (SCR)
	Configuration and Control Register (CCR)
	System Handler Priority Register 1 (SHPR1)
	System Handler Priority Register 2 (SHPR2)
	System Handler Priority Register 3 (SHPR3)
	System Handler Control and State Register (SHCSR)
	Configurable Fault Status Registers (UserFault, BusFault, and MemManage)
	HardFault Status register (HFSR)
	Debug Fault Status Register (DFSR)
	Auxiliary Fault Status Register (AFSR)
	MemManage Address Register (MMFAR)
	BusFault Address Register (BFAR)
	Coprocessor Access Control Register (CPACR)
	Software Trigger Interrupt Register (STIR)

	B3.3 System timer - SysTick
	B3.3.1 Theory of operation
	B3.3.2 System timer register support in the SCS
	SysTick Control and Status Register (SYST_CSR)
	SysTick Reload Value Register (SYST_RVR)
	SysTick Current Value Register (SYST_CVR)
	SysTick Calibration value Register (SYST_CALIB)

	B3.4 Nested Vectored Interrupt Controller (NVIC)
	B3.4.1 Theory of operation
	External interrupt input behavior

	B3.4.2 NVIC register support in the SCS
	Interrupt Controller Type Register (ICTR)
	Interrupt Set-Enable and Clear-Enable Registers (NVIC_ISERx and NVIC_ICERx)
	Interrupt Set-Pending and Clear-Pending Registers (NVIC_ISPRx and NVIC_ICPRx)
	Active Bit Register (NVIC_IABRx)
	Interrupt Priority Register (NVIC_IPRx)

	B3.5 Protected Memory System Architecture (PMSAv7)
	B3.5.1 PMSAv7 compliant MPU operation
	Sub-region support
	ARMv7-M specific support
	MPU pseudocode
	MPU fault support

	B3.5.2 Register support for PMSAv7 in the SCS
	MPU Type Register (MPU_TYPE)
	MPU Control Register (MPU_CTRL)
	MPU Region Number Register (MPU_RNR)
	MPU Region Base Address Register (MPU_RBAR)
	MPU Region Attribute and Size Register (MPU_RASR)
	MPU alias register support

	ARMv7-M System Instructions
	B4.1 Alphabetical list of ARMv7-M system instructions
	B4.1.1 CPS
	Assembler syntax
	Operation
	Exceptions
	Notes

	B4.1.2 MRS
	Assembler syntax
	Operation
	Exceptions
	Notes

	B4.1.3 MSR (register)
	Assembler syntax
	Operation
	Exceptions
	Notes

	Debug Architecture
	ARMv7-M Debug
	C1.1 Introduction to debug
	C1.2 The Debug Access Port (DAP)
	C1.2.1 General rules applying to debug register access

	C1.3 Overview of the ARMv7-M debug features
	C1.3.1 Debug authentication
	C1.3.2 External debug request
	C1.3.3 External restart request
	DBGRESTART and DBGRESTARTED

	C1.3.4 Debug support in ARMv7-M
	Recommended levels of debug

	C1.4 Debug and reset
	C1.5 Debug event behavior
	C1.5.1 Debug stepping
	Debug monitor stepping

	C1.6 Debug register support in the SCS
	C1.6.1 Debug Fault Status Register (DFSR)
	C1.6.2 Debug Halting Control and Status Register (DHCSR)
	C1.6.3 Debug Core Register Selector Register (DCRSR)
	C1.6.4 Debug Core Register Data Register (DCRDR)
	C1.6.5 Debug Exception and Monitor Control Register (DEMCR)
	Vector catch support

	C1.7 Instrumentation Trace Macrocell (ITM) support
	C1.7.1 Theory of operation
	Timestamp support
	Synchronization support

	C1.7.2 Register support for the ITM
	Stimulus Portx Register - ITM_STIM[255:0] (0xE0000000 to 0xE00003FC)
	Trace Enable Register - ITM_TER[7:0] (0xE0000E00 to 0xE0000E1C)
	Trace Privilege Register - ITM_TPR (0xE0000E40)
	Trace Control Register – ITM_TCR (0xE0000E80)

	C1.8 Data Watchpoint and Trace (DWT) support
	C1.8.1 Theory of operation
	Exception trace support
	Cycle counter and PC sampling support
	Profiling counter support
	Profiling counter accuracy
	Program counter sampling support
	Comparator support
	LinkAddr() support
	Comparator support - cycle count matching
	Comparator support - instruction address matching
	Comparator support - data address matching
	Comparator support - watchpoint data value matching

	C1.8.2 Register support for the DWT
	Control Register (DWT_CTRL)
	Cycle Count Register (DWT_CYCCNT)
	CPI Count Register (DWT_CPICNT)
	Exception Overhead Count Register (DWT_EXCCNT)
	Sleep Count Register (DWT_SLEEPCNT)
	LSU Count Register (DWT_LSUCNT)
	Folded-instruction Count Register (DWT_FOLDCNT)
	Program Counter Sample Register (DWT_PCSR)
	Comparator Register (DWT_COMPx)
	Mask Register (DWT_MASKx)
	Function Register (DWT_FUNCTIONx)

	C1.9 Embedded Trace (ETM) support
	C1.10 Trace Port Interface Unit (TPIU)
	C1.10.1 The TPIU Programmers’ Model
	Supported Synchronous Port Sizes Register (TPIU_SSPSR, 0xE0040000)
	Current Synchronous Port Size Register (TPIU_CSPSR, 0xE0040004)
	Asynchronous Clock Prescaler Register (TPIU_ACPR, 0xE0040010)
	Selected Pin Protocol Register (TPIU_SPPR, 0xE00400F0)
	TPIU Type Register (TPIU_TYPE, 0xE0040FC8)

	C1.11 Flash Patch and Breakpoint (FPB) support
	C1.11.1 Theory of operation
	C1.11.2 Register support for the FPB
	FlashPatch Control Register (FP_CTRL)
	FlashPatch Remap Register (FP_REMAP)
	FlashPatch Comparator Register – instruction comparison (FP_COMPx)
	FlashPatch Comparator Register – literal comparison (FP_COMPx)

	Appendices
	CPUID
	A.1 Core Feature ID Registers
	A.1.1 Convention for CPUID attribute descriptions

	A.2 Processor Feature register0 (ID_PFR0)
	A.3 Processor Feature register1 (ID_PFR1)
	A.4 Debug Features register0 (ID_DFR0)
	A.5 Auxiliary Features register0 (ID_AFR0)
	A.6 Memory Model Feature registers
	A.6.1 Memory Model Feature register0 (ID_MMFR0)
	A.6.2 Memory Model Feature register1 (ID_MMFR1)
	A.6.3 Memory Model Feature register2 (ID_MMFR2)
	A.6.4 Memory Model Feature register3 (ID_MMFR3)

	A.7 Instruction Set Attribute registers – background information
	A.7.1 The basic instruction set
	A.7.2 General rules
	A.7.3 Q flag support
	A.7.4 MOV instructions
	A.7.5 Non-MOV data-processing instructions
	A.7.6 Multiply instructions
	A.7.7 Branches
	A.7.8 Load/store single instructions
	A.7.9 Load/store multiple instructions

	A.8 Instruction Set Attribute registers – details
	A.8.1 Instruction Set Attributes Register0 (ID_ISAR0)
	A.8.2 Instruction Set Attributes Register1 (ID_ISAR1)
	A.8.3 Instruction Set Attributes Register2 (ID_ISAR2)
	A.8.4 Instruction Set Attributes Register3 (ID_ISAR3)
	A.8.5 Instruction Set Attributes Register3 (ID_ISAR4)

	ARMv7-M infrastructure IDs
	Legacy Instruction Mnemonics
	C.1 Thumb instruction mnemonics
	C.2 Pre-UAL pseudo-instruction NOP

	Deprecated Features in ARMv7-M
	Debug ITM and DWT packet protocol
	E.1 Packet Types
	E.1.1 Sync Packet
	E.1.2 Overflow Packet
	E.1.3 Timestamp Packet
	E.1.4 Software Instrumentation Packet
	E.1.5 Hardware Source Packet
	E.1.6 Extension Packets
	E.1.7 Reserved Encodings
	E.1.8 Multiple Source Arbitration

	E.2 DWT packet formats
	E.2.1 Event Packets – Discriminator ID0
	E.2.2 Exception Trace Packets – Discriminator ID1
	E.2.3 PC Sample Packets – Discriminator ID2
	E.2.4 Data Trace (Watchpoint) Packets – Discriminator ID8 to ID23
	Packet format - data trace PC sampling
	Packet format - data trace address offset

	ARMv7-R differences
	F.1 Endian support
	F.2 Application level support
	F.3 System level support
	F.4 Debug support

	Pseudocode definition
	G.1 Instruction encoding diagrams and pseudocode
	G.1.1 Pseudocode

	G.2 Limitations of pseudocode
	G.3 Data Types
	G.3.1 General data type rules
	G.3.2 Bitstrings
	G.3.3 Integers
	G.3.4 Reals
	G.3.5 Booleans
	G.3.6 Enumerations
	G.3.7 Lists
	G.3.8 Arrays

	G.4 Expressions
	G.4.1 General expression syntax
	G.4.2 Operators and functions - polymorphism and prototypes
	G.4.3 Precedence rules

	G.5 Operators and built-in functions
	G.5.1 Operations on generic types
	Equality and non-equality testing
	Conditional selection

	G.5.2 Operations on booleans
	G.5.3 Bitstring manipulation
	Bitstring length and top bit
	Bitstring concatenation and replication
	Bitstring extraction
	Logical operations on bitstrings
	Bitstring count
	Testing a bitstring for being all zero or all ones
	Lowest and highest set bits of a bitstring
	Zero-extension and sign-extension of bitstrings
	Converting bitstrings to integers

	G.5.4 Arithmetic
	Unary plus, minus and absolute value
	Addition and subtraction
	Comparisons
	Multiplication
	Division and modulo
	Square Root
	Rounding and aligning
	Scaling
	Maximum and minimum

	G.6 Statements and program structure
	G.6.1 Simple statements
	Assignments
	Procedure calls
	Return statements
	UNDEFINED
	UNPREDICTABLE
	SEE...
	IMPLEMENTATION_DEFINED
	SUBARCHITECTURE_DEFINED

	G.6.2 Compound statements
	if ... then ... else ...
	repeat ... until ...
	while ... do
	for ...
	case ... of ...
	Procedure and function definitions

	G.6.3 Comments

	G.7 Miscellaneous helper procedures and functions
	G.7.1 ArchVersion()
	G.7.2 BadReg()
	G.7.3 BreakPoint()
	G.7.4 CallSupervisor()
	G.7.5 ConditionPassed()
	G.7.6 Coproc_Accepted()
	G.7.7 Coproc_DoneLoading()
	G.7.8 Coproc_DoneStoring()
	G.7.9 Coproc_GetOneWord()
	G.7.10 Coproc_GetTwoWords()
	G.7.11 Coproc_GetWordToStore()
	G.7.12 Coproc_InternalOperation()
	G.7.13 Coproc_SendLoadedWord()
	G.7.14 Coproc_SendOneWord()
	G.7.15 Coproc_SendTwoWords()
	G.7.16 DataMemoryBarrier()
	G.7.17 DataSynchronizationBarrier()
	G.7.18 EncodingSpecificOperations()
	G.7.19 GenerateCoprocessorException()
	G.7.20 GenerateIntegerZeroDivide()
	G.7.21 Hint_Debug()
	G.7.22 Hint_PreloadData()
	G.7.23 Hint_PreloadDataForWrite()
	G.7.24 Hint_PreloadInstr()
	G.7.25 Hint_SendEvent()
	G.7.26 Hint_Yield()
	G.7.27 InstructionSynchronizationBarrier()
	G.7.28 IntegerZeroDivideTrappingEnabled()
	G.7.29 ProcessorID()
	G.7.30 SetPending()
	G.7.31 ThisInstr()

	Pseudocode Index
	H.1 Pseudocode operators and keywords
	H.2 Pseudocode functions and procedures

	Register Index
	I.1 ARM core registers
	I.2 Memory mapped system registers
	I.3 Memory mapped debug registers

	Glossary

