
When FPGAs are better at floating-point

than microprocessors

Florent de Dinechin, Jérémie Detrey Octavian Creţ, Radu Tudoran

LIP, École Normale Supérieure de Lyon Computer Science Department

(CNRS/INRIA/ENS-Lyon/Univ. Lyon 1) Technical University of Cluj-Napoca

Florent.de.Dinechin@ens-lyon.fr Octavian.Cret@cs.utcluj.ro

LIP research report RR2007-40

Abstract

It has been shown that FPGAs could outperform
high-end microprocessors on floating-point compu-
tations thanks to massive parallelism. However,
most previous studies re-implement in the FPGA the
operators present in a processor. This is a safe and
relatively straightforward approach, but it doesn’t
exploit the greater flexibility of the FPGA. This arti-
cle is a survey of the many ways in which the FPGA
implementation of a given floating-point compu-
tation can be not only faster, but also more accu-
rate than its microprocessor counterpart. Techniques
studied here include custom precision, specific accu-
mulator design, dedicated architectures for coarser
operators which have to be implemented in software
in processors, and others. A real-world biomedi-
cal application illustrates these claims. This study
also points to how current FPGA fabrics could be en-
hanced for better floating-point support.

1 Introduction

Floating-point (FP) is mostly a commodity: In the-
ory, any application processing real numbers, af-
ter a careful analysis of its input, output and inter-
nal data, could be implemented using only fixed-
point arithmetic. For most applications (not all),
such a fixed-point implementation would even be
more efficient than its floating-point counterpart, for
the floating-point operators are much more complex
and costly than the fixed-point equivalents. Unfor-
tunately, there is currently no hope to fully auto-
mate the transformation of a computation on real

numbers into a fixed-point program. This requires
specific expertise and may be very tedious when
done by hand. The floating-point representation
solves this problem by dynamically adapting the
number representation to the order of magnitude
of the data. It may not be economical in terms of
hardware resources or latency, but it becomes so as
soon as design effort is taken into account. This ex-
plains why most general-purpose processors have
included floating-point units since the late 80s.

Feasibility of FP on FPGA was studied long be-
fore it became a practical possibility [37, 27, 29].
The turning point was the beginning of the century:
Many libraries of floating-point operators were pub-
lished almost simultaneously (see [32, 24, 28, 36]
among other). The increase of capacity of FPGAs
soon meant that they could provide more FP com-
puting power than a processor in single precision
[32, 28, 36], then in double-precision [41, 16, 8]. Here
single precision (SP) is the standard 32-bit format
consisting of a sign bit, 8 bits of exponent and 23
mantissa bits, while double-precision (DP) is the
standard 64-bit format with 11 bits of exponent and
52 mantissa bits. Since then, FPGAs have been in-
creasingly used to accelerate scientific, financial or
other FP-based computations. This performance is
essentially due to massive parallelism, as basic FP
operators in an FPGA are typically slower than their
processor counterparts by one order of magnitude.
This is the intrinsic performance gap between recon-
figurable logic and the full-custom VLSI technology
used to build the processor’s FP unit.

Most of the aforementionned applications are
very close, from the arithmetic point of view, to their

1



microprocessor counterpart. They use the same ba-
sic operators, although the internal architecture of
the operators may be highly optimized for FPGAs
[30]. Besides, although most published FP libraries
are fully parameterizable in mantissa length and ex-
ponent length, applications rarely exploit this flexi-
bility: with a few exceptions [36, 41], all of them use
either the SP or the DP formats. None, to our knowl-
edge, uses original FP operators designed specifi-
cally for FPGA computing.

This article is a survey on how the flexibility of the
FPGA target can be better employed in the floating-
point realm. Section 2 describes a complete appli-
cation used here as a running example. Section 3
discusses mixing and matching fixed- and floating-
point of various precisions. Section 4 discusses the
issue of floating-point accumulation, showing how
to obtain faster and more accurate results thanks to
operators that are very different from those avail-
able in processor FPUs. Section 5 surveys several
coarser operators (euclidean norm, elementary func-
tions, etc) that are ubiquitous enough to justify that
specific architectures are designed for them. The re-
sulting operators may be smaller, faster and more ac-
curate than a combination of basic library operators.
The last section concludes and discusses how cur-
rent FPGA hardware could be enhanced for better
FP support.

This article is mostly a prospective survey, how-
ever it introduces and details several novel opera-
tors in Section 4 and Section 5. Another transversal
contribution is to show how to make the best use of
existing operators thanks to back-of-the-enveloppe
error analysis.

2 Running example: inductivity

computation

Let us now briefly describle the application (de-
scribed in more details in [40]) that motivated this
work. It consists in computing the inductance of a
set of coils used for the magnetic stimulation of the
nervous system. Each coil consists of several layers
of spires, each spire is divided in segments (see Fig-
ure 1), and the computation consists in numerically
integrating the mutual inductance of each pair of el-
ementary wire segments. This computation has to
be fast enough to enable trial-and-error design of the
set of coils (a recent PC takes several hours even for
simple coil configurations). However, the final result

Figure 1: Three small coil configurations

has to be accurate to a few digits only.
This integration process consists of 8 nested loops,

the core of which is an accumulation given below:

Acc = Acc +
v1

v2

× log
v3 + v2 − v5

v2

v4 − v5

v2

. (1)

Here the vi are intermediate variables computed
as combinatorial functions of the parameters of the
coil segments (mostly 3D cartesian coordinates read
from a RAM) and an integration variable t, using ba-
sic arithmetic operations:

v1 = (x1 − x0)(x3 − x2) + (y1 − y0)(y3 − y2)

+ (z1 − z0)(z3 − z2) (2)

v2 =
√

(x3 − x2)2 + (y3 − y2)2 + (z3 − z2)2 (3)

... (the definitions of the other variables are similar)

It is important to note that the only loop depen-
dency, in this computation, is in the accumulator: All
the values to be summed can be computed in paral-
lel. This makes this application an easy one, from the
point of view of parallelism but also of error analy-
sis, as the sequel will show.

3 Using flexible formats

This section does not introduce anything new, how-
ever it defines the core of our approach: when us-
ing floating-point, one should dedicate some effort
to make the best use of the flexibility of available



building blocks. We show that the required analy-
sis is not necessarily difficult, and we demonstrate
its benefits.

3.1 Inputs and outputs

Most of the interface of a computing system is intrin-
sically in fixed-point. To our knowledge, no sensor
or analog-to-digital converter provides a floating-
point output (some use a logarithmic scale, though),
not to mention the 64-bit resolution of a DP number.
Similarly, very few engineers are interested in the re-
sult’s digits after the 5th. However, as soon as one
wants to compute hassle-free on such data with a
commodity processor, the straightforward approach
is to cast the input to DP, do all the computation us-
ing the native DP operators of the processor, and
then print out only the few digits you’re interested
in. This is absolutely valid on a processor, where the
DP operators are available anyway and highly opti-
mized.

3.2 Computing just right

With the fine-granularity of the FPGA, however, you
pay for every bit of precision, so it would make sense
to compute with “just the right precision”. In some
cases, reducing the precision means reducing the
hardware consumption, hence having a design that
fits in a given device, or removing the need to par-
tition a design. Reducing the precision also means
computing faster, all the more as hardware reduc-
tion may also allow for more parallelism. Finally, it-
erative convergence algorithms may expose a trade-
off between a larger number of iterations due to re-
duced accuracy, and a smaller iteration delay [23].

However, it is striking how few [36, 41] of the
applications published on FPGAs actually diverge
from the processor-based approach, and use a pre-
cision different from the standard single (32 bit) and
double (64 bit) precisions. One reason, of course, is
that a designer doesn’t want to add a parameter –
the precision – to each operator of a design that is
already complex to set up.

3.3 What do you want to compute?

Another, deeper reason of using standard formats
is often the concern to ensure a strict compatibility
with a trusted reference software, if only for debug-
ging purpose. Athough it is not the main object of

this article, we believe that this conservative, struc-
tural approach should ultimately be replaced with a
more behavioral one: the behaviour of a floating-point
module should be specified as a desired mathematical rela-
tionship between its inputs and outputs.

As an example of the benefits of such approach,
consider that it is already used for very small mod-
ules with a clean mathematical specification, such as
elementary function (exp, log, sine, etc) or the the

euclidean norm
√

x2 + y2 + z2. We will see in sec-
tion 5 the benefits of such a clean specification: us-
ing internal algorithms designed for the FPGA, we
are able to desing operators for such modules that
are numerically compatible with the software ones
[13], or provably always more accurate.

The main problem with such behavioral specifica-
tion, however, is that it is not supported by current
mainstream programming languages, probably be-
cause a compiler for such a language is currently out
of reach.

However, an ad-hoc study of the precision re-
quirements of an application is often possible, if not
for the whole of an application, at least for parts
of it. Although this requires an expertise which is
rarely associated with circuit design, we now illus-
trate on our example application that a back-of-the-
enveloppe precision analysis may already provide
valuable information and lead to improvements in
both performance and accuracy. This approach is
very general. For instance, the interested reader will
find similar analysis for the implementation of ele-
mentary functions in [11].

3.4 Mixing and matching fixed- and
floating-point in the coils application

We know that the coils will be built with a precision
of at best 10−3. Their geometries are expressed in
terms of 3D cartesian coordinates, which are intrin-
sically fixed-point numbers.

This suggests that the coordinate inputs, instead
of SP, could be 11-bit fixed-point numbers, whose
resolution (1/2048) is enough for the problem at
hand. Now consider the implementations of equa-
tions (2) and (3): we first substract coordinates, then
multiply the results, then sum then up, then possi-
bly take the square root. If the inputs are fixed-point
numbers, it becomes natural to do the subtractions
in fixed-point (it will be exact, without any round-
ing error). Similarly, we may perform exact multi-
plications in fixed point, keeping all the 22 bits of



very different exponentstypical addition identical exponents: errorless subtraction

Figure 2: Special cases of floating-point addition

LZC+shift

exponent fraction

FP
√

X2 X2 X2

11

22

24

8

fixed- to floating-point
conversion

23

11 11

222222

fixed point

11 1111 111111

Figure 3: An ad-hoc datapath for Eq. (3)

the results. The sum of three such terms fits in the 24
bits of a SP mantissa.

It is therefore natural to switch to floating-point
only at that time, when square root and divisions
come into play – the easy back-of-the-enveloppe
evaluation of the required precision indeed stops
with these operators. The conversion to FP will be
errorless, as the numbers fit on 24 bits. However
it requires a dedicated operator which will mostly
have to count the leading zeroes of the fixed-point
numbers to determine their exponent, and shift the
mantissa by this amount to bring the leading one in
the first position.

To sum up (see Figure 3), we have replaced 3 SP
subtractions, 3 SP multiplications and 2 SP addi-
tions with as many fixed-point operators, at the cost
of one final fixed-to-floating-point conversion (in
the initial, all-SP implementation, these conversions
were free, since they were done in software when
filling the RAMs with the coordinates). We have
proven that all the replacement operations were er-
rorless. Indeed, they were already in the full SP ver-
sion, which also shows that all the rounding hard-
ware present in this version went unused.

Considering the implementation of an FP adder
given at Figure 4, the saving of resources is tremen-
dous. Remark that the hardware for the final conver-
sion is actually smaller than the LZC (leading zero
counter)+shift part of the close path in this figure.
Concerning the multiplications, a 11 × 11 → 22-bit
fixed-point multiplication will consume only one of
the DSP blocks of a Virtex device, where a SP mul-
tiplication consumes four of them. Also, the cycle
count of these fixed-point operations is much lower
than that of their floating-point counterpart, which
will save a tremendous number of registers: we are
able to remove more than 20 32-bit registers from the
implementation of (1) depicted in [40].

Note that if, for some reason, we need more than
11 bits of resolution for the coordinates, the flexibil-
ity of the FPGA will allow us to design a similar er-
rorless datapath, with a single final rounding when
converting to SP, or with the possibility of convert-
ing to a format larger than SP.

This analysis could also be used to reduce the size
of the exponent of the FP format to ⌈log2(24)⌉ = 5
bits. However, the cost of an overestimated expo-
nent size is very small, so we may quietly keep the 8
bits of the SP format.

3.5 Fast approximate comparisons

There are many other ways in which fixed- and
floating-point can be mixed easily. Here is another
example. There are many situations where an ap-
proximate floating-point comparison is enough, and
this comparison is on the critical path. A typical
example is a while(epsilon>threshold) con-
dition in a numerical iterative algorithm, where
threshold is somehow arbitrary. In this case, con-
sider the following: the features of the IEEE-754 for-
mat (normalized mantissas, implicit leading 1, and
biased exponent), have been designed in such a way
that positive floating-point numbers are sorted by
lexicographic order of their binary representation
[18] – this even extends to subnormal numbers. As



a consequence, comparison of positive numbers can
be implemented by an integer subtractor or com-
parator inputting the binary representations consid-
ered as integers. Indeed, the latency of FP compare
operations is always much smaller than that of FP
add/subtract. Furthermore, approximate compari-
son can be obtained by integer comparison of a cho-
sen number of most significant bits. For example, if
epsilon is computed as a DP number (64 bits) but
the comparison to threshold is acceptable with a
2−10 ≈ 10−3 relative error, then a valid implementa-
tion of this comparison is a 21-bit integer comparator
inputting the 21 most significant bits of epsilon (its
11 exponent bits, and 10 bits of mantissa).

An extreme instance of the previous is the follow-
ing: A common recipe to increase the accuracy of
an FP accumulation is to sort the input numbers be-
fore summing them [19]. In the general case (sum of
arbitrary numbers) or in the case when all the sum-
mands have the same sign, they should be sorted by
increasing order of magnitude. However, if the re-
sult is expected to be small, but some summands
are large and shall cancel each other in the accu-
mulation, a sum by decreasing orders of magnitude
shall be preferred. In both cases, the motivation is to
add numbers whose mantissas are aligned (see Fig-
ure 2). Otherwise, the lower bits of the smaller num-
ber are rounded off, meaning that the information
they hold will be discarded. This shows that it will
be enough to sort the summands according to their ex-
ponents only.

Another point of view on the same issue is that
the exponents can be used to predict the behaviour
of following operations. For instance, if the ex-
ponents are equal, a subtraction will be exact (no
rounding error). If they are very different, an addi-
tion/subtraction will return the larger operand un-
modified (see Figure 2). Such information could be
used to build efficient speculative algorithms [7].

3.6 ... to be continued

This section did not pretend to be exhaustive, as
other applications will lead to other optimization
ideas. Next section, for example, will use non-
standard FP multipliers whose output precision is
higher than input precision.

We hope to have shown that the effort it takes to
optimize an application’s precision is not necessarily
huge, especially considering the current complexity
of programming FPGAs. We do not (yet) believe

sign and exception handling

X

X Y EX − EY

Y

MY

MYMX

M ′
Z

EX

FZ

k

EZ

EX

FZ

M ′
Z

MX
M ′

Y

Z

wE + wF + 3 wE + wF + 3

wE + wF + 3 wE + wF + 3

wF + 1wF + 1wE

wF + 3

⌈log (wF + 3)⌉

wE + 1

wF + 1
wF + 1

wE
wF + 4

wF + 1
wF + 4

wF + 1

wE

wE + wF + 2

wE + wF + 3

close/far

+/–

final normalization

LZC

shift/round
round

shift

/

swap/difference

far path

close path

Figure 4: A typical floating-point adder (wE and wF

are respectively the exponent and mantissa sizes)

in fully automatic approaches, however such work
does not require too specialized an expertise. We
will survey in conclusion the tools available to assist
a designer in this task.

The remainder of this paper now uses the same
philosophy of “computing just right” to design com-
pletely new operators which are not available in a
processor.

4 Accumulation

Summing many independent terms is a very com-
mon operation. Scalar product, matrix-vector and
matrix-matrix products are defined as sums of prod-
ucts. Another common pattern is integration, as in
our example application: when a value is defined
by some integral, the computation of this value will
consist in adding many elementary contributions.
Many Monte-Carlo simulations also involve sums of
many independent terms.

For few simple terms, one may build trees of
adders, but when one has to add many terms, iter-
ative accumulation is necessary. In this case, due to
the long latency of FP addition (6 cycles in [40] for
SP, up to 12 cycles for Xilinx cores), one needs to de-
sign specific architectures involving multiple buffers



to accumulate many numbers without stalling the
pipeline. This long latency is explained by the archi-
tecture of a floating-point adder given on Figure 4.

In the previous examples, it is a common situation
that the error due to the computation of one sum-
mand is more or less constant and independent of
the other summands, while the error due to the sum-
mation grows with the number of terms to sum. This
happens in our example, and also in most matrix op-
erations. In this case, it makes sense to have more ac-
curacy in the accumulation than in the summands.

A first idea, to accumulate more accurately, is to
use a standard floating-point adder with a larger
mantissa. However, this leads to several inefficien-
cies. In particular, this large mantissa will have
to be shifted, sometimes twice (first to align both
operands and then to normalize the result). These
shifts are in the critical path loop of the sum (see Fig-
ure 4).

4.1 The large accumulator concept

The accumulator architecture we propose here (see
Figure 5) removes all the shifts on the critical path of
the loop by keeping the current sum as a large fixed-
point number (typically much larger than a man-
tissa, see Figure 6). There is still a loop, but it is now
a fixed-point accumulation for which current FPGAs
are highly efficient. Specifically, the loops uses fast-
carry logic and involves only the most local rout-
ing. For illustration, for 64-bits (11 bits more than
the DP mantissa), a Virtex4 with the slowest speed
grade (-10) runs such an accumulator at more than
200MHz, while consuming only 64 CLBs. Section 4.4
will show how to reach even larger frequencies or
sizes.

The shifters now only concern the summand (see
Figure 5), and can be pipelined as deep as required
by the target frequency.

The normalization of the result may be performed
at each cycle, also in a pipelined manner. However,
most applications won’t need all the intermediate
sums: they will output the fixed-point accumula-
tor (or only some of its most significant bits), and
the final normalization may be performed offline in
software, once the sum is complete, or in a single
normalizer shared by several accumulators (case of
matrix operations). Therefore, it makes sense to pro-
vide this final normalizer as a separate component,
as shown by Figure 5.

For clarity, implementation details are missing

fixed-point sum

mantissaexponent

Normalization unit

(LZC + shifter)

registers
wA

MaxMSBX − LSBA + 1

mantissa

Input Shifter

wF
wE

exponent
MaxMSBX

Figure 5: The proposed accumulator. Only the reg-
isters on the accumulator itself are shown, the rest
of the design is combinatorial and can be pipelined
arbitrarily.

from these figures. For example, the accumulator
stores a two’s complement number, so the shifted
summand has to be sign-extended. The normaliza-
tion unit also has to convert back from two’s comple-
ment to sign/magnitude. All this isn’t on the critical
path of the loop either.

In addition to being simpler, the proposed accu-
mulator has another decisive advantage over the one
using the standard FP adder: it may also be designed
to be much more accurate. Indeed, it will even be
exact (entailing no roundoff error whatsoever) if the
accumulator size is large enough so that its LSB is
smaller than that of all the inputs, and its MSB is
large enough to ensure that no overflow may occur.
Figure 6 illustrates this idea, showing the mantissas
of the summands, and the accumulator itself.

This idea was advocated by Kulisch [21, 22] for
implementation in microprocessors. He made the
point that an accumulator of 640 bits for SP (and
4288 bits for DP) would allow for arbitrary dot-
products to be computed exactly, except when the
final result is out of the FP range. Processor man-
ufacturers always considered this idea too costly to
implement. When targetting a specific application
to an FPGA, things are different: instead of a huge
generic accumulator, one may chose the size that
matches the requirements of the application. There
are 5 parameters on Figure 5: wE and wF are the ex-



wEMSBA LSBAMaxMSBX

wA = MSBA − LSBA + 1

Accumulator

Summands (shifted mantissas)

current sum bits

Figure 6: Accumulation of floating-point numbers
into a large fixed-point accumulator

ponent and mantissa size of the summands; MSBA

and LSBA are the respective weights of the most and
less significant bit of the accumulator (the size in bits
of the accumulator is wA = MSBA − LSBA + 1), and
MaxMSBX is the maximum expected weight of the
MSB of a summand. By default MaxMSBX will be
equal to MSBA, but sometimes the designer is able
to tell that each summand is much smaller in mag-
nitude than the final sum. For example, when in-
tegrating a function that is known positive, the size
of a summand could be bounded by the product of
the integration step and the max of the function. In
this case, providing MaxMSBX < MSBA will save
hardware in the input shifter. Defining these param-
eters requires some trial-and-error, or (better) again
some back-of-the-enveloppe error analysis. We now
demonstrate that on our example application.

4.2 Our application

In our inductance computation, physical expertise
backed by preliminary software simulations gave us
the order of magnitude of the expected result: the
sum will be less than 105 (using arbitrary units due
to factoring out some physical constants). Adding
two orders of magnitude for safety, and convert-
ing to bit weight, this defines MSBA = ⌈log2(102 ×
105)⌉ = 24.

Besides, in software simulation, the absolute value
of a summand never went over 2 and below 10−2.
Again adding two orders of magnitude (or 7 bits) for
safety in all directions, this provides MaxMSBX = 28

and LSBA = 2−wF −15 where wF is the mantissa
width of the summands. For wF = 23 (SP), we con-
clude that an accumulator stretching from LSBA =
2−23−15 = 2−38 (least significant bit) to MSBA = 224

(most significant bit) will be able to absorb all the

additions without any rounding error: no summand
will add bits lower than 2−38, carries propagate from
right to left, and the accumulator is large enough to
ensure it never overflows. The accumulator size is
therefore wA = 24+38+1 = 63 bits. Again, this will
not only be more accurate than using an accumula-
tor based on a DP FP adder, it will also be smaller
and faster.

Note that the value of LSBA should be consid-
ered as a tradeoff between precision and perfor-
mance: we have discussed above a perfect, errorless
accumulator, but one may also be contented with a
smaller, still more-accurate-than-FP accumulator.

Remark that defining specifications this way is
both safe and easy, thanks to the freedom to add sev-
eral orders of magnitude of margin in all directions.
This, of course, has a hardware cost: the accumula-
tor has 14 bits out of 63 that are probably never used,
and the same holds for the input shifter. In our ap-
plication, this adds roughly 20% to the cost of the
accumulator, but this overhead is negligible in the
total cost of the application.

Also remark that only LSBA depends on wF , since
the other parameters (MSBA and MaxMSBX ) are re-
lated to physical quantities, regardless of the pre-
cision used to simulate them. This make it easy
to experiment with various wF . Besides, it shows
that the dependency of the cost of the long accu-
mulator to wF will be almost linear (actually it is
in wF log wF due to the input shifter). This is con-
firmed by synthesis: for SP, a 63-bit accumulator oc-
cupies 125 Virtex-2 slices. Should we upgrade the
summand pipeline to DP, we would need a 92-bit
accumulator requiring 219 slices.

Finally, note that this accumulator design has only
removed the rounding error due to accumulation
per se. All the summands are still computed using
wF bits of accuracy only, and therefore potentially
hold an error equivalent to their least-significant
bit. In a hypothetical worst-case situation, when
adding 2N numbers, these errors will accumulate
and destroy the signification of all the bits lower
than 28−wF +N in our example. To be totally safe, wF

could be chosen accordingly as a function of N and
of the least significant digit the end user is interested
in. In our application we have less than 240 numbers
to accumulate, we have taken some margin, errors
will compensate each other, so computing the sum-
mands in SP is largely enough.



4.3 Exact dot-products and matrix opera-
tions

Kulisch’s designs address the previous problem in
the simpler case of dot product [22]. The idea is sim-
ply to accumulate the exact results of all the multipli-
cations. To this purpose, instead of standard multi-
pliers, we use exact multipliers that return all the bits
of the exact product: for 1 + wF -bit input mantissa,
they return an FP number with a 2 + 2wF -bit man-
tissa. The exponent range is also doubled, which
means adding one bit to wE . Such multipliers incur
no rounding error, and are actually cheaper to build
than the standard (wE , wF ) ones. Indeed, the latter
also have to compute 2wF +2 bits of the result, and in
addition have to round it. In the exact FP multiplier,
we save all the rounding logic altogether: Results do
not even need to be normalized, as they will be im-
mediately sent to the fixed-point accumulator. The
only additional cost is in the accumulator, which re-
quires a larger input shifter (see Figure 5).

With these exact multipliers, if we are able to
bound the exponents of the inputs so as to obtain
a reasonably small accumulator, it becomes easy to
prove that the whole dot-product process is exact,
independently of its size. Otherwise it is just as easy
to provide accuracy bounds which are better than
standard, and arbitrarily small. As matrix-vector
and matrix-matrix products are parallel instances of
dot-products, these advantages extend to such oper-
ations. We welcome suggestions of matrix-based ac-
tual applications that could benefit from these ideas.

4.4 Very large accumulator design

We have mentionned that 64-bit accumulation was
performed at the typical frequency of current FP-
GAs. This should be enough for SP computations,
but it is only 11 bits more than DP. Up to 120 bits,
we have obtained the same frequency at twice the
hardware cost using a classical one-level carry-select
adder (see Figure 7).

Other designs will be considered for even larger
precision if needed [22], but we believe that 120 bits
should be enough for most DP computations. Note
that this carry-select design can also be used to im-
plement a smaller accumulator with even larger fre-
quency. For example, it improves the frequency of
a 64-bit accumulator from 202 to 295 MHz on a Vir-
tex4, speed grade -10.

wA/2wA/2

wA

BH BL

wA/2wA/2
AH AL

wA

AL + BL

carryout

AH + BH + carryout

AH

BLAL

BH
AH BH

AH + BH + 1AH + BH

1

Figure 7: Carry-select adder

5 Coarser-grain operators

If a sequence of floating-point operations is cen-
tral to a given computation, it is always possi-
ble to design a specific operator for this sequence.
Some examples that have been studied (to vari-
ous extents) are multiplication by a constant, com-
binations of multiply and add such as complex
number multiplication, variations around the eu-

clidean norm
√

x2 + y2 + z2, elementary functions,
and other compound functions.

5.1 Smaller, and more accurate

The successful recipe for such designs will typically
be to keep the interface to the operator (again, these
blocks are small enough to have a clean mathemat-
ical specification) but perform as much as possible
of the computation in fixed point. If the compound
operator is proven always to compute more accu-
rately than the succession of elementary operators,
it is likely to be accepted. Another requirement may
be to provide results guaranteed to be faithful (last-
bit accurate) with respect to the exact result.

The real question is, when do we stop? Which
of these optimized operators are sufficiently general
and offer sufficient optimization potential to justify
that they are included in a library? There is a very
pragmatical answer to this question: As soon as an
operator is designed for a given application, it may
be placed in a library. From there on, other appli-
cations will be able to use it. Again, this approach
is very specific to the FPGA paradigm. In the CPU
world, adding a hardware operator to an existing
processor line must be backed by a lot of bench-
marking showing that the cost does not outweight
the benefit. Simply take the example of division: Is a
hardware divider wasted silicon in a CPU? Roughly



at the same time, Flynn et al. did such benchmarking
to advocate hardware dividers [33], while the Ita-
nium processor family was designed without a hard-
ware divider, but with two fused multiply-and-add
units designed to accelerate software division algo-
rithms [31].

We now present some of these compound opera-
tors in more detail, without pretending to exhaus-
tiveness: It is our belief that each new application
will bring in some compound operation worth in-
vestigating.

5.2 Multiplication by a constant

By definition, a constant has a fixed exponent, there-
fore the floating point is of little significance here: all
the research that has been done on integer constant
multiplication [4, 26, 6, 14] can be used straightfor-
wardly. To sum up this research, a constant mul-
tiplier will always be at least twice as small (and
usually much smaller) than using a standard mul-
tiplier implemented using only CLBs. A full perfor-
mance comparison with operators using DSP blocks
remains to be done, but when DSP blocks are a
scarce resource, it is good to know that the multi-
plications to be implemented in logic should be the
constant ones.

We may also define constant multipliers that are
much more accurate than what can be obtained with
a standard FP multiplier. For instance, consider the
irrational constant π. It can not be stored on a fi-
nite number of bits, but it is nevertheless possible
to design an operator that provably always returns
the correctly rounded result of the (infinitely accu-
rate) product πx [3]. This is useful for trigonomet-
ric argument reduction, for example [10]. The num-
ber of bits of the constant that is needed depends on
the constant, and may be computed using contin-
ued fraction arguments [3]. Although one usually
needs to use more than wF bits of the constant to
ensure correct rounding, the resulting constant mul-
tiplier may still be smaller than a generic one. Opti-
mizing such correctly-rounded constant multipliers
is the subject of current investigation.

5.3 Exact sum and product

Much recent work has been dedicated to improving
the accuracy of floating-point software using com-
pensated summation, see [34] for a review. The ap-
proach presented Section 4 will often make more

A A

(AB)L(AB)H(A + B)L(A + B)H

BB

2Sum 2Mul

Figure 8: The 2Sum and 2Mul operators

sense in an FPGA, however compensated summa-
tion techniques have the advantage of requiring less
error analysis and (equivalently) of scaling better
to problem sizes unknown a-priori, and also to be
software-compatible.

These approaches rely on two basic blocks called
2Sum and 2Mul that respectively compute the exact
sum and the exact product of two FP numbers. In
both cases, the result fits in the unevaluated sum of
two FP numbers (see Figure 8). For example (in dec-
imal for clarity), the product of the 4-digit numbers
6.789 and 5.678 is 3.8547942·101 which may be repre-
sented by the unevaluated sum of two 4-digit num-
bers 3.854·101+7.942·10−3. Actually, to ensure unic-
ity of the representation, compensated algorithms
require that the most significant FP number is the
correct rounding of the exact result, so in our exam-
ple the result will be written as 3.855·101−2.058·10−3

(the reader may check that the sum is the same).

In a processor, these 2Sum and 2Mul operators re-
quire long sequences [20] of standard FP additions
and multiplications: 3 to 8 FP additions for an ex-
act sum, depending on the context, and between 7
and 17 operations for the exact multiplication, de-
pending on the availability of a fused multiply-and-
add [31]. Besides, most of these operations are
data-dependent, preventing an efficient use of the
pipeline.

The overhead of 2Sum and 2Mul over the stan-
dard FP adder and multiplier will be much smaller
in an FPGA, as all the additional information to out-
put (the least significant bits of the sum or product)
is already available inside the FP operator, and usu-
ally just discarded by the rounding. Specifically, an
FP multiplier always has to compute the full man-
tissa product to determine rounding. An FP adder
does not compute the full addition, but the lower
bits are untouched by the addition, so no additional
computation is needed to recover them. The only
additional required work consists in 1/ propagat-
ing the rounding information of the most significant
part down to the least significant part, sometimes



changing its sign as in our example, and 2/ normal-
izing the lower part using a LZC+shifter.

Summing it up, the area and delay overhead of
2Mul over an FP multiplier is a few percents, while
the area and delay overhead of 2Sum over the FP
adder is less than a factor 2 (for delay also, as the
LZC/shift of the lower part has to wait for the end
of the LZC/Shift of the higher part). In terms of raw
performance, comparing with the cost of software
implementations of 2Mul and 2Sum on a processor,
we conclude that the FPGA will recover its intrinsic
performance gap on algorithms based on these op-
erators [34].

Similar improvements could probably be brought
to the basic blocks used in the architecture of DeHon
and Kapre [7] that computes a parallel sum of FP
numbers which is bit-compatible with the sum ob-
tained in a sequential order.

5.4 Variations around the euclidean
norm

Let us now consider the case of the 3D norm
√

x2 + y2 + z2. In our application, this operator is
no longer needed after Section 3.4, however it is felt
to be ubiquitous enough to justify some optimiza-
tion effort.

The first option is to combine library +, ×
and √ operators. When we did so, using FPLi-
brary (www.ens-lyon.fr/LIP/Arenaire/), we
had the surprise to observe that the area was much
smaller than expected [12]. It turned out that large
useless portions of the floating-point adders were
discarded by the synthesis tools. More specifically,
these adders are dual-path designs [17] (see Fig-
ure 4), where one of the path is only useful in case

of subtraction of the mantissas. In
√

x2 + y2 + z2,
of course, there is no subtraction, and the synthesis
tool (Xilinx ISE) was able to detect that the sign of
the addends was always positive and that one of the
path was therefore never needed. Interestingly, us-
ing pre-compiled, pre-placed cores would not offer
the same benefit. Note that in principle, a squarer
implemented in logic is also in theory almost twice
smaller than a full multiplier, but this doesn’t seem
to be optimized by current tools.

A second option is to compute the squares in
fixed-point, align them then add them, still in fixed
point, then use a fixed-point square root (the one
used within the floating-point operator) along with
ad-hoc renormalization step. As the architecture is

only slightly more complex than the norm part of
Figure 3, the design effort is not very high, but so
is the benefit (mostly the saving of a few intermedi-
ate normalizations). As an illustration, for SP on a
VirtexII device, such an optimized operator requires
72% of the area of the unoptimized one, and 78% of
the delay.

A third option is to explore specific algorithms
such as those published by Takagi [39, 38]. Com-
pared to the previous simpler approach, Takagi’s ar-
chitecture seems to reduce the latency but not the
hardware cost, however this is a promising new di-
rection. Besides, it may be used to compute other
useful compound operators such as 1√

x2+y2+z2
or

x√
x2+y2

. In such cases, the hope is to combine the

digit recurrence of the square root with that of the
division [38]. This is currently future work.

5.5 Elementary and compound functions

Much recent work has been dedicated to FP elemen-
tary function computation for FPGAs (exp and log
in SP [15, 11] and DP [13], trigonometric functions
in SP [35, 10]. The goal of such works is to design
specific, combinatorial architectures based on fixed-
point computations for such functions. Such archi-
tectures can then be pipelined arbitrarily to run at
the typical frequency of the target FPGA, with laten-
cies that can be quite long (up to several tens of cy-
cles for DP), but with a throughput of one elemen-
tary function per cycle. The area of the state of the
art is comparable to that of a few multipliers. As
these pipelined architecture compute one result per
cycle, the performance is is one order of magnitude
better than a processor. Our application uses such a
logarithm function for Eq. (1).

The holy grail of this kind of research would be
to be able to automatically generate architectures for
arbitrary functions. Several groups have demon-
strated generic tools for this purpose in fixed-point
[9, 25], but these do not yet seem to be ready for
mass-consumption. Besides, these approaches are
not directly transposable to floating-point, due to the
large range of floating-point numbers.

6 Conclusion and future work

There are two aspects in the present paper. One is
to show that original floating-point operators can
be designed on FPGAs. All these operators will at



some point be available in a tool called (FPG)2A – a
Floating-Point Generator for FPGAs – currently un-
der development as the successor to FPLibrary [12].
It will include basic operators, whose only original-
ity will be to allow for different input and output
precisions, and also more exotic ones such as ele-
mentary functions and large accumulators.

6.1 The missing tools

The second aspect of this paper is to advocate us-
ing custom precisions and exotic operators. We
acknowledge that the expertise required is not
widespread among hardware engineers, and tools
will have to be built to assist them. Still, some of
our solutions are easy to use: elementary function
or euclidean norm operators may be used transpar-
ently, just like any other library component. Some
other techniques are not too difficult to use as soon
as one is aware of the possibility: We hope to have
shown that the large accumulator concept is simple,
and that its benefits will often justify the additional
design effort. Now, to resize a full datapath so that
it computes just right with a proven bound on the
final accuracy, this is something that requires skills
in hardware engineering as well as in error analysis,
and even then, the difficulty of the task may be arbi-
trarily large. Again, we acknowledge that our exam-
ple application, although not a toy one, is relatively
easy to study.

We have already mentionned that the main prob-
lem is one of programming languages and compil-
ers: as compiling (subsets of) C to FPGA is still the
subject of active research, automating our back-of-
the-enveloppe calculations is far beyond the hori-
zon. Current research focusses on isolating use cases
on which existing tools can be used: interval arith-
metic for error analysis, polynomial approximation
for univariate functions, etc. For instance, there is
some hope to be able to infer the required size of a
large accumulator automatically, or at least with ma-
chine assistance. The Gappa proof assistant has al-
ready been used to help validate complex datapaths
for elementary function implementations [5]. The
goal of (FPG)2A is to build upon such tools. We will
also have to collaborate with the C-to-FPGA compi-
lation community.

6.2 Area, delay, and also accuracy

A transversal conclusion of this survey is that the
quality of some floating-point computation has to be
evaluated on a three-dimensional scale: area and per-
formance are important, but so is accuracy. It was al-
ready known that FPGAs were able to outperform
processor in the area/performance domain thanks
to massive parallelism. Our thesis is that their flexi-
bility in the accuracy domain may bring even higher
gain: many computations are just too accurate on
a processor, and an FPGA implementation will re-
cover its intrinsic performance gap by computing
“just right”. Some applications are not accurate
enough on a processor, and an FPGA implemen-
tation may be designed to be more accurate for a
marginal overhead.

6.3 The missing bits

As a conclusion, should floating-point units be em-
bedded [2] in FPGAs? We believe that this would
be a mistake, as it would sacrifice the flexibility that
currently gives the advantage to the FPGA. On the
other hand, the FPGA fabric could be improved
for better FP support. Looking back at several
years of FP operator design, it is obvious that they
all, at some point, use LZC/shifters to renormalize
floating-point results or to align operands before ad-
dition. The introduction of embedded shifters has
already been suggested [1]. We suggest that such
shifters should be easily cascadable for arbitrary pre-
cision floating-point, and that they should be able to
combine leading-zero/one counting and shifting.

Another issue is that of the granularity of the
embedded multipliers: One common feature of
many of FPGA-specific FP architectures is rectangu-
lar multiplication [9]. The DP logarithm of [13], for
instance, involves several such multiplications, from
53 × 5 to 80 × 5 bits. These are currently imple-
mented in CLBs. Small multipliers are easily com-
bined to form larger ones, so replacing current DSP
blocks with many more, but smaller (say, 8-bit) ones
would be welcome. There is probably an issue of
additional routing cost, so it would be interesting to
investigate this issue on large floating-point bench-
marks involving elementary functions. Even a Pen-
tium, with MMX, has finer multiplication granular-
ity than an FPGA: isn’t something wrong there?



Acknowledgement

Support of the Egide Brancusi programme of the
French government is gratefully acknowledged.

References

[1] M. Beauchamp, S. Hauck, K. Underwood, and
K. Hemmert. Architectural modifications to
improve floating-point unit efficiency in FP-
GAs. In Field Programmable Logic and Applica-
tions, pages 1–6, Aug. 2005.

[2] M. J. Beauchamp, S. Hauck, K. D. Underwood,
and K. S. Hemmert. Embedded floating-point
units in FPGAs. In ACM/SIGDA international
symposium on Field programmable gate arrays,
pages 12–20. ACM, 2006.

[3] N. Brisebarre and J.-M. Muller. Correctly
rounded multiplication by arbitrary precision
constants. In Proc. 17th IEEE Symposium on Com-
puter Arithmetic (ARITH-17). IEEE Computer
Society Press, June 2005.

[4] K. Chapman. Fast integer multipliers fit in FP-
GAs (EDN 1993 design idea winner). EDN mag-
azine, May 1994.

[5] F. de Dinechin, C. Lauter, and G. Melquiond.
Assisted verification of elementary functions
using Gappa. In Proceedings of the 2006 ACM
Symposium on Applied Computing, pages 1318–
1322, 2006.

[6] F. de Dinechin and V. Lefèvre. Constant multi-
pliers for FPGAs. In Parallel and Distributed Pro-
cessing Techniques and Applications, pages 167–
173, 2000.

[7] A. DeHon and N. Kapre. Optimistic paralleliza-
tion of floating-point accumulation. In 18th
Symposium on Computer Arithmetic, pages 205–
213. IEEE, June 2007.

[8] M. deLorimier and A. DeHon. Floating-point
sparse matrix-vector multiply for FPGAs. In
Field-Programmable Gate Arrays, pages 75–85.
ACM, 2005.

[9] J. Detrey and F. de Dinechin. Table-based poly-
nomials for fast hardware function evaluation.
In Application-specific Systems, Architectures and
Processors, pages 328–333. IEEE, 2005.

[10] J. Detrey and F. de Dinechin. Floating-point
trigonometric functions for FPGAs. In Intl Con-
ference on Field-Programmable Logic and Applica-
tions, pages 29–34. IEEE, Aug. 2007.

[11] J. Detrey and F. de Dinechin. Parameterized
floating-point logarithm and exponential func-
tions for FPGAs. In Microprocessors and Mi-
crosystems. Elsevier, 2007. To appear.

[12] J. Detrey and F. de Dinechin. A tool for un-
biased comparison between logarithmic and
floating-point arithmetic. Journal of VLSI Signal
Processing, 2007. To appear.

[13] J. Detrey, F. de Dinechin, and X. Pujol. Return of
the hardware floating-point elementary func-
tion. In 18th Symposium on Computer Arithmetic,
pages 161–168. IEEE, June 2007.

[14] V. Dimitrov, L. Imbert, and A. Zakaluzny. Mul-
tiplication by a constant is sublinear. In 18th
Symposium on Computer Arithmetic. IEEE, June
2007.

[15] C. Doss and R. L. Riley, Jr. FPGA-based im-
plementation of a robust IEEE-754 exponential
unit. In Field-Programmable Custom Computing
Machines, pages 229–238. IEEE, 2004.

[16] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and
G. N. Gaydadjiev. 64-bit floating-point FPGA
matrix multiplication. In Field-Programmable
Gate Arrays, pages 86–95. ACM, 2005.

[17] M. J. Flynn and S. F. Oberman. Advanced
Computer Arithmetic Design. Wiley-Interscience,
2001.

[18] D. Goldberg. What every computer scientist
should know about floating-point arithmetic.
ACM Computing Surveys, 23(1):5–47, Mar. 1991.

[19] N. J. Higham. Accuracy and stability of numerical
algorithms. SIAM, 1996.

[20] D. Knuth. The Art of Computer Programming,
vol.2: Seminumerical Algorithms. Addison Wes-
ley, 3rd edition, 1997.

[21] U. Kulisch. Circuitry for generating scalar
products and sums of floating point numbers
with maximum accuracy. United States Patent
4622650, 1986.



[22] U. W. Kulisch. Advanced Arithmetic for the Digital
Computer: Design of Arithmetic Units. Springer-
Verlag, 2002.

[23] J. Langou, J. Langou, P. Luszczek, J. Kurzak,
A. Buttari, and J. Dongarra. Exploiting the per-
formance of 32 bit floating point arithmetic in
obtaining 64 bit accuracy (revisiting iterative re-
finement for linear systems). In ACM/IEEE con-
ference on Supercomputing. ACM Press, 2006.

[24] B. Lee and N. Burgess. Parameterisable
floating-point operators on FPGAs. In 36th
Asilomar Conference on Signals, Systems, and
Computers, pages 1064–1068, 2002.

[25] D. Lee, A. Gaffar, O. Mencer, and W. Luk. Op-
timizing hardware function evaluation. IEEE
Transactions on Computers, 54(12):1520–1531,
Dec. 2005.

[26] V. Lefèvre. Multiplication by an integer con-
stant. Technical Report RR1999-06, Labora-
toire de l’Informatique du Parallélisme, Lyon,
France, 1999.

[27] Y. Li and W. Chu. Implementation of single pre-
cision floating point square root on FPGAs. In
IEEE Symposium on FPGAs for Custom Comput-
ing Machines, pages 56–65, Apr. 1997.

[28] G. Lienhart, A. Kugel, and R. Männer. Using
floating-point arithmetic on FPGAs to acceler-
ate scientific N-body simulations. In FPGAs for
Custom Computing Machines. IEEE, 2002.

[29] W. Ligon, S. McMillan, G. Monn,
K. Schoonover, F. Stivers, and K. Under-
wood. A re-evaluation of the practicality of
floating-point operations on FPGAs. In IEEE
Symposium on FPGAs for Custom Computing
Machines, 1998.

[30] J. Liu, M. Chang, and C.-K. Cheng. An it-
erative division algorithm for FPGAs. In
ACM/SIGDA 14th international symposium on
Field programmable gate arrays, pages 83–89.
ACM, 2006.

[31] P. Markstein. IA-64 and Elementary Functions:
Speed and Precision. Hewlett-Packard Profes-
sional Books. Prentice Hall, 2000.

[32] K. R. Nichols, M. A. Moussa, and S. M. Areibi.
Feasibility of floating-point arithmetic in FPGA

based artificial neural networks. In CAINE,
pages 8–13, 2002.

[33] S. F. Oberman and M. J. Flynn. Design issues
in division and other floating-point operations.
IEEE Transactions on Computers, 46(2):154–161,
1997.

[34] T. Ogita, S. M. Rump, and S. Oishi. Accurate
sum and dot product. SIAM Journal on Scientific
Computing, 26(6):1955–1988, 2005.

[35] F. Ortiz, J. Humphrey, J. Durbano, and
D. Prather. A study on the design of floating-
point functions in FPGAs. In Field Programmable
Logic and Applications, volume 2778 of LNCS,
pages 1131–1135. Springer, Sept. 2003.

[36] E. Roesler and B. Nelson. Novel optimizations
for hardware floating-point units in a modern
FPGA architecture. In Field Programmable Logic
and Applications, volume 2438 of LNCS, pages
637–646. Springer, Sept. 2002.

[37] N. Shirazi, A. Walters, and P. Athanas. Quan-
titative analysis of floating point arithmetic on
FPGA based custom computing machine. In
FPGAs for Custom Computing Machines, pages
155–162. IEEE, 1995.

[38] N. Takagi. A hardware algorithm for comput-
ing the reciprocal square root. In 15th Sympo-
sium on Computer Arithmetic, pages 94–100, Vail,
Colorado, June 2001. IEEE.

[39] N. Takagi and S. Kuwahara. A VLSI algo-
rithm for computing the euclidean norm of
a 3D vector. IEEE Transactions on Computers,
49(10):1074–1082, 2000.

[40] I. Trestian, O. Creţ, L. Creţ, L. Vǎcariu,
R. Tudoran, and F. de Dinechin. FPGA-
based computation of the inductance of coils
used for the magnetic stimulation of the ner-
vous system. Technical Report ensl-00169909,
École Normale Supérieure de Lyon, 2007.
http://prunel.ccsd.cnrs.fr/ensl-00169909/fr.

[41] L. Zhuo and V. Prasanna. Scalable and modular
algorithms for floating-point matrix multiplica-
tion on FPGAs. In Reconfigurable Architecture
Workshop, Intl. Parallel and Distributed Processing
Symposium. IEEE Computer Society, 2004.


