A Priori System-Level Interconnect Prediction Rent's Rule and Wire Length Distribution Models

Dirk Stroobandt

Ghent University Electronics and Information Systems Department

Tutorial at SLIP 2001 March 31, 2001

Outline

Why a priori interconnect prediction? Basic models Rent's rule A priori wire length prediction Recent advances

Outline

Why a priori interconnect prediction? Basic models Rent's rule A priori wire length prediction Recent advances

- *Interconnect*: importance of wires increases (they do not scale as components).
- A priori.
 - For future designs, very little is known.
 - The sooner information is available, the better.
- A Priori Interconnect Prediction = estimating interconnect properties and their consequences before any layout step is performed.
- Extrapolation to future systems: Roadmaps.
- To improve CAD tools for design layout generation.

4

• To evaluate new computer architectures.

- Extrapolation to future systems:
 - Roadmaps.
 - GTX* et al.

5

* A. Caldwell et al. "GTX: The MARCO GSRC Technology Extrapolation System." *IEEE/ACM DAC*, pp. 693-698, 2000 (http://vlsicad.cs.ucla.edu/GSRC/GTX/).

• To improve CAD tools for design layout generation.

More efficient layout generation requires good wire length estimates.

- layer assignment in routing
- effects of vias, blockages
- congestion, ...

A priori estimates are rough but already provide a better solution through fewer design cycle iterations.

To evaluate new computer architectures

OIIC Project (http://www.elis.rug.ac.be/~jvc/oiic/sysdemo.htm) 7

Goal: Predict Interconnect Requirements vs. Resource Availability

8

Setting of SLIP Research Domain in the Design Process

March 31, 2001 Dirk Stroobandt, SLIP 2001

9

Components of the Physical Design Step

The Three Basic Models

11

Placement and routing model

Outline

Why a priori interconnect prediction? Basic models Rent's rule A priori wire length prediction Recent advances

Rent's Rule

Rent's rule was first described by Landman and Russo* in 1971. For average number of terminals and blocks per module in a partitioned design:

 $T = t B^{p}$ p = Rent exponent $t \cong \text{average } \# \text{ term./block}$ Measure for the complexity

of the interconnection topology Intrinsic Rent exponent p^* (simple) $0 \le p^* \le 1$ (complex)

Normal values: $0.5 \le p^* \le 0.75$

* B. S. Landman and R. L. Russo. "On a pin versus block relationship for partitions of logic graphs." *IEEE Trans. on Comput.*, C-20, pp. 1469-1479, 1971.

Rent's Rule (cont.)

Rent's rule is a result of the self-similarity within circuits

Assumption: the complexity of the interconnection topology is equal at all levels.

Rent's Rule (other definition)

If ΔB cells are added, what is the increase ΔT ? In the absence of any other information we guess

$$\Delta T = \left(\frac{T}{B}\right) \Delta B$$

Overestimate: many of ΔT terminals connect to *T* terminals and so do not contribute to the total. We introduce* a factor *p* (*p* <1) which indicates how self-connected the netlist is + placement optimization

$$\Delta T = p \left(\frac{T}{B}\right) \Delta B$$

Or, if $\Delta B \& \Delta T$ are small compared to B and T

$$p^* \le p \le 1$$

$$\frac{dT}{T} \approx p\left(\frac{dB}{B}\right) \Longrightarrow T = tB^{B}$$

* P. Christie and D. Stroobandt. "The Interpretation and Application of Rent's Rule." *IEEE Trans. on VLSI Systems, Special Issue on SLIP*, vol. 8 (no. 6), pp. 639-648, Dec. 2000.

Rent's Rule (summary)

 $T = t B^p$

Rent's rule is experimentally validated for a lot of benchmarks.

Distinguish between:

- *p**: intrinsic Rent exponent
- *p*: placement Rent exponent
- *p*': partitioning Rent exponent

Deviation for high *B* and *T*: Rent's region II* Also: deviation for low *B* and *T*: Rent region III**

* B. S. Landman and R. L. Russo. "On a pin versus block relationship for partitions of logic graphs." *IEEE Trans. on Comput.*, C-20, pp. 1469-1479, 1971.

** D. Stroobandt. "On an efficient method for estimating the interconnection complexity of designs and on the existence of region III in Rent's rule." *Proc. GLSVLSI*, pp. 330-331, 1999.

Outline

Why a priori interconnect prediction? Basic models Rent's rule A priori wire length prediction Recent advances

Donath's* Hierarchical Placement Model

1. Partition the circuit into 4 modules of equal size such that Rent's rule applies (minimal number of pins).

2. Partition the Manhattan grid in 4 subgrids of equal size in a symmetrical way.

* W. E. Donath. Placement and Average Interconnection Lengths of Computer Logic. *IEEE Trans. on Circuits & Syst.*, vol. CAS-26, pp. 272-277, 1979.

Donath's Hierarchical Placement Model

3. Each subcircuit (module) is mapped to a subgrid.

4. Repeat recursively until all logic blocks are assigned to exactly one grid cell in the Manhattan grid.

Donath's Length Estimation Model

At each level: Rent's rule gives number of connections

- number of terminals per module directly from Rent's rule (partitioning based Rent exponent p');
- number of nets cut at level k (N_k) equals

$$N_k = \alpha T_k$$

where α depends on the total number of nets in the circuit and is bounded by 0.5 and 1.

20

Donath's Length Estimation Model

Length of the connections at level k?

Donath assumes: all connection source and destination cells are uniformly distributed over the grid.

Results Donath

Scaling of the average length *L* as a function of the number of logic blocks *G* :

$$L \propto \begin{cases} G^{p-0.5} & (p > 0.5) \\ \log(G) & (p = 0.5) \\ f(p) & (p < 0.5) \end{cases}$$

Similar to measurements on placed designs.

Results Donath

Theoretical average wire length too high by factor of 2

Improving on the Placement Optimization Model

- Keep wire length scaling by hierarchical placement.
- Improve on uniform probability for all connections at one level (not a good model for placement optimization).

Occupation probability* favours short interconnections (for placement optimization) (darker)

* D. Stroobandt and J. Van Campenhout. Accurate Interconnection Length Estimations for Predictions Early in the Design Cycle. *VLSI Design, Spec. Iss. on PD in DSM*, 10 (1): 1-20, 1999.

Including Placement Optimization

Wirelength distributions contain two parts:

site density function

and probability distribution

* D. Stroobandt and H. Van Marck. "Efficient Representation of Interconnection Length Distributions Using Generating Polynomials." *Workshop SLIP 2000*, pp. 99-105, 2000. March 31, 2001 Dirk Stroobandt, SLIP 2001 25

Occupation Probability Function

Occupation Probability Function

Same result found by using a terminal conservation technique*

$$N_{A\to C} = \alpha T_{A\to C} = \alpha t \left[(1 + B_B)^p + (B_B + B_C)^p - B_B^p - (1 + B_B + B_C)^p \right]$$

* J. A. Davis et al. A Stochastic Wire-length Distribution for Gigascale Integration (GSI) - PART I: Derivation and Validation. *IEEE Trans. on Electron Dev.*, 45 (3), pp. 580 - 589, 1998.

Occupation Probability Function

В C ЧC С B В B A B С B В B C C C С B

For cells placed in infinite 2D plane

$$B_C = 4l$$

$$B_{B} = \sum_{l'=1}^{l-1} 4l' = 2l(l-1)$$

$$\begin{split} N_{A \to C} &= \alpha t \Big[\big(1 + 2l(l-1) \big)^p + \big(2l(l-1) + 4l \big)^p - \big(2l(l-1) \big)^p - \big(1 + 2l(l-1) + 4l \big)^p \Big] \\ q(l) &= \frac{N_{A \to C}}{4l} \propto l^{2p-4} \end{split}$$

Use probability on each hierarchical level (local distributions).

March 31, 2001 Dirk Stroobandt, SLIP 2001

29

Effect of the occupation probability: **boosting** the local wire length distributions (per level) for short wire lengths

Effect of the occupation probability on the total distribution: more short wires = less long wires

March 31, 2001 Dirk Stroobandt, SLIP 2001

32

Outline

Why a priori interconnect prediction? Basic models Rent's rule A priori wire length prediction Recent advances

Length of Multi-terminal Nets

Level k + 1

Net terminalSteiner point

Difference between delay-related and routing-related applications*:

- Source-sink pairs

Assume A is source

- A-B at level k
- A-C and A-D at level k+1

Count as three connections

- Entire Steiner tree lengths
 - Segments A-B, C-D and E-F

A-B and C-D at level k

E-F at level k+1

Add lengths to one net length

* D. Stroobandt. "Multi-terminal Nets Do Change Conventional Wire Length Distribution Models." *Workshop SLIP 2001*.

Extension to Three-dimensional Grids*

* D. Stroobandt and J. Van Campenhout. "Estimating Interconnection Lengths in Threedimensional Computer Systems." *IEICE Trans. Inf. & Syst., Spec. Iss. On Synthesis and Verification of Hardware Design*, vol. E80-D (no. 10), pp. 1024-1031, 1997.

* A. Rahman, A. Fan and R. Reif. "System-level Performance Evaluation of 3-dimensional Integrated Circuits." *IEEE Trans. on VLSI Systems, Spec. Iss. on SLIP*, pp. 671-678, 2000.

Anisotropic Systems*

* H. Van Marck and J. Van Campenhout. Modeling and Evaluating Optoelectronic Architectures. *Optoelectronics II*, vol. 2153 of SPIE Proc. Series, pp. 307-314, 1994.

Anisotropic Systems

Not all dimensions are equal (e.g., optical links in 3rd D)

- Possibly larger latency of the optical link (compared to intrachip connection);
- Influence of the spacing of the optical links across the area (detours may have to be made);
- Limitation of number of optical layers

Introducing an optical cost

External Nets

Importance of good wire length estimates for external nets* during the placement process:

For highly pin-limited designs: placement will be in a ring-shaped fashion (along the border of the chip).

* D. Stroobandt, H. Van Marck and J. Van Campenhout. Estimating Logic Cell to I/O Pad Lengths in Computer Systems. *Proc. SASIMI*'97, pp. 192-198, 1997.

Wire Lengths at System Level

At system level: many long wires (peak in distribution).

How to model these?

Estimation* based on Rent's rule with the floorplanning blocks as logic blocks.

* P. Zarkesh-Ha, J. A. Davis and J. D. Meindl. Prediction of Net length distribution for Global Interconnects in a Heterogeneous System-on-a-chip. *IEEE Trans. on VLSI Systems, Spec. Iss. on SLIP*, pp. 649-659, 2000.

Conclusion

Wire length distribution estimations have evolved a lot in the last few years and have gained accuracy but the

work is not finished!

Suggested reading (brand new book):

D. Stroobandt.

A Priori Wire Length Estimates for Digital Design. *Kluwer Academic Publishers*, 2001. 324 pages, ISBN no. 0 7923 7360 x.

March 31, 2001 Dirk Stroobandt, SLIP 2001

41