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• Interconnect: importance of wires increases (they do 
not scale as components).

• A priori:
• For future designs, very little is known.
• The sooner information is available, the better.

• A Priori Interconnect Prediction = estimating 
interconnect properties and their consequences 
before any layout step is performed.

• Extrapolation to future systems: Roadmaps.
• To improve CAD tools for design layout generation.
• To evaluate new computer architectures.

Why A Priori Interconnect Prediction?
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• Extrapolation

to future

systems:
• Roadmaps. 
• GTX* et al.

Why A Priori Interconnect Prediction?

* A. Caldwell et al. “GTX: The MARCO GSRC Technology Extrapolation System.” IEEE/ACM 
DAC, pp. 693-698, 2000 (http://vlsicad.cs.ucla.edu/GSRC/GTX/).
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• To improve CAD tools for

design layout generation.

Why A Priori Interconnect Prediction?

More efficient layout 
generation requires good wire 
length estimates.
• layer assignment in routing
• effects of vias, blockages
• congestion, ...

A priori estimates are rough 
but already provide a better 
solution through fewer 
design cycle iterations.
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Why A Priori Interconnect Prediction?
To evaluate new computer architectures

OIIC Project (http://www.elis.rug.ac.be/~jvc/oiic/sysdemo.htm)
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Goal: Predict Interconnect 
Requirements vs. Resource Availability
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Circuit design

Fabrication

Physical design

Setting of SLIP Research Domain in 
the Design Process
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Components of the
Physical Design Step

Layout

Layout generation

Circuit Architecture
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Net
Terminal / pin

The Three Basic Models

Circuit model

Placement and routing model

Model for the architecture

Pad

Channel

Manhattan grid
using Manhattan metric

Cell

|||| 2121 yyxxd −+−=

Logic block
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T = t B p

Rent’s Rule

1
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average
Rent’s rule (simple) 0 ≤ p* ≤ 1 (complex)

Normal values: 0.5 ≤ p* ≤ 0.75

Measure for the complexity
of the interconnection topology
Intrinsic Rent exponent p*

p = Rent exponent

Rent’s rule was first described by Landman and Russo* in 1971.
For average number of terminals and blocks per module in a
partitioned design:

t ≅ average # term./block

* B. S. Landman and R. L. Russo. “On a pin versus block relationship for partitions of logic 
graphs.” IEEE Trans. on Comput., C-20, pp. 1469-1479, 1971.
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Rent’s Rule (cont.)

Rent’s rule is a result of the self-similarity within circuits

Assumption: the complexity of the interconnection topology
          is equal at all levels.
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If ∆B cells are added, what is the increase ∆T?
In the absence of any other information we guess

Overestimate: many of ∆T terminals connect to T 
terminals and so do not contribute to the total.
We introduce* a factor p (p <1) which indicates how 
self-connected the netlist is + placement optimization
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Or, if ∆B & ∆T are small compared to B and T 
Statistically homogenous 

system

T

B

Rent’s Rule (other definition)

1* ≤≤ pp

(Dense) region: B cells,
                                T terminals

* P. Christie and D. Stroobandt. “The Interpretation and Application of Rent’s Rule.” IEEE 
Trans. on VLSI Systems, Special Issue on SLIP, vol. 8 (no. 6), pp. 639-648, Dec. 2000.
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Rent’s Rule (summary)

average
Rent’s rule

Rent’s rule is experimentally
validated for a lot of benchmarks.

T = t B p

Distinguish between:
• p*: intrinsic Rent exponent
• p: placement Rent exponent
• p’: partitioning Rent exponent

Deviation for high B and T:
Rent’s region II*
Also: deviation for low B and T:
Rent region III**

** D. Stroobandt. “On an efficient method for estimating the interconnection complexity of 
designs and on the existence of region III in Rent’s rule.” Proc. GLSVLSI, pp. 330-331, 1999.

* B. S. Landman and R. L. Russo. “On a pin versus block relationship for partitions of logic 
graphs.” IEEE Trans. on Comput., C-20, pp. 1469-1479, 1971.
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1. Partition the circuit into 4 modules of equal size such 
that Rent’s rule applies (minimal number of pins).

2. Partition the Manhattan grid in 4 subgrids of equal 
size in a symmetrical way.

Donath’s* Hierarchical Placement Model

* W. E. Donath. Placement and Average Interconnection Lengths of Computer Logic. IEEE 
Trans. on Circuits & Syst., vol. CAS-26, pp. 272-277, 1979.
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3. Each subcircuit (module) is mapped to a subgrid.

4. Repeat recursively until all logic blocks are assigned 
to exactly one grid cell in the Manhattan grid.

Donath’s Hierarchical Placement Model

mapping
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Donath’s Length Estimation Model

At each level: Rent’s rule gives number of connections
• number of terminals per module directly from Rent’s rule 

(partitioning based Rent exponent p’);

• number of nets cut at level k (Nk) equals

where α depends on the total number of nets in the circuit 
and is bounded by 0.5 and 1.

kk TN α=
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Donath’s Length Estimation Model

Length of the connections at level k ?

Donath assumes: all connection source and destination 
cells are uniformly distributed over the grid.

Adjacent (A-) 
combination

Diagonal (D-) 
combination

λ λ
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Results Donath

Scaling of the average 
length L as a function of 
the number of logic 
blocks G :
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Similar to measurements on placed designs.
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Results Donath

Theoretical average wire length too high by factor of 2
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Occupation probability* favours short interconnections (for 
placement optimization) (darker)

• Keep wire length scaling by hierarchical placement.
• Improve on uniform probability for all connections at one 

level (not a good model for placement optimization).

Improving on the Placement 
Optimization Model

* D. Stroobandt and J. Van Campenhout. Accurate Interconnection Length Estimations for Pre-
dictions Early in the Design Cycle. VLSI Design, Spec. Iss. on PD in DSM, 10 (1): 1-20, 1999.
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Including Placement Optimization
Wirelength distributions contain two parts:

site density function        and       probability distribution

all possibilities
requires enumeration

(use generating polynomials*)

probability of occurrence
shorter wires more probable

)()()( lqlDKlN =
* D. Stroobandt and H. Van Marck. “Efficient Representation of Interconnection Length 
Distributions Using Generating Polynomials.” Workshop SLIP 2000, pp. 99-105, 2000.
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Occupation Probability Function

From this we can deduct that

Local distributions at each level have similar 
shapes (self-similarity) ⇒ peak values scale.

Integral of local distributions equals number of 
connections.
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Occupation Probability Function
Same result found by using a terminal conservation technique*

* J. A. Davis et al. A Stochastic Wire-length Distribution for Gigascale Integration (GSI) - PART 
I: Derivation and Validation. IEEE Trans. on Electron Dev., 45 (3), pp. 580 - 589, 1998.
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Occupation Probability Function

For cells placed in infinite 2D plane
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Occupation Probability: Results

8
Occupation prob.
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Donath
Experiment

Use probability on each hierarchical level (local distributions).
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Occupation Probability: Results

Effect of the occupation probability: boosting the local 
wire length distributions (per level) for short wire lengths

Occupation prob.
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Percent of wires

10

1

0,1

0,01

10-3

10-4
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Global trend
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10000
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Effect of the occupation probability on the total 
distribution: more short wires = less long wires

⇓
   Average
   wire length
   is shorter

Occupation Probability: Results
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Occupation Probability: Results

10

20

30

40

50

60

1 10
Wire length

Percent wires

Occupation prob.
Donath

2 3 4 5 6 7 8 9

Global trend-23%

-8%

+10%

+6%



March 31, 2001 Dirk Stroobandt, SLIP 2001 33

Occupation Probability: Results
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Length of Multi-terminal Nets
Difference between delay-related 
and routing-related applications*:
- Source-sink pairs

  Assume A is source

  A-B at level k

  A-C and A-D at level k+1

  Count as three connections
- Entire Steiner tree lengths

  Segments A-B, C-D and E-F

  A-B and C-D at level k

  E-F at level k+1

  Add lengths to one net length

A

B

C

D

Level k +1

Level k

F
E

Net terminal
Steiner point

* D. Stroobandt. “Multi-terminal Nets Do Change Conventional Wire Length Distribution 
Models.” Workshop SLIP 2001.
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Extension to Three-dimensional Grids*

* D. Stroobandt and J. Van Campenhout. “Estimating Interconnection Lengths in Three-
dimensional Computer Systems.” IEICE Trans. Inf. & Syst., Spec. Iss. On Synthesis and 
Verification of Hardware Design, vol. E80-D (no. 10), pp. 1024-1031, 1997.

* A. Rahman, A. Fan and R. Reif. “System-level Performance Evaluation of 3-dimensional 
Integrated Circuits.” IEEE Trans. on VLSI Systems, Spec. Iss. on SLIP, pp. 671-678, 2000.
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Anisotropic Systems*

* H. Van Marck and J. Van Campenhout. Modeling and Evaluating Optoelectronic Architectures. 
Optoelectronics II, vol. 2153 of SPIE Proc. Series, pp. 307-314, 1994.
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Anisotropic Systems

Not all dimensions are equal (e.g., optical links in 3rd D)
• Possibly larger latency of the optical link (compared to intra-

chip connection);
• Influence of the spacing of the optical links across the area 

(detours may have to be made);
• Limitation of number of

optical layers

Introducing an optical cost
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External Nets

Importance of good wire length estimates for external 
nets* during the placement process:

For highly pin-limited designs: placement will be in a 
ring-shaped fashion (along the border of the chip).

* D. Stroobandt, H. Van Marck and J. Van Campenhout. Estimating Logic Cell to I/O Pad 
Lengths in Computer Systems. Proc. SASIMI’97, pp. 192-198, 1997.
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Wire Lengths at System Level

At system level: many long wires (peak in distribution).

How to model these?

Estimation* based on
Rent’s rule with the
floorplanning blocks
as logic blocks.

* P. Zarkesh-Ha, J. A. Davis and J. D. Meindl. Prediction of Net length distribution for Global 
Interconnects in a Heterogeneous System-on-a-chip. IEEE Trans. on VLSI Systems, Spec. Iss. 
on SLIP, pp. 649-659, 2000.
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Conclusion

Wire length distribution estimations have evolved a lot in 
the last few years and have gained accuracy but the 
work is not finished!

Suggested reading

(brand new book):

D. Stroobandt.

A Priori Wire Length Estimates 
for Digital Design.

Kluwer Academic Publishers,

2001. 324 pages,

ISBN no. 0 7923 7360 x.
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