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Why A Priori Interconnect Prediction?

* [nterconnect. importance of wires increases (they do
not scale as components).

* A priori:
* For future designs, very little is known.
* The sooner information is available, the better.

* A Priori Interconnect Prediction = estimating
Interconnect properties and their consequences
before any layout step is performed.

* Extrapolation to future systems: Roadmaps.
* To improve CAD tools for design layout generation.
* To evaluate new computer architectures.
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Why A Priori Interconnect Prediction?
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* A. Caldwell et al. “GTX: The MARCO GSRC Technology Extrapolation System.” IEEE/ACM
DAC, pp. 693-698, 2000 (http://visicad.cs.ucla.edu/GSRC/GTX)/).
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Why A Priori Interconnect Prediction?

* To improve CAD tools for
design layout generation.

More efficient layout
generation requires good wire
length estimates.

* layer assignment in routing

* effects of vias, blockages

* congestion, ...

A priori estimates are rough
but already provide a better
solution through fewer
design cycle iterations.
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Why A Priori Interconnect Prediction?

To evaluate new computer architectures
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OIIC Project (http://www.elis.rug.ac.be/~jvc/oiic/sysdemo.htm) 7
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Goal: Predict Interconnect
Requirements vs. Resource Availability
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Setting of SLIP Research Domain in
the Design Process
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Components of the
Physical Design Step
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The Three Basic Models

Circuit model Model for the architecture

O  Logic block

e Net
@ Terminal / pin

Manhattan grid
using Manhattan metric

d:|X1_X2|+|Y1_Y2|

Placement and routing model
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Rent’s Rule

Rent’s rule was first described by Landman and Russo* in 1971.
For average number of terminals and blocks per module in a

partitioned design:

7
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VAB Oxo
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e
SRR L1
o &Koo
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Q// © -
average *
Rent'srule ——
1 10 100
B

1000

T =tBP
p = Rent exponent
t Javerage # term./block

Measure for the complexity

of the interconnection topology
Intrinsic Rent exponent p*
(simple) 0 < p*< 1 (complex)

Normal values: 0.5 <p*<0.75

*B. S. Landman and R. L. Russo. “On a pin versus block relationship for partitions of logic
graphs.” IEEE Trans. on Comput., C-20, pp. 1469-1479, 1971.
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Rent’s Rule (cont.)

Rent’s rule is a result of the self-similarity within circuits

Assumption: the complexity of the interconnection topology
IS equal at all levels.

March 31, 2001  Dirk Stroobandt, SLIP 2001 14



Rent’s Rule (other definition)

(Dense) region: _'? cells, | If AB cells are added, what is the increase AT?
o oo tegrm'nas In the absence of any other information we guess
O o0 00
-7 B BELEE AT = [AB
o o 0o ooooooo 0B 0
o bosd b/Eo | oo Overestimate: many of AT terminals connect to T
R SR - A= terminals and so do not contribute to the total.
o 7 o mBD 00 We introduce* a factor p (p <1) which indicates how
ogo oo 0o self-connected the netlist is + placement optimization
O O
> o AT = p-FAB
— OB [
Statistically homogenous
system Or, if AB & AT are small comparedto Band T
p*sp=sl —~pEH—HD T =tB”

* P. Christie and D. Stroobandt. “The Interpretation and Appllcatlon of Rent's Rule.” IEEE
Trans. on VLSI Systems, Special Issue on SLIP, vol. 8 (no. 6), pp. 639-648, Dec. 2000.
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Rent’s Rule (summary)
T=tB?

% | Rent'srule is experimentally
validated for a lot of benchmarks.

Distinguish between:

* p*. intrinsic Rent exponent

* p: placement Rent exponent
* p’. partitioning Rent exponent

average X

Rentsrue — | Deviation for high B and T:
11 10 100 1000 Rent’'s reglqn [1*
B Also: deviation for low B and T:

Rent region I1I**

*B. S. Landman and R. L. Russo. “On a pin versus block relationship for partitions of logic
graphs.” IEEE Trans. on Comput., C-20, pp. 1469-1479, 1971.

** D. Stroobandt. “On an efficient method for estimating the interconnection complexity of
designs and on the existence of region Il in Rent’s rule.” Proc. GLSVLSI, pp. 330-331, 1999.
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Donath’s* Hierarchical Placement Model

1. Partition the circuit into 4 modules of equal size such
that Rent’s rule applies (minimal number of pins).

F

) I

D I
)_

2. Partition the Manhattan grid in 4 subgrids of equal
size in a symmetrical way.

*W. E. Donath. Placement and Average Interconnection Lengths of Computer Logic. IEEE
Trans. on Circuits & Syst., vol. CAS-26, pp. 272-277, 1979.
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Donath’s Hierarchical Placement Model

3. Each subcircuit (module) is mapped to a subgrid.

L
SRR
RIS

HTh

4. Repeat recursively until all logic blocks are assigned
to exactly one grid cell in the Manhattan grid.
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Donath’s Length Estimation Model

At each level: Rent’s rule gives number of connections

* number of terminals per module directly from Rent’s rule
(partitioning based Rent exponent p’);

« number of nets cut at level k (N) equals

where a depends on the total number of nets in the circuit
and is bounded by 0.5 and 1.
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Donath’s Length Estimation Model

Length of the connections at level k ?

||
||
||
Adjacent (A-) N —— N —— Diagonal (D-)
||
||
||
|

combination |  combination

Donath assumes: all connection source and destination
cells are uniformly distributed over the grid.
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Results Donath

Scaling of the average

length L as a function of 32 f
the number of logic 20|
blocks G
L15
0G"™  (p>0.5) 10
LOMogG) (p=0.5) 5
Ef(p) (p<0.5) 1 10 100 10° 104 10° 105 107

G
Similar to measurements on placed designs.
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Results Donath

8
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Theoretical average wire length too high by factor of 2
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Improving on the Placement
Optimization Model

* Keep wire length scaling by hierarchical placement.
* Improve on uniform probability for all connections at one
level (not a good model for placement optimization).

Occupation probability* favours short interconnections (for
placement optimization) (darker)

* D. Stroobandt and J. Van Campenhout. Accurate Interconnection Length Estimations for Pre-
dictions Early in the Design Cycle. VLSI Design, Spec. Iss. on PD in DSM, 10 (1): 1-20, 1999.
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Including Placement Optimization

Wirelength distributions contain two parts:
site density function and probability distribution

O—@—0O—0O—C0O—@
088 6666
....t.)... D...t )
0009 69
( b...(..:..). b...t )

00000 66

@ )—( )—(O)—C—0O—0
..............U
all possibilities probability of occurrence
requires enumeration shorter wires more probable
(use generating polynomials®) N() =K D) q(l)

* D. Stroobandt and H. Van Marck. “Efficient Representation of Interconnection Length
Distributions Using Generating Polynomials.” Workshop SLIP 2000, pp. 99-105, 2000.
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Occupation Probability Function

Number of Local distributions at each level have similar
connections| |J shapes (self-similarity) 1 peak values scale.
& o Integral of local distributions equals number of

connections.
Global distribution follows peaks.

Pot--q---Y-mmai-- 2

—+ + + + + + + 1000 .
2 4 6 8 10 12 14 16 Experiment o
Lpo Lp> Length / Theory .

o

From this we can deduct that |
N()O1%P ol
For short lengths: D(I) 11 o
N() — 2p-a 4 10 0 %00
NO-——~201°° -
q( ) D(l) Wire length
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Occupation Probability Function

Same result found by using a terminal conservation technique*

OO00odoooodan
OO000dOonan
B O
A c -
]
O Assumption: net cannot connect A,B,
[ and C
B O  r1,.=t1+B,)" T,. =t(B, +B.)’
OO000dOonan
nooooooooo T, =tBy Tpsc =1+ By + B’

Ny =0T, :at[(l'l'BB)p +(BB +Bc)p _Bg _(1+BB +Bc)p

*J. A. Dauvis et al. A Stochastic Wire-length Distribution for Gigascale Integration (GSI) - PART
I: Derivation and Validation. IEEE Trans. on Electron Dev., 45 (3), pp. 580 - 589, 1998.
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Occupation Probability Function

ODoodoooooad
OO00O00dOOOO For cells placed in infinite 2D plane
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Occupation Probability: Results

Use probability on each hierarchical level (local distributions).
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Occupation Probability: Results

Effect of the occupation probability: boosting the local
wire length distributions (per level) for short wire lengths

Donath Percentofwires  ccupation prob.
| | | 100 | | |
Global trend — Global trend —
Per level | 10 Per level ’

Total —1| 1 ¢ Total —|

101}
10,01 ¢
1 103 ¢
1 104 ¢
1 10 100 1000 10000 1 10 100 1000 10000
Wire length Wire length
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Occupation Probability: Results

Effect of the occupation probability on the total
distribution: more short wires = less long wires

Percent wires
100

 Donath —
10\ Occupation prob. —
Average 1 | !
wire length 10 |
IS shorter 102 |
107 |
104 |
10 * * \
1 10 100 1000 10000

Wire length
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Occupation Probability: Results

Percent wires

60
l """" =0 Donath -
.............. Occupation prob. -®-
-23% 40 Global trend — -
A 30
+69% TT20 ___________

1 2 3 4 5 6 7 8 9 10
Wire length
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Occupation Probability: Results

Number of wires

1000§j
Donath —
QO
100 " ~._ Occupation prob. —
Measurement ©
10 +
1 L
0,1 o | o
1 10 100

Wire length
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Length of Multi-terminal Nets

Level k +1

i

i
!
OO

Level k

Net terminal
Steiner point

Rkt

Difference between delay-related
and routing-related applications*:

- Source-sink pairs
Assume A is source
A-B at level k
A-C and A-D at level k+1
Count as three connections

- Entire Steiner tree lengths
Segments A-B, C-D and E-F
A-B and C-D at level k
E-F at level k+1
Add lengths to one net length

* D. Stroobandt. “Multi-terminal Nets Do Change Conventional Wire Length Distribution

Models.” Workshop SLIP 200

1.
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Extension to Three-dimensional Grids*

* D. Stroobandt and J. Van Campenhout. “Estimating Interconnection Lengths in Three-
dimensional Computer Systems.” IEICE Trans. Inf. & Syst., Spec. Iss. On Synthesis and
Verification of Hardware Design, vol. ES0-D (no. 10), pp. 1024-1031, 1997.

* A. Rahman, A. Fan and R. Reif. “System-level Performance Evaluation of 3-dimensional
Integrated Circuits.” IEEE Trans. on VLS| Systems, Spec. Iss. on SLIP, pp. 671-678, 2000.
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Anisotropic Systems*

J;-’..’.".'
--..-..6....0

L
4

¥

d
* H. Van Marck and J. Van Campenhout. Modeling and Evaluating Optoelectronic Architectures.
Optoelectronics Il, vol. 2153 of SPIE Proc. Series, pp. 307-314, 1994,
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Anisotropic Systems

Not all dimensions are equal (e.g., optical links in 3rd D)

* Possibly larger latency of the optical link (compared to intra-
chip connection);

* Influence of the spacing of the optical links across the area
(detours may have to be made);

* Limitation of number of
optical layers LT .

Introducing an optical cost
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External Nets

Importance of good wire length estimates for external
nets* during the placement process:

EEsnEEEE
EEEEEEEN

RERRRRE o T cell

LI L L j]J EEE /0 pad

JIrre . _ net
RARRRRREN

]
1T
o [ J [ D R S O B

J o &

For highly pin-limited designs: placement will be in a
ring-shaped fashion (along the border of the chip).

* D. Stroobandt, H. Van Marck and J. Van Campenhout. Estimating Logic Cell to I/O Pad
Lengths in Computer Systems. Proc. SASIMI'97, pp. 192-198, 1997.
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Wire Lengths at System Level

At system level: many long wires (peak in distribution).

How to model these?

Estimation* based on
N Rent’s rule with the
floorplanning blocks
as logic blocks.

wire length

* P. Zarkesh-Ha, J. A. Davis and J. D. Meindl. Prediction of Net length distribution for Global
Interconnects in a Heterogeneous System-on-a-chip. IEEE Trans. on VLS| Systems, Spec. Iss.
on SLIP, pp. 649-659, 2000.
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Conclusion

Wire length distribution estimations have evolved a lot in
the last few years and have gained accuracy but the
work is not finished!

Suggested reading
(brand new book):

14y

A Priori Wire
Length Estimates for
Digital Design
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Dirk Stroohandt

D. Stroobandt.

A Priori Wire Length Estimates
for Digital Design.

Kluwer Academic Publishers,
2001. 324 pages,
ISBN no. 0 7923 7360 x.
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