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ABSTRACTConventional models for estimating wire lengths in com-puter chips use Rent's rule to estimate the number of termi-nals between sets of gates. The number of interconnectionsthen follows by taking into account that most nets are point-to-point connections. In this paper, we introduce a modelfor multi-terminal nets and we show that such nets havea fundamentally di�erent inuence on the wire length esti-mations than point-to-point nets. The multi-terminal netmodel is then used to estimate the wire length distributionin two cases: (i) the distribution of source-sink pairs forapplications of delay estimation and (ii) the distribution ofSteiner tree lengths for applications related to routing re-source estimation. The e�ects of including multi-terminalnets in the estimations are highlighted. Experiments showthat the new estimated wire length distributions are closeto the measured ones.
KeywordsWire length estimation, Multi-terminal nets, Rent's rule.
1. INTRODUCTIONConventional length estimation models employ a modelfor the circuit, a model for the architecture (standard cell,gate array, etc.) and a layout model to predict wire lengthsin digital designs a priori, i.e., before the actual layout hasbeen performed. Such models are based on Rent's rule [7,4] which predicts that the number of terminals T needed forcommunication between a module of a partitioned circuitand the remaining of the circuit is related to the number ofgates B in the module asT = t Bp (1)with t the average number of terminals per gate (if B = 1,�Dirk Stroobandt is Postdoctoral Fellow with the Fund forScienti�c Research (F.W.O.) { Flanders
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T = t)1 and p the Rent exponent. This exponent providesthe necessary information on the complexity of the inter-connection topology of the circuit as well as on the level ofplacement optimization [4].Wire length estimates based on Rent's rule were intro-duced by Donath [6] in 1979 and are getting more attentionrecently. Several improvements have been presented [13, 5,8, 14, 11]. An overview of wire length estimation methodsis presented in [4]. These methods all estimate the num-ber of terminals needed for communication between two setsof gates from Rent's rule, predict the number of nets fromthe number of terminals and estimate the average length ofeach of those nets. The prediction of the number of netsfrom the number of terminals is generally done by assum-ing only point-to-point (i.e., two-terminal) nets. While it isacknowledged that multi-terminal nets exist, it is assumedthat the number of point-to-point nets is signi�cant enoughto dominate the wire length distribution.Multi-terminal nets have been studied in [12, 18]. Bothpapers suggest a model for multi-terminal nets and com-pute from that the distribution of nets over their numberof terminals. We will call this the net degree distribution.The predicted distributions are then validated by comparingthem to the measured net degree distribution. In this paper,we investigate the inuence of the multi-terminal nets onthe wire length distributions by considering two applicationmodels for the wire length estimations. A �rst applicationmodel uses the wire delay. For such delay-related applica-tions, the length of connections between a source and a sinkis important. The length of other branches in the net (fromsinks to other sinks) is only of secondary importance. A sec-ond application domain is situated in the �eld of estimatingrouting resources. For such routing-related applications, theentire Steiner tree length of nets is the only length thatcounts. We will show that both application domains resultin a di�erent solution to the wire length estimation problem.Moreover, the solutions are fundamentally di�erent from thepoint-to-point solution found in all previous works.Section 2 briey reviews the multi-terminal net modelfrom [12] and [8], focusing on those aspects of the modelthat are used for the multi-terminal net length estimationsof section 3. In that section, a wire length prediction modelis proposed for both delay-related and routing-related appli-cations. The resulting wire length distributions and averagewire lengths are then compared to experimentally measuredlengths in section 4.1This is only approximately true since t is generally foundby �tting a logarithmic curve to a terminal-versus-gate plot.
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Figure 1: The di�erence between cutting internalnets (dashed lines) and external nets (solid lines).
2. MODEL FOR MULTI-TERMINAL NETS
2.1 The number of (multi-terminal) netsConsider a recursive four-way2 partitioning of a circuit,minimizing the number of terminals. Rent's rule (equa-tion 1) can then be applied to the partitioning modules andprovides an estimate for their average number of terminals.Suppose the circuit contains a total of G = 4K gates, recur-sively divided into 4 modules of (equal) size B = 4k at eachpartitioning level k (k = 0 at the lowest level where eachmodule contains only a single gate and k = K � 1 for thepartitioning of the entire circuit into 4 modules). The totalnumber of terminals for all modules of size B then isTtot(B) = t Bp GB = tGBp�1 (2)and the number of terminals Tk that is generated by thecutting of nets at hierarchical level k byTk = Ttot(4k)� Ttot(4k+1) = tG 4k (p�1) �1� 4p�1� : (3)Previous wire length estimation models simply relate thenumber of terminals Tk at level k to the number of nets Nkcut at level k by assuming point-to-point nets only, henceNk = 12 Tk. In the best case, they account for multi-terminalnets by introducing a factor � (1=2 � � � 1) instead of1=2 [6]. However, the relation between Nk and Tk is morecomplicated in the case of multi-terminal nets [12, 8, 11].Consider the partitioning process at level k (�gure 1). Aninternal net at level k is entirely contained in one moduleof the partitioning level k. An external net at level k has aterminal at level k. During partitioning, both internal andexternal nets can be cut. Cutting an internal net generatestwo new terminals (�gure 1). An external net at level k+1,on the other hand, already uses a terminal at level k + 1 soonly one new terminal has to be generated (the other onecan be reused). With Si;k the total number of internal netscut at level k and Se;k the total number of external nets cutat level k, this implies32Si;k + Se;k = Tk: (4)2The reasoning is also valid for another partitioning but afour-way partitioning is bene�cial for the model in section 3.3There exists an important di�erence between the oftenused cut minimization partitioning criterion and the ter-minal minimization criterion. Indeed, equation 4 indicatesthat cutting internal nets is much more disadvantageous, interms of the number of new terminals generated, than cut-ting external nets. A detailed analysis is presented in [9].

The new terminals created by the cutting of nets can beinput or output terminals. We de�ne k as the ratio of thenumber of new output terminals to the total number of newterminals k = OkTk : (5)Due to the self-similarity of circuits at di�erent hierarchicallevels, it is acceptable to assume that k is independent ofthe hierarchical level k [8, 11], i.e., 8k : k = . Figure 1shows that the total number of nets cut at level k equalsthe number of new input terminals, i.e., (1 � )Tk. Theparameter  can be found from the total number of internalnets in the circuit (i.e., the total number of nets N minusthe number of external nets, or pins, P ) as [11] = N � PtG� P = Gto �OtG� P : (6)The last part of equation 6 is found by using a relation be-tween N and the number of primary inputs (I) and outputs(O) of the circuit and the average number of inputs (ti) andoutputs (to) per gate. Since nets can only be driven by gateoutputs or primary input pins and since each net is drivenexactly once, N = Gto + I. Equation 6 results in  � 1=2: � 12 , 2N � 2P � tG� P , tG+ PN � 2: (7)Indeed, the ratio of the total number of terminals over thetotal number of nets, i.e., the average net degree (we countexternal terminals in the net degree), is always larger than(or equal to) 2.From the above, we can calculate the total number of in-ternal (Ni;k) and external nets (Ne;k) at a hierarchical levelk, as well as the number of internal (Si;k) and external nets(Se;k) that is cut at level k (see [11] for the exact equations).
2.2 Net Degree DistributionsThe previous section calculates the number of internal andexternal nets at each recursion level. In this section, we seekto identify the net degree of each of these nets, i.e., the netdegree distribution. We bene�t from using its moment gen-erating function, which we will call the generating polyno-mial for net degrees [15]. It is a polynomial in the variablex for which the coe�cients of each term xn are given by thenumber dn of nets with net degree � = n and it is denotedas Vn =Pn dn xn. The normalized version is called Wn.In [12, 8, 11], a recursive equation is found for the net de-gree generating polynomials by using the reverse of the par-titioning process, i.e., a net generating process. Not count-ing the external terminal (for this, we change the notationof Wn;e to W 0n;e =Wn;e=x), we �nd [12, 8, 11]W 0n;e(k + 1) = ge �W 0n;e(k)�2+ (1�ge)W 0n;e(k) (8)Vn;i(k + 1) = gi 4k (p�1) �W 0n;e(k)�2 + Vn;i(k) (9)with k � 0 andge = (1� 2) �41�p � 1� Vn;i(0) = 0gi =  tG �1� 4p�1� W 0n;e(0) = x: (10)Note that, if  = 1=2, then ge = 0 and the normalized netdegree distribution for external nets remains the same for alllevels, i.e., all external nets are two-terminal nets (countingthe external terminal). By consequence, all internal nets arealso two-terminal nets (equation 9).
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2.3 Average Net DegreeAlthough we are not able to compute closed-form expres-sions from equations 8 and 9, we can easily calculate theaverage net degree at each hierarchical level. The details ofthe calculation are presented in [8, 11]. The resulting aver-age external (��e;k), internal (��i;k), and total (��k) net degreesat level k are found to be��e;k = 1 + �2  + (1� 2 ) 41�p�k (11)��i;k = �2 4p�1 + 1� 2�k � 1 (4k (p�1) � 1) (12)��k = Ni;k ��i;k +Ne;k ��e;kNi;k +Ne;k = 4k (p�1) + 1 + (1� ) 4k (p�1) : (13)Again,  = 1=2 leads to two-terminal nets only.Using equation 6 for , we obtain the correct average netdegree for the entire circuit (k = K and G = 4K)��K = tG+ tGpN : (14)Both the average net degree of internal nets (equation 12)as the one for all nets (equation 13) approach 1= for verylarge circuits ��i;k k!1= 1= �� k!1= 1=: (15)Based on equations 15, we can conclude that two largecircuits that are di�erent but that have the same fraction, produce approximately the same average net degree, in-dependent of their respective Rent exponents! This meansthat the fraction  is a separate circuit property and anextra parameter, next to the Rent exponent.
2.4 Net Degree Distribution EvaluationTo validate the recursive equation for the net degree dis-tribution, we compare it to measurements on the ISCAS89benchmark `s953' [2] and the benchmark `industry3' [1] (see�gures 2 and 3). The Rent exponent has been estimatedby �tting a straight line to the data generated by the par-titioning program `ratiocut' [16]. The output fraction is found from equation 6 and from the measurements of Nand P from the benchmark data. Figures 2 and 3 showthat the measured net degree distribution for internal netsand the theoretically predicted distribution follow the sametrend as a function of the net degree n (compare with the
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1 3 5Figure 3: The measured and theoretically predictednet degree distributions for the benchmark `indus-try3' in a log-log plot (inset: part of linear plot).curve of average values). The correlation between both dis-tributions is very good for the small net degrees (largestnumber of nets). The net degree distribution found by Pay-man Zarkesh-Ha [18] is also shown in the �gures as a dashedline, with the same parameters as in our model (measuredfrom a circuit partitioning). While our model only underes-timates the number of nets with very high net degree,4 themodel found by Zarkesh-Ha largely underestimates the totalnumber of nets (by a factor � 2). Even if we scale the modelto the total number of nets, it underestimates the nets withfew terminals and largely overestimates the number of netswith a lot of terminals. Our model predicts the net degreedistribution more accurately. There are several reasons forthis. In [18], the authors only consider multi-terminal inter-nal nets (no external nets) when calculating the number ofnets from the number of terminals (and thus they implicitlyassume  = 1=2). In their recursive calculation model, theyalso assume that, for the addition of one gate to a module ofB gates, all additional nets are (B+1)-terminal nets whereasit is clear some (or even most) of the new internal nets willhave a lower number of terminals (i.e., they do not have tobe connected to all gates of the modules). Also, unlike theZarkesh-Ha model, our model �nds the exact average netdegree (equation 14).
3. WIRE LENGTH ESTIMATION FOR

MULTI-TERMINAL NETSEver since Donath introduced his wire length estimationmethod at the end of the 70's [6], it has been used by nearlyevery researcher engaged in a priori wire length estimation.In Donath's method, the circuit is basically characterizedby the complexity of its interconnection topology, describedby Rent's rule and the Rent exponent. The Manhattan gridserves as a model for the physical architecture the circuit willbe placed in and the placement process itself is modelled by atheoretical placement minimizing the total wire length (i.e.,the sum of all distances between connected gates). Since it isassumed wires are always routed along the shortest path, thewire length follows from the placement information alone.4Note that the actual number of nets with high net degreeno longer follows the average behaviour and that these netsare probably special nets. Also, the number of such nets isnegligible compared to the total number of nets.
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3.1 Donath’s Hierarchical Placement ModelDonath's placement model is summarized in �gure 4. Thecircuit is partitioned into four subcircuits of equal size (de-noted by 1, 2, 3, and 4), in such a way that the partitionsatis�es Rent's rule [7]. The square Manhattan grid is alsopartitioned into four subsquares of equal size, in a symmetri-cal way (denoted by I, II, III, and IV) and each subcircuitis mapped to a subsquare. This process is then repeated re-cursively for each of the subcircuit subsquare pairs, until allgates are assigned to exactly one grid cell. Compared to therandom placements one used before, Donath's hierarchicalplacement models placement optimization better. It is alsoeasily combined with our multi-terminal net model.All interconnections are assigned to a particular level ofhierarchy in the placement process and the average numberof interconnections Nk at level k is calculated (from Rent'srule), as well as the average wire length per level �̀k. Theaverage wire length �̀, computed over all hierarchical levels,is then given by �̀= PK�1k=0 Nk �̀kPK�1k=0 Nk : (16)With this, we can focus the discussion on the average wirelength �̀k per level and the number of wires Nk at each level.
3.2 Average Wire Length per LevelFor the average wire length �̀k of a connection assigned tolevel k, we use an extension of Donath's technique that takesplacement optimization better into account. We thereforewrite the wire length distribution D`;k at a hierarchical levelk as the product of a structural distribution Sk(`) and anoccupation probability q(`) [4, 5, 14]D`;k = Sk(`) q(`): (17)The structural distribution is the enumeration of all possible
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4Figure 5: Hierarchical four-way partitioning of thecircuit. Net 4 is split into more than two parts.paths in the architecture at the hierarchical level.5 It repre-sents the entire collection of placement sites for nets at thehierarchical level. The occupation probability then assignsto each of the placement sites a probability that the site isoccupied by a wire at hierarchical level k [14, 8]. The oc-cupation probability q(`) can be approximated by `2 p�4 fora two-dimensional Manhattan grid [4, 5, 14]. The expectedvalue of the average length of wires at hierarchical level kthen equals�̀k = `max(k)X̀=0 `Sk(`)q(`)`max(k)X̀=0 Sk(`)q(`) = `max(k)X̀=0 Sk(`)`2p�3`max(k)X̀=0 Sk(`)`2p�4 : (18)In [8, 14] it is shown that the wire length (over all hierar-chical levels) scales with `2 p�3.
3.3 Average Number of InterconnectionsIn section 2 we found that the number of nets at level kis related to the number of terminals as Nk = (1 � )Tk.In practice, older methods are equivalent to splitting eachmulti-terminal net into a number of net segments that canbe calculated separately in the length computation as two-terminal nets. Note, however, that the computed lengththen is not the total net length but the net segment length.We will extend previous methods to realistic net lengths byrecombining these net segments.A �rst problem we have to note is the di�erent hierarchi-cal partitioning structures between a bi-partitioning and afour-way partitioning. Consider the four-way partitioning of�gure 5. The multi-terminal nets 1, 2 and 3 are split into twoparts as in the bi-partitioning scheme. These nets will stillgenerate one or two new terminals depending on whetherthey are external or internal. However, net 4 is split intothree parts and hence generates three new terminals (as aninternal net). This complicates the analysis of the multi-terminal net model since only the total number of internaland external nets can be computed but not the fraction ofthat number that is kept in two modules and the fractionthat uses more modules. This fraction is likely to dependon the net degree distribution. On the other hand, a goodpartitioning and placement strategy will try to keep con-nected gates close to each other and therefore it will reduce5See [15] for an e�cient way to enumerate the distributionsusing generating polynomials.



level +1

level

k

k

A

B

E F

D

C

Cell

Pad

Channel

PathFigure 6: The decomposition of a multi-terminal net(Steiner tree) into net components over several hier-archical levels: di�erence between delay-related androuting-related applications.the possibility of splitting a net into more than two modules(also note that the increase in number of terminals wouldbe punished in the partitioning cost function). For thesereasons, we assume that nets are only split into two parts ina four-way partitioning process. With this assumption, wecan directly reuse all results from section 2.As explained in the introduction, there are two ways inwhich we should account for multi-terminal nets in lengthcalculations. For delay-related applications, we split each n-terminal net into n� 1 point-to-point source-sink pairs. Forrouting-related applications the total length of the multi-terminal net will be computed as the sum of lengths of itsnet segments. In both cases, we simplify the length esti-mation by splitting up multi-terminal nets into 2-terminalcomponents. However, both cases di�er fundamentally inthe number of nets that are assigned to each hierarchicallevel and in the length of these nets. We do not change thelength calculation from section 3.2 but we change the num-ber of net (segments) considered at each level as well as theway in which their lengths are combined.
3.3.1 Delay-related ApplicationsA source-sink pair is counted at hierarchical level k if thepath between source and sink is cut at that level. Considerthe multi-terminal net in �gure 6 and assume, without lossof generality, that gate A is its source. According to our con-vention, the path A{B will be at hierarchical level k, the pathsA{C and A{D at level k + 1. So, the number of source-sinkpaths at level k + 1 equals the number of net segments cutat that level times the average number of sinks in the mod-ule not containing the source of the nets. Both quantitiesare known from the multi-terminal net model of section 2.The net in �gure 6 counts for two source-sink pairs (A{Cand A{D) at level k+1 although only one net segment is cut(E{F). The same rule assigns one source-sink pair (A{B) tolevel k. Note that also the net segment (C{D) is cut at levelk but that it is not counted as a source-sink pair becausethe source is in none of the two modules at that level. Thedetails of the calculations can be found in [11, 10].A numerical evaluation of the number of source-sink pairsfor a circuit with Rent exponent 0:6, placed in a Manhat-tan grid of 1024 by 1024 cells, with an average number of
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3.3.2 Routing-related ApplicationsFor routing-related applications we split the Steiner netinto several net segments between two gates, between a gateand a Steiner point, or between two Steiner points. The seg-ments are de�ned by the (four-way) partitioning scheme andassigned the level on which they are cut. Figure 6 shows theprinciple behind this: the segments A{B and C{D of the four-terminal net are cut on level k and these two net segmentsare connected at level k + 1 by a net segment between theSteiner points E and F. Each of the net segments is consid-ered as a two-terminal net but to �nd the total Steiner treelength we have to add lengths of net segments (of di�erentlevels) belonging together. The calculation of the overallSteiner length distribution uses the same generating poly-nomials as in equations 8 and 9 and is detailed in [11, 10].The combination of the lengths of net segments will nat-urally result in a wire length distribution with longer wiresthan in the case of source-sink pairs. A numerical evalua-tion in �gure 8 con�rms this. Naturally, the estimate of thelongest wires, as well as the average value, will signi�cantlydi�er from the same value for the source-sink pair length.
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4. DISCUSSION AND RESULTS
4.1 Average Wire LengthFor two-terminal net segments the sum over all hierarchi-cal levels (equation 16) yields [8]�̀= R(p) H(K;p; 1)H(K;p; 2) ; (19)with R(p) a function only depending on p andH(K;p; x) = 2K(2p�x) � 122p�x � 1 :For the average source-sink pairs length �̀ss, it gives [11, 10]�̀ss = R(p)2(1�)4p�1G(2)+(1�2)((1)�)G(2 41�p)2(1�)4p�1G(1)+(1�2)((1)�)G(41�p)(20)with G(x) = �x (1� 2 + 2  4p�1)�K � 1x (1� 2 + 2  4p�1)� 1 : (21)The second terms in numerator and denominator of equa-tion 20 are very small (thus reducing equation 20 to �̀ss =R(p)G(2)=G(1)), especially for large circuits, since = Gto �OGt� P � tot = (1) (22)For  = 1=2 (two-terminal nets), equation 20 reduces toequation 19. In general however, the scaling behaviour candeviate signi�cantly from equation 19, as shown in �gure 9.To calculate the average Steiner tree length �̀st, we do notneed to consider the complex addition of segment lengthsto Steiner lengths. The average length is simply found bydividing the total length (sum of all the individual segmentlengths) by the total number of nets. This results in [11, 10]�̀st = R(p) 1�  H(K;p; 1)H(K;p; 2) : (23)For  = 1=2 (two-terminal nets), the average length is ofcourse equal to the average net segment length (equation 19),but it is signi�cantly higher (by a factor of (1 � )= � 1)for general multi-terminal nets. Interestingly, the scalingbehaviour (last factor of equation 23) is exactly the same asfor segment lengths!
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4.2 Experimental VerificationWe compare the wire length distributions and averagewire lengths from our new multi-terminal net model withexperimental measurements for both source-sink pairs andSteiner tree lengths. The experimental results are obtainedthrough placements by an in-house program based on Sim-ulated Annealing [8]. The placement is optimized for min-imal total wire length. Steiner lengths are measured usingGeosteiner [17]. Because we do not have the informationon which terminals are sources and which ones are sinks forour benchmark circuits, we measured source-sink lengths bytaking every terminal of a net as the source ones and thenaveraging over the number of terminals.The new source-sink length distributions are not too dis-tinct from the results of the older models but for the Steinertree lengths there is a clear di�erence between the new andthe old models, as can be seen from �gure 10. The measuredSteiner lengths for the benchmark are generally longer thanpredicted by the older model (hence there are less shortwires and more long ones) because actual Steiner lengths



Table 1: Average wire length for a placement of theISCAS benchmark circuits. Comparison betweenour new estimates �̀ and the experimental values�̀e for source-sink pairs (subscript ss) and Steinerlengths (subscript st). The estimation error e, rela-tive to the experimental values, is presented in %.RentName G p  �̀e;ss �̀ss ess �̀e;st �̀st estc432 160 0.62 0.338 3.10 2.08 -33 3.67 3.13 -15c499 202 0.62 0.316 3.35 1.84 -45 3.95 3.79 -4c880 383 0.62 0.348 2.36 2.17 -8 2.54 3.49 37c1355 546 0.73 0.334 2.47 2.58 4 2.87 5.24 83c1908 880 0.72 0.369 2.56 2.87 12 3.09 4.65 51c2670 1193 0.73 0.370 2.58 3.32 28 3.17 4.66 47c432nr 157 0.62 0.341 3.01 2.08 -31 3.56 3.09 -13c499nr 202 0.65 0.284 3.25 1.89 -42 3.85 3.92 2c1355nr 546 0.74 0.322 2.46 2.61 6 2.85 5.33 87c1908nr 878 0.71 0.369 2.56 2.82 10 3.09 4.49 45c2670nr 961 0.79 0.377 2.31 3.73 62 2.79 4.86 74s27 13 0.26 0.414 1.29 1.34 4 1.50 1.58 5s208.1 112 0.35 0.383 1.76 1.46 -17 2.08 2.04 -2s298 133 0.37 0.332 2.56 1.34 -48 3.26 2.72 -17s386 165 0.51 0.314 3.68 1.58 -57 4.03 3.44 -14s344 175 0.40 0.373 1.99 1.43 -28 2.14 2.27 6s349 176 0.40 0.371 1.98 1.44 -28 2.11 2.31 9s382 179 0.35 0.348 2.46 1.38 -44 2.97 2.50 -16s444 202 0.29 0.346 2.44 1.35 -45 2.95 2.40 -19s526 214 0.47 0.310 2.91 1.55 -47 3.95 3.54 -10s526n 215 0.43 0.311 2.90 1.51 -48 3.94 3.31 -16s510 217 0.65 0.338 3.93 2.12 -46 4.89 3.45 -30s420.1 234 0.37 0.380 1.88 1.55 -17 2.23 2.19 -1s832 292 0.51 0.265 6.11 1.77 -71 6.11 4.51 -26s820 294 0.54 0.270 5.95 1.81 -70 6.06 4.64 -23s641 398 0.69 0.417 2.00 2.28 14 2.10 2.96 41s713 412 0.71 0.404 2.02 2.40 19 2.18 3.27 50s953 424 0.68 0.346 3.84 2.15 -44 4.70 4.59 -2s838.1 478 0.41 0.378 1.95 1.68 -14 2.34 2.35 1s1238 526 0.66 0.329 4.40 2.29 -48 4.57 4.68 2s1196 547 0.64 0.345 4.11 2.24 -46 4.13 4.13 -0s1494 653 0.58 0.313 7.80 2.12 -73 6.89 4.52 -34s1488 659 0.59 0.316 7.79 2.14 -72 6.81 4.57 -33s1423 731 0.50 0.373 2.76 1.93 -30 2.95 2.71 -8are combinations of net segments. This is reected in thenew Steiner length distribution more accurately.The results for the average wire lengths are shown in ta-ble 1 for the ISCAS85 [3] and ISCAS89 [2] benchmark cir-cuits. These results are also shown in �gures 11 and 12 forsource-sink pairs and Steiner trees, as a function of the Rentexponent. In these �gures, we connected the correspondingpoints for clarity. The rough path of the curves is due tothe strong dependency of the average length on both thenumber of gates and the Rent exponent. Only one of thesedependencies is shown in the �gures.In table 1, we can observe that (i) source-sink lengths aregenerally underestimated and (ii) our estimates for Steinertree lengths are relatively close to the measured results.The fact that actual source-sink lengths are generally a lothigher than the predicted lengths is mainly due to the opti-mization criterion in our experimental placement. The Sim-ulated Annealing placement optimizes for total net length,
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Figure 11: Comparison of our new estimates forsource-sink pairs to Stroobandt's old estimates andto the experiments for the ISCAS benchmarks.
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Figure 12: Comparison of our new estimates forSteiner tree lengths to Stroobandt's old estimatesand to the experiments for the ISCAS benchmarks.not for total source-sink pair length. If the program wouldhave optimized the source-sink pair lengths it would suc-ceed in placing the source closer to all of its sinks whereasit would pay less attention to the relative distances betweensinks. Figure 11 also shows this and adds the older net seg-ment estimates. The di�erence between the new estimatesand the old estimate of Stroobandt is small because of thelarge similarities between estimating net segment lengthsand source-sink pair lengths. However, �gure 11 shows thatthere is some improvement in the estimates for circuits witha low Rent exponent (p < 0:5). For such circuits, the place-ment optimization is a lot easier, wires are generally veryshort and the e�ect of the optimization of the total netlength instead of the source-sink lengths is smaller.The Steiner tree estimates are much better and are within25% of the measured values on average. However, in quite afew cases, we also underestimate this length. This is partlydue to the fact that the occupation probability underesti-mates the number of long wires at the higher levels. Forcircuits that are large enough, this has no real inuence on



the average wire length because the number of long intercon-nections is relatively small. For smaller circuits (and mostof the ISCAS benchmarks are rather small), this inuenceis not negligible anymore. Figure 12 shows that our newmodel can capture the uctuations in Steiner tree length asobserved in the experimental measurements.
5. CONCLUSIONConventional wire length estimation models do not prop-erly take multi-terminal nets into account. In this paper,we found that there is a fundamental di�erence between in-ternal and external multi-terminal nets: in a partition, the�rst type of nets results in two new terminals, the second onein only one new terminal. This di�erence is not present inanalyses that only consider point-to-point connections andit leads to an exact (on average) relation between the num-ber of new terminals generated in a hierarchical partitioningscheme and the number of nets that are cut by it. This rela-tion also gives physical meaning to the factor � that Donath(and other researchers) introduced to \account" for multi-terminal nets.Based on a \net generation process" described in [8, 12],we found a recursive equation for the net degree distribu-tion which we used in this paper to estimate wire lengths formulti-terminal nets. We distinguish between \delay-relatedapplications" and \routing-related applications." The �rsttype is meant for estimating delays and requires the lengthof source-sink pairs, the second type is related to routing re-sources and considers Steiner tree lengths. We presented awire length estimation technique for both source-sink pairsand Steiner tree lengths that uses the best-known previousmodels for estimating net segment lengths (the at model ofDavis [5] and the hierarchical one of Stroobandt [14] of whichthe last one is easily combinable with our multi-terminal netmodel). Although the new estimates for source-sink pairsare quite close to the old wire length estimates, we observedthat the scaling behaviour (as a function of circuit size) fun-damentally di�ers when the inuence of the multi-terminalnets increases ( � 1=2). For the �rst time, we are alsoable to model Steiner tree lengths as a combination of theright net segment lengths. Naturally, the longest wires inthe Steiner tree estimations fundamentally di�er from thosefor the previous net segment estimates.Overall, our new Steiner length estimate seems to be quiteaccurate (in comparison to experimental Steiner length mea-surements) which validates (i) the net segment length esti-mation based on Stroobandt's results [14, 8], (ii) the multi-terminal net model, and (iii) the model for combining netsegments to Steiner trees.
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