Creation of ESL Power Models for Communication
Architectures using Automatic Calibration

Stefan Schirmans, Diandian Zhang, Dominik Auras, Rainer Leupers, Gerd Ascheid
Institute for Communication Technologies and Embedded Systems
RWTH Aachen University, Germany

{schuerma,zhang,auras,leupers,ascheid}@ice.rwth-aachen.de

Xiaotao Chen, Lun Wang
Huawei Technologies Co., Ltd.
Bridgewater, NJ, USA / Plano, TX, USA
{xiaotaochen,lun.wang}@huawei.com

ABSTRACT

Power consumption is an important factor in chip design.
The fundamental design decisions drawn during early de-
sign space exploration at electronic system level (ESL) have
a large impact on the power consumption. This requires to
estimate power already at ESL, which is usually not possi-
ble using standard ESL component libraries due to missing
power models. This work proposes a methodology that al-
lows extension of ESL models with a power model and to
automatically calibrate it to match a power trace obtained
by gate-level simulation or measurements. Two case stud-
ies show that the methodology is suitable even for complex
communication architectures.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Ana-
lysis and Design Aids; 1.6.5 [Simulation and Modeling]:
Model Development—~Modeling methodologies

General Terms

Design, Experimentation, Performance

Keywords

Electronic System Level, Power Estimation, Power Model

1. INTRODUCTION

Nowadays, the computational performance of embedded
devices is increasing steadily. This increase is enabled by
the advances in silicon technology according to Moore’s
Law [13], which allows to pack an exponentially increasing
number of transistors onto a single chip. In recent years,
this development has led to Multi-Processor Systems on
Chip (MPSoCs), which integrate several processors to-
gether with complex communication architectures and large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

DAC ’13, May 29 - June 07 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 ...$15.00

memories on a single piece of silicon. The large number of
transistors causes high power consumption, which heats up
the chip, drains the battery in mobile devices and has thus
become a major design concern.

Exploration of the design options for a future MPSoC usu-
ally starts at electronic system level (ESL) using SystemC [6]
in order to allow for easy adaptions and fast simulations.
Common building blocks are either supplied as black box
intellectual property (IP) components by commercial ven-
dors like Synopsys [4] or are available as open source like
SoClib [3]. However, those allow only to simulate functional-
ity and timing, but not power consumption. Unfortunately,
the fundamental design decisions drawn at ESL have a large
impact on the power consumption, which becomes visible
only in later design stages when it is very difficult to revise
those decisions.

Therefore, it is highly desired to obtain first power con-
sumption estimates during the ESL simulations, even if
those are not as accurate as power simulations at later
design stages. This work proposes a methodology to extend
ESL models with a power model. The state contained
in the internals of the ESL model is made available by
simple manual instrumentation in the form of state traces,
which are used as input to a parametrized power model.
Its parameters, called power state factors, can be obtained
automatically by a process called calibration, which takes a
power trace and corresponding state traces as input. The
output of the calibration process are the power state factors
resulting in the best match of the power estimate with the
provided power trace. Afterwards, the calibrated power
model can be used to estimate the power consumption in
different scenarios.

The key differentiator of the proposed methodology is to
simultaneously support the following features:

e Creation of power models for existing ESL models is
fast, supported by automatic tools and requires only
little manual work.

e Both source-based models and black box IP com-
ponents are supported.

e Identification of different power consumption
phases is possible, as the result of the power estima-
tion includes a power trace over time.

e Power models can be created for different types of com-
ponents, even for communication architectures.

e Calibration of power models needs only a power
trace of a suitable scenario and no details about the
hardware structure or the technology library.

e The ESL simulation speed only drops slightly
when adding power models.

This paper is organized as follows: After discussing related
work in section 2, the proposed methodology and the new
power model will be introduced in section 3. The calibra-
tion process is described in section 4. Section 5 introduces
our case studies for ESL power estimation and presents the
results. The paper is concluded in section 6.

2. RELATED WORK

Commercial power estimation tools like Synopsys Prime-
Time [5] typically operate at post-synthesis or post-layout
gate-level and can thus be only used at late stages in MPSoC
design. Additionally, the long simulation time is prohibitive
for simulation of many options and thus does not allow for
a thorough design space exploration.

To alleviate this problem, researchers have raised the
abstraction level of power estimation. Early system-level
power estimation approaches like [8] were still tailored
towards a fixed platform and included manually created
power models based on switching activity of RTL signals.
Recent tools like Docea Aceplorer [2] have eliminated those
limitations and can be used for a wide range of systems.
The tool separates the functional description from the power
behavior by managing user-defined, high-level power models
in parallel to the existing models. This allows to keep the
existing design flow for timed functional ESL simulation
unchanged.

A comprehensive approach from academia is the ESL
framework for rapid prototyping presented in [9]. It sup-
ports non-functional system properties like power consump-
tion estimated by pluggable external models for the different
system components. Starting from separate application and
platform descriptions, it constructs a timing and power
aware virtual prototype for analysis of different options
in the design space. High flexibility is achieved by only
defining interfaces and relying on external tools for creation
of the actual timing and power models of the components.

Wattch [7] and SimplePower [18] are popular approaches
for creating the required power models for processors. They
perform simulations on the architecture level and use the
state of the signals in every cycle to drive power models
that have been carefully parametrized. The abstraction level
can be raised further by running an instruction set simula-
tor and estimating the power consumption just from the
executed instructions according to [16]. However, due to
inter-instruction effects, a lot of different training instruc-
tion sequences have to be analyzed in order to obtain a power
model of suitable accuracy.

Functional Level Power Analysis (FLPA, [11], [12]) does
not abstract the architecture completely, but avoids the need
for simulating all architectural details during power estima-
tion. The power model contains the power consumptions
of the different functional units of a processor. Those have
been obtained by running training instruction sequences ac-
tivating only some of the different units and then applying
curve fitting in order to obtain a value for each unit. Dur-
ing simulation, the power consumption is derived from the
utilization of the units.

All of the approaches discussed so far are processor-centric
and will only work for simple buses when applied in a sys-
tem context. Because modern MPSoCs with a large number
of processing elements require complex communication ar-
chitectures, the power consumption of Networks on Chip
(NoCs) is estimated in [14]. A significant increase in accu-
racy is achieved by using a rate-based model instead of a
volume-based one as in earlier works. However, this limits
the approach to NoCs and makes it not applicable to other
communication architectures like crossbars.

A generalization of FLPA is used to create power mod-
els for different types of components in [15]. The code of
timed functional models used in common ESL simulations
is instrumented to output information about their states to
power models. Those power models are created using several
manually created training instruction sequences and linear
regression. The methodology presented in this paper is also
based on the regression approach. In contrast, it does not
rely on hand-crafted inputs as it calibrates the power model
automatically from a power trace of a known scenario.

The approach from [15] has been extended in [17] to also
support black box IP components, i.e. models without ac-
cess to the source code. As the IP block internals cannot be
observed by extension of the code, their inputs and outputs
are observed by newly created estimators. First, those es-
timators make the actions on the ports available for power
estimation. Second, they can also contain state machines to
track the internal state of the IP block, which is not visible
from outside the model. Our approach adopts the estimator
concept, but generalizes it to be suitable also for complex
communication architectures instead of only processors and
simple buses. Nevertheless, it does not require manual work
during calibration of the power model.

PowerDepot [10] instruments ESL models to export some
signals from the ESL simulation for driving a power model.
Those signals can be exported directly by an extended ESL
model or by a monitor observing the ports of an IP block,
which is the same concept as the estimator from [17]. The
power models are created in a multi-step process from the
cells of the standard library and the netlist of the compo-
nents. This process selects a few hardware signals as key
signals, which the power model will expect as input. The
results obtained by estimation of an H.264 application look
very promising, but it is not clear from [10] if this appli-
cation has also been involved in the characterization of the
power model. A major advantage compared to the works
discussed before is its capability to output a power trace
from the ESL simulation instead of only an average at its
end. However, the power model dictates which key signals
have to be provided by the ESL model. This limits the ap-
proach to models in which information about the state of
those signals is available. The methodology presented in
this paper does not have this limitation and is still able to
generate a power trace at ESL.

3. POWER EXTENSION OF ESL MODELS

For ESL design space exploration, the focus is rather on
low setup effort and high simulation speed than on full ac-
curacy. Therefore, the methodology presented in this paper
allows to create power models for existing ESL models by
little manual instrumentation work and automatic calibra-
tion. Instrumentation is used to capture the internal states

of the ESL models and to make them available for power es-
timation. The calibration process creates the parameters of
the power model from a reference power trace. Although this
work focuses on communication architectures, the methodol-
ogy is general enough to be applicable to all types of models.

3.1 Information at ESL

ESL models are usually SystemC models written in trans-
action level modeling (TLM) style, i.e. their internals are
mainly modeled using member function calls and member
variables. The models can be functional models or pure
performance models, which implement only the timing and
use dummy data on their ports. However, even a perfor-
mance model has to implement some control functionality
for tracking its state, which is needed for correct timing
behavior. In general, ESL models do not contain detailed
information about the implementation structure of the com-
ponent or the type of circuit connected to their outputs, like
the length of the wires or the load the component has to
drive.

In actual hardware, power consumption is caused by leak-
age and switching. Leakage is present whenever a circuit
is powered and does not depend on its activity. Switching
depends on the clock signal for registers and on data sig-
nals changing their value along combinational paths. Thus,
switching power is mainly influenced by clock gating and
activity in different parts of the circuit, which are both de-
pendent on controls signals, i.e. the state of the component.

The actual data signals of the data path also influence
switching as different sequences of bits pass through them.
However, the control signals have a larger impact on switch-
ing than the data bits, because the data bits usually exhibit
a nearly fixed switching rate and the control bits determine
if data bits are passing through a certain submodule.

In total, the major part of the power consumption depends
on the control information, which is available in typical ESL
models.

3.2 State Tracing

The state of an ESL model can be hidden within the in-
ternal data structures. Manual instrumentation is needed
to make the state available for power estimation as depicted
in Figure 1, because it is not easily possible to detect the
member variables and functions that provide the relevant
information using automatic methods. The instrumentation
should be simple and have a low overhead at simulation run
time. The work presented in this paper uses a singleton
class StateTracker. It allows to register state traces in the
constructor of the model (Listing 1, lines 6-8) and then log
state changes at any location in the module code using a
single line.

ESL models can contain two types of states: natural states
and events. Natural states, like the activity of a sub-block
or the number of pending requests, are usually available in
member variables and can be traced by recording the up-
dates (Listing 1, line 14). Events, like data arriving or a
register being updated are usually modeled as a function
call. As the event models a single-cycle action in hardware,
the corresponding state trace has to change from 0 to 1 when
the function is called and back to 0 in the next cycle. This
can also be accomplished with a single line of code (Listing 1,
line 12).

ESL simulation models obtained from commercial ven-

] setConfig() :
—1
m_enab State Traces
natural state
Figure 1: State tracing for ESL module
1 class MyModule: public sc_module
2 o
3 MyModule (const sc_module name &name):
4 sc_module (name)
5 {
6 m_tr = StateTracker::get();
7 m_state = m_tr.create(name() + ".enab", 0)
8 m_event = m_tr.create(name() + ".cfg", 0);
9 ¥
10 void setConfig(bool enab)
11 {
12 m_tr.event(m_event, 1, m_cycle_time, 0);
13 m_enab = enab;
14 m_tr.update(m_state, m_enab ? 1 : 0);
15 }
16 };

Listing 1: Instrumentation for tracing a natural state and
an event using StateTracker

dors are often delivered as black box IP components. Those
blocks can be used in arbitrary ESL simulations, but it is
not possible to add state tracing to them, as the source code
is not accessible and cannot be instrumented. For those
blocks, the approach presented in [17] is chosen. As shown
in Figure 2, the activity on all ports is monitored by a small
ESL block that just forwards its inputs to its outputs, but
additionally traces the states.

If the internals of the IP model involve state information
that cannot be tracked at the single ports, a power state
machine (PSM) is added next to the IP block. This state
machine is fed with the observed information and will keep
track of the IP block state. A state trace is created for each
state of the PSM. The trace is set to 1 while the PSM is in
this state and to 0 otherwise.

3.3 Power Model

A linear power model with a constant part is used in the
proposed methodology.

Lets; € N fori € {2,..., N} be the state traces provided
by an instrumented ESL model during a simulation of T
cycles of duration tcyc. Further, let s; = 1 be an artificial
state trace which is always 1, modeling the constant part
of the power consumption, which is caused by leakage, the
clock network, etc. For each state trace s;, a so-called power
state factor f; € R is defined, which will be determined
during the calibration of the power model.

s % PSM

State Traces

Figure 2: State tracing for IP component: observing ports,
PSM to track internal state

ESL Model | | Post-layout Model |

| Stimulus Data |

/ s
(ESL Simulation) (Post—layout Power)

Simulation

| State/Event Traces | | Power Trace |

(Calibration)

| ESL Power Model |

Figure 3: Work flow for ESL power model calibration using
post-layout power simulation

The estimated ESL power trace Pest of the model is then
the weighted sum of the state traces. The energy Fes; and
the average power Pest can be calculated from it:

N T T
— 1
Pest = g fisi Eest 1= tcyc E Pest,j Pest 1= f g Pest,j
i=1 j=1 =1

4. AUTOMATIC CALIBRATION

The remaining task in order to use the power model to-
gether with an existing ESL model is to determine values
for the power state factors f;. Because the ESL model is
abstract, it is not possible to derive the power state factors
directly from it. Instead, some information about the power
consumption of the component is needed for this purpose.

The methodology presented here relies on a power trace
recorded in a reference scenario and uses this for calibration.
It does not matter if the power trace has been obtained
by power simulation at RTL, post-synthesis or post-layout
level, by measurements of actual hardware or by any other
means. The only requirement is that the reference scenario
is known and can also be simulated at ESL in order to obtain
the corresponding state traces.

Without loss of generality, the remainder of this section
describes calibration to data obtained from post-layout sim-
ulations.

4.1 Obtaining a Power Trace using Post-
layout Gate-Level Simulation

If an implementation of the component is available, post-
layout power simulation can be used to generate the power
trace for calibration of the ESL power model. This allows to
achieve a high accuracy also for large components, in which
wires and the clock network have a big impact on power
consumption.

The work flow is depicted in Figure 3. First, the ESL
simulation is run using the non-power extended ESL model
to obtain both the state traces and the traces of the data
on the ports of the ESL model. The port data are used as
stimulus data for a post-layout gate-level simulation, whose
outputs are processed by a time-based power simulation in
order to obtain a cycle-accurate power trace.

4.2 Calculation of Power State Factors

Because the power model is linear, the minimization of the
mean square error is a natural approach for calculation of

(1,3) || @23 [| 33)
Master Slave Slave
I I I
0,2) | | (1,2) [| 2,2) | | 3,2) | | (4,2)
Master Slave Master Master Slave
I I I I I
o1 || @y [| @y | | 61 [| 41)
Slave Master Master Slave Master
I I I
(1,0) || (2,00 | | (3,0)
Slave Slave Master

Figure 4: 2D Mesh NoC based system

power state factors f; that provide a best fit of the estimated
power Pcg; to the reference power trace P.es for given state
traces S = (s1 ... sn):

f:=(S'S)™' .S P

Due to redundancies in the recorded state traces, the ma-
trix STS might be singular or unstable (i.e. almost singu-
lar), making the inversion impossible or imprecise, respec-
tively. In order to avoid this, some of the state traces have
to be excluded. The trace selection is started with just the
constant state trace s; and then iteratively selects further
state traces as long as the matrix does not become singular.
If there is some information about the relevance priorities of
the state traces for power consumption, it is possible to sort
the state traces s2,...,sny in order of descending relevance
before starting the selection.

The calibration will deliver values of the power state fac-
tors for selected traces. All values for excluded traces are set
to zero. The power model presented in section 3.3 can then
be used to estimate the power consumption of other sce-
narios at ESL. This allows to avoid running the slow power
simulations at lower level.

S. CASE STUDIES

The communication architecture is one of the parts of an
MPSoC for which power estimation is most difficult, be-
cause it contains not only combinational logic and registers
like processors or peripherals, but typically also long wires
consuming high amounts of switching power. Therefore,
two different communication architectures with considerable
complexity have been selected as case studies for the ESL
power estimation methodology presented here.

As communication architectures cannot be operated prop-
erly without connecting them to subsystems, 8 master sub-
systems and 8 slave subsystems have been modeled on ESL,
without including them in the power estimation. The master
subsystems consist of processors and local memories while
the slave subsystems contain only memories.

5.1 Network on Chip

A Network on Chip (NoC) is used as the first case study.
It is organized as a semi-regular, 2-dimensional mesh of size
5x4, as shown in Figure 4. Each node contains either a mas-
ter or a slave subsystem, an NoC router and a network inter-
face connecting the subsystem to the router. Each router has
up to 5 ports of width 128 bit with 4 virtual channels (VC),
each containing a buffer for 8 flits. The packets are limited
to 4kB of data, contain a 4 bit priority value and are trans-
mitted in flits of 128 bit using wormhole routing according
to an adapted x/y-routing scheme. For post-layout simu-
lations used as reference, the NoC has been implemented

[Master 0 | = [Stave 0|
[Master 1 | _\\ II_J [sve 1]
[Master 2 | \ I = Sz |
[Master 3 | Y = [Sves |
[Master 4 | I\ = [sved]
[Master 5 | I\ = [Staves]
[Master 6 | l \ = [Staves]
[Master 7 | S [Stave7]

Figure 5: AXI based system

active | traffic per subsys. [MB/s]
scenario subsys. | min. | average | max.
A 16 332 1078 3318
B 16 1296 1296 1296
C 7 55 1345 3988

Table 1: Traffic scenarios: synthetic (A, B), basestation of
mobile communication services (C)

at RTL and a layout has been created using a proprietary
65nm standard-cell library, Synopsys Design Compiler [5]
for synthesis and Cadence Encounter [1] for place & route.
The ESL models of the NoC router and the network in-
terface have been modeled in SystemC from scratch. After
timing verification against the RTL models, state tracing
has been added. The number of buffered flits and the num-
ber of pending requests to routing, switch allocation and VC
allocation are traced as natural states. Event tracing is used
for flits entering and leaving the buffer and for performing
routing, switch allocation and VC allocation. The manual
one-time instrumentation took approximately two hours.

5.2 AXI Crossbar

An AXI crossbar, which is commercially available in Syn-
opsys DesignWare [4], has been chosen as a second case
study. It is configured to have a fully registered data path
of 128 bit width and to provide 8 master and 16 slave ports.
Figure 5 presents a diagram of the AXI system. Each master
subsystem is connected to a master and a slave port, which
is being used for remote access to the local memory. Each
slave subsystem is connected to a slave port. The layout for
AXTI has been created using the same 65 nm library and the
same tools as the NoC.

At ESL, a black box IP model from Synopsys [5] is used
to model the AXI. Because the internals of the IP block
are not accessible for state tracing, the approach depicted
in Figure 2 has been used. Sending or receiving an address,
a data word or a ready flag on a master or slave port is
traced as an event. The necessary implementation work was
completed within a single work day.

5.3 Results

For evaluation of the ESL power estimation methodology,
three periodic traffic scenarios have been simulated for 3
periods of 1.58 ms. The simulations were done on both the
NoC and the AXI communication architecture at ESL and
post-layout gate-level using a clock frequency of 316 MHz.
The ESL simulations have been performed with Synopsys
tools [5]: Platform Architect at ESL and VCS/PrimeTime
at gate-level. For each case, the ESL power model has been
calibrated and was then used for ESL power estimation for

calibration estimation scenario
scenario A | B | C
A 212.17mW | 299.91 mW | 168.20 mW
0.00 % —4.48 % —1.05%
B 222.38mW | 313.96 mW | 131.45mW
4.81% 0.00 % —-21.03%
C 173.73mW | 296.63mW | 166.45 mW
—-18.12% —5.52% 0.00 %

post-layout || 212.17mW | 313.96 mW | 166.45 mW
Table 2: ESL power estimation results for NoC

calibration estimation scenario
scenario A | B | C
A 59.35mW | 90.48 mW | 63.54mW
0.00 % —-3.92% —2.44 %
B 55.39mW | 94.17mW | 71.41 mW
—6.67 % 0.00 % 9.64 %
C 50.80 mW | 89.85mW | 65.13mW
—14.41% —4.59% 0.00 %

post-layout [| 59.35mW | 94.17mW | 65.13mW
Table 3: ESL power estimation results for AXI

all of the scenarios.
The power estimates Pest were compared to the post-
layout power consumption P and the relative error e was

calculated: P — Pt

-100 %

€=

ref

The results for the NoC are shown in Table 2 and for
AXI in Table 3. It can be seen that the overall maximum
error is 21 %. This accuracy allows to substitute gate-
level power estimation with much faster ESL power
estimation during design space exploration. Thus, either
more configurations can be simulated or the exploration is
finished earlier.

When comparing the accuracies achieved by different cal-
ibration scenarios, it shows that scenario A leads to power
models resulting in estimation errors below 5%, which is
remarkable considering the large difference of abstraction
levels between post-layout gate-level and ESL. The reason
is that this scenario is suited very well for the calibration
process. First, it uses all subcomponents of the communica-
tion architectures. This allows to calibrate the power state
factors for all of them. Second, the traffic produced by the
subsystems is different enough to avoid a high correlation
between the state traces. This allows the regression during
calibration to work well.

The post-layout and ESL power traces are plotted in Fig-
ure 6. To facilitate readability, their resolution has been
reduced to 5k cycles by averaging. The plots show that
the proposed methodology is able to predict the phases
of different power consumption correctly. This is ex-
tremely beneficial for design space exploration, as the de-
signer is enabled to identify which computations cause the
highest power consumption and focus on those during opti-
mization.

To investigate the tradeoff between power estimation ac-
curacy and simulation speed, the execution times of the
post-layout power simulations and the ESL simulations with
and without power estimation have been measured. The
numbers in Table 4 show that the ESL simulations are only
slightly slower for AXI when including ESL power estima-

200 | |——NoC, layout
—— NoC, ESL
— 150 | AXI, layout
% — AXI, ESL
& 100 8
50 i i i \ \ \ \ \ —
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
t [ms]
Figure 6: Power traces of scenario C (calibration of ESL model using scenario A)
system post- ESL | speed- | overhead [5] Synopsys tools. [Online] http://synopsys.com/Tools
& layout ESL & up vs. VS. (accessed 11/2012).
scenario || power | sim. | power | layout | ESL sim. [6] SystemC. [Online]
A 15h 101s 274s 501 271 http://www.accellera.org/downloads/standards/systemc
’ (accessed 11/2012).
NoC | B 91£ 1525 | 479s 684 3.15 [7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
C 34 39s 107s 1144 2.74 framework for architectural-level power analysis and
A 38h 166s | 196s 698 1.18 optimizations. In Proceedings of the 27th Annual
AXI | B 75h 167s | 195s 1385 1.17 International Symposium on Computer Architecture, ISCA
C 27h 108s 124 s 784 1.15 ’00, New York, NY, USA, 2000. ACM.

Table 4: Speedup of ESL power estimation vs. post-layout
power estimation, and overhead of ESL power estimation vs.
ESL simulation

tion. The slowdown of about factor 3 for NoC is mainly
caused by disk I/O for writing the traces for each NoC com-
ponent. Compared to time-based post-layout power simula-
tion a speedup of factor 880 is achieved on average.

6. CONCLUSIONS

The presented methodology for ESL power estimation ex-
tends available ESL models with power models, which are
automatically calibrated to match power traces obtained by
low-level power simulation or measurements. This enables
inclusion of the important design criterion of power con-
sumption in early design space exploration and thus devel-
opment of more power-efficient systems. Two case studies
have shown the applicability of the methodology to complex
communication architectures. Depending on the calibration
scenario, the accuracy ranges between 5% and 21 % com-
pared to post-layout power simulations while achieving a
gain of multiple orders of magnitude in simulation time.

Currently, the quality of the generated power model
depends on the calibration scenario. This requires a sub-
sequent validation of the model. Further, the proposed
methodology has only been applied to communication ar-
chitectures yet, although it was created with applicability
to all kinds of models in mind. An evaluation for other
components like processors, accelerators and peripherals
will be performed in the future.

7. REFERENCES

[1] Cadence digital implementation. [Online]
http://www.cadence.com/products/di/ (accessed
11/2012).

[2] Docea Aceplorer. [Online| http://www.doceapower.com/
products-services/aceplorer.html (accessed 11/2012).

[3] SoClib. [Online] http://www.soclib.fr (accessed 11/2012).

[4] Synopsys IP. [Online| http://synopsys.com/IP (accessed
11/2012).

[8] W. Fornaciari, P. Gubian, D. Sciuto, and C. Silvano. Power
estimation of embedded systems: A hardware/software
codesign approach. In Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, volume 6, Jun. 1998.

9] K. Gruttner, K. Hylla, S. Rosinger, and W. Nebel. Towards
an ESL framework for timing and power aware rapid
prototyping of HW/SW systems. In Specification Design
Languages (FDL 2010), 2010 Forum on, Sep. 2010.

[10] C.-W. Hsu, J.-L. Liao, S.-C. Fang, C.-C. Weng, S.-Y.
Huang, W.-T. Hsieh, and J.-C. Yeh. Power depot:
Integrating IP-based power modeling with ESL power
analysis for multicore SoC designs. In Proceedings of the
48th Design and Automation Conference, ACM, New York,
NY 10121, Jun. 2011. ACM.

[11] N. Julien, J. Laurent, E. Senn, and E. Martin. Power
consumption modeling and characterization of the TI
C6201. Micro, IEEE, 23(5), Sep. 2003.

[12] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional
level power analysis: An efficient approach for modeling the
power consumption of complex processors. In Proceedings
of the Conference on Design, Automation and Test in
Europe, DATE ’04, Washington, DC, USA, 2004. IEEE
Computer Society.

[13] G. E. Moore. Cramming more components onto integrated
circuits. Electronics, 38(8), Apr. 1965.

[14] L. Ost, G. Guindani, F. Moraes, L. Indrusiak, and
S. Méatta. Exploring NoC-based MPSoC design space with
power estimation models. IEEE Design and Test, 28, Mar.
2011.

[15] S. K. Rethinagiri, R. ben Atitallah, and J.-L. Dekeyser. A
system level power consumption estimation for MPSoC. In
2011 International Symposium on System on Chip. IEEE,
Nov. 2011.

[16] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: A first step towards software power
minimization. Very Large Scale Integration Systems, IEEE
Transactions on, 2(4), Dec. 1994.

[17] C. Trabelsi, R. Ben Atitallah, S. Meftali, J.-L. Dekeyser,
and A. Jemai. A model-driven approach for hybrid power
estimation in embedded systems design. EURASIP Journal
on Embedded Systems, 2011.

[18] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
The design and use of SimplePower: A cycle-accurate
energy estimation tool. In Proceedings of the 37th Annual
Design Automation Conference, DAC ’00, New York, NY,
USA, 2000. ACM.

