
INV ITED
P A P E R

Fundamental Underpinnings
of Reconfigurable
Computing Architectures
This paper introduces a unified framework for understanding advantages and

tradeoffs in reconfigurable computing architectures.

By André DeHon, Member IEEE

ABSTRACT | Reconfigurable architectures are a distinct point

in the larger design space that includes programmable pro-

cessors and nonprogrammable fixed-function devices. In this

paper, we identify the major parameters that distinguish archi-

tectures in this design space and draw connections between

these parameters and physical requirements (e.g., energy, de-

lay, and area) and application characteristics (e.g., word width,

locality). Building on these connections, we identify the funda-

mental advantages that reconfigurable architectures can offer.

KEYWORDS | Computer architecture; field-programmable gate

arrays (FPGAs); integrated-circuit (IC) interconnections; local-

ity; microprocessors; multiprocessor interconnection net-

works; reconfigurable architectures; Rent’s rule; spatial

computing

I . INTRODUCTION

At least as far back as Alan Turing, we have known that it is

possible to design universal machines that can implement

any computation simply by programming the machine after

it has been createdVuniversal Turing machine (UTM) [1],

[2]. With appropriate technology, we can fabricate com-

puting engines that require only programming after

fabricationVpostfabrication programmingVto be config-
ured to perform any computable operation. With the phe-

nomenal advance in semiconductor technology over the
past five decades (i.e., Moore’s Law [3], [4]), we can build

postfabrication reconfigurable machines with an enormous

number of raw resources (e.g., gates, memories) relatively

inexpensively. With these resources, we open up a huge

design space of potential organizations for these post-

fabrication reconfigurable machines. In this paper, we

identify the primary architectural dimensions in this design

space (number of computational operators, balance of in-
struction and data memories with compute operators,

placement of instructions, organization and balance of

communication resources) and show how choices in these

dimensions impact the characteristics and efficiency of

postfabrication computing machines (area, performance,

energy).

Postfabrication reconfigurable machines are dis-

tinguished from fixed-function architectures [e.g.,
application-specific integrated circuits (ASICs)] by their

universal programmability. A fixed-function machine can

perform only a single or limited set of tasks. It cannot

perform computational tasks that lie outside this limited

set. For example, a dedicated video-compression (e.g.,

MPEG) component cannot render a portable document

format (PDF) file for viewing or printing. A postfabrication

programmable device could do both and many more tasks.
Since postfabrication reconfigurable devices can be used

for a large number of tasks, the fixed cost of designing the

device [i.e., nonrecurring engineering costs (NRE)] can be

shared across a large set of users, allowing large volume

applicability and sales and thereby reducing the portion of

the development cost that must be applied to each device

sold. Using postfabrication reconfigurable devices, the fab-

rication time for the physical computing device does not
need to be in the critical path from idea to realization; it is

only necessary to program the device to obtain an imple-

mentation of the new computing task. This reduces the

Manuscript received August 18, 2014; revised November 20, 2014; accepted

December 23, 2014. Date of current version April 14, 2015. This work was supported

by DARPA/CMO under Contract HR0011-13-C-0005.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

The author is with the Department of Electrical and Systems Engineering, University of

Pennsylvania, Philadelphia, PA 19104 USA (e-mail: andre@ieee.org).

Digital Object Identifier: 10.1109/JPROC.2014.2387696

0018-9219 � 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 355

time to market (TTM) for new ideas and features. Further-
more, since the device is reconfigurable, it can be config-

ured insystem even after the product has been shipped to

customers and put into operation; this allows feature addi-

tions and bug fixes to occur throughout the lifetime of the

device without replacing hardware. This facility can also be

used to adapt to device aging and failure during operation

(See Section XV.) Nonetheless, postfabrication reconfigur-

ability does have costs. The capabilities to hold programs and
reconfigure functionality cost resources (e.g., transistors,

wires, silicon area), often result in lower performance, higher

area, and higher energy than a fixed-function component.

The key distinguishing feature of postfabrication recon-

figurable machines is the configurable bits that instruct the

behavior of the machinesVthe instructions. Consequently,

most of the key architectural questions when designing

postfabrication reconfigurable architectures revolve
around instructions: How are the instructions organized?

How are they defined? How do they control the compu-

tational elements? How many computational elements do

they control? Can the behavior of computational elements

and, hence, their applied instructions, change during a

computation? Another key question resolves around

interconnect for data: When there is more than one com-

putational element, how is data movement among compu-
tational elements performed and controlled? Answers to

these questions have a dramatic impact on the resources

and costs of the computation (area, performance, energy).

In particular, we would like to know what instruction

organizations minimize:

• area for the computational engine;

• time required to perform the computational task;

• energy required to perform the computational task;
• time required to perform the computational task

within a fixed area limit;

• time required to perform the computational task

within a fixed power density limit.

Should we implement a single, heavily shared compute

element or a large number of compute elements where

each performs a single operation during a computation?

How do changes in resources (e.g., as provided by Moore’s
Law capacity growth) and cost metrics impact the choices

we might make around instruction organization?

To ground this discussion, we start by giving examples

of familiar instruction architectures at the extreme corners

of this space (Section II). To make the connection between

instruction choices and resources, we first analyze simpli-

fied models of these extremesVsequential processors and

spatially reconfigurable devices (Section III). This illus-
trates the large overhead costs for postfabrication con-

figurability in both cases. Efficient postfabrication

architectures exploit common application characteristics

to reduce costs. We review an essential application charac-

teristic, locality in the form of Rent’s Rule, in Section IV.

Armed with this model of locality, we show how this can

be exploited to reduce the overhead associated with in-

structions in processors in Section V. We introduce anoth-
er common application characteristic in the form of

instructions that can be reused across different data

components (e.g., SIMD, looping) and evaluate its impact

in Section VI. We then see how we can exploit locality to

reduce the overhead of data movement while potentially

increasing performance through parallelism in Section VII.

We see there is still a high energy cost associated with the

instructions controlling communication as well as a bottle-
neck to performance in communication, leading us to spa-

tially reconfigurable designs, such as field-programmable

gate arrays (FPGAs), that have richer interconnect and

place instruction control local to the interconnect re-

sources (Section VIII). To properly evaluate this, we need

to introduce a few ideas from very-large-scale integrated

(VLSI) complexity theory (Section IX). This allows us to

characterize locality optimized designs at the highly paral-
lel extreme (Section X). With this understanding, we can

characterize the design space between the extremes and

characterize the tradeoffs within this space (Section XI).

In Section XII, we illustrate the impact of mismatches

between architectural optimization and application char-

acteristics. After exploring homogeneous architectures, we

have the tools to also understand the potential benefits of

hybrid architectures (e.g., combining a sequential pro-
cessor with a reconfigurable array) in Section XIII. In

Section XIV, we underscore the role of energy as a key

limitation in today’s systems. Finally, we can return to

fixed-function architectures and identify scenarios that

allow postfabrication reconfigurable architectures to

achieve superior characteristics (lower area, higher perfor-

mance, lower energy) compared to fixed-function compo-

nents (Section XV).

II . EXAMPLES

A. Stored-Program Processors
At one extreme, we can build stored-program processors

that reuse a small computing unit in time over a large

computation. This small compute unit is paired with a
large instruction memory that instructs the behavior of the

compute unit on each cycle of operation. The instruction

for a single cycle specifies where to find a set of inputs, the

operation to perform on them, and where to place the

result. Today’s canonical example would be an reduced

instruction set computing (RISC) processor (e.g., [5]). At

the dawn of general-purpose computing, the canonical

example was Eckert and Mauchly’s EDVAC, which was
documented by von Neumann [6], from which we get the

common term ‘‘von Neumann Architecture.’’ This stored-

program processor invested minimal hardware in the

actual computing unit and reused it in time, making it a

much more viable and economical general-purpose,

postfabrication computing machine than its predecessors

when resources were scarce, as they were when we built

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

356 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

computers out of vacuum tubes. However, most of the
resources in this style of machine go into memory, not

computation, and most of the energy goes into memory. The

actual computational units comprise only a very tiny fraction

of the resources. As a result, the active computational

densityVthe computations that can be performed per-unit

area timeVis very low. The earliest postfabrication

programmable devices we could build on single-chip LSI

circuits were processors, starting with the Intel 4004 in 1971.

B. Reconfigurable Computing Devices
At the opposite extreme, we have a design that uses one

computational unit for every operator in a computational

graph. The computation is fully parallel, with no opera-

tions being sequentialized on computational units. As a

result, each compute unit only needs a single instruction or

configuration setting to tell what operation to perform,
and we need instructions to control how the compute units

are interconnected into the computational graph. Today’s

canonical example of such a reconfigurable machine is the

FPGA, where the configuration bits, the instructions, con-

trol the behavior of ‘‘gates’’ and the interconnect between

the gates. These configuration instructions do not typically

change during a computation. In a broad sense, ENIAC,

the predecessor to EDVAC, was similarly configuredV
with the configuration being performed by program

switches, physical plug-board wiring between the compu-

tational units, and switches for configuring tables [7]. This

parallel form of computation was extravagant in 1946

when ENIAC was unveiled, not to mention laborious to

configure; as a result, the resource savings of stored prog-

ram processors was considered advanced at the time. The

parallelism also meant the machine was faster than its
stored program successors. It was not possible to build this

kind of fully parallel, spatially configured design in VLSI

until 1983 [8]. However, decades of Moore’s Law Silicon

growth have made it more viable to build them today.

C. Terminology
In a broad sense, the term reconfigurable architecture

could be applied to the entire space of post-fabrication

programmable devices. We have traditionally called the

spatially configurable end, as typified by the FPGA, recon-
figurable. As we will see, there is a continuum between

these extreme positions making a strict distinction less

clear. It is more valuable to understand the continuum

than to draw arbitrary, sharp boundaries.

III . SIMPLE MODELS AT EXTREMES AND
SIMPLE IDEALS

The real machines suggested in the previous section are

useful grounding as concrete examples of choices in in-

struction architecture. However, the real machines come

with a large number of differences and features that, while
important, can distract from the essence. Consequently, in

this section, we consider more simplified and ideal models

that illustrate the key architectural effects in play.

For the sake of simple illustration, let us assume our

computation can be viewed as a circuit netlist of 4-input

gates and state elements. Fig. 1(a) shows an example net-

list (full adder) with seven 2-input gates. We will consider

architectures that can implement a netlist up to a specified
number of gates N.

A. Processor
The extreme stored-program processor architecture

(Section II-A) uses a single programmable gate over a

series of N cyclesVone per gate in the netlist per cycleVin

order to evaluate the circuit netlist. The gate is fully prog-

rammable and requires 24 bits to specify the full truth table
for a 4-input function. We call this programmable gate a

lookup table (LUT) since it uses the four input bits to select

a bit value from the truth table. We will refer to a 4-input

LUT as a 4-LUT throughout this paper. We use an N-bit

Fig. 1. Example circuit mappings. (a) Circuit netlist. (b) Processor implementation. (c) Reconfigurable implementation.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 357

data memory to store the outputs of each gate in the
original netlist. To evaluate the gate, the processor:

1) reads the values of the four inputs to the gateVthe

outputs form the four predecessor gates that are

stored in the data memory;

2) evaluates the gate on these four bits to produce an

output value for the gate;

3) writes this output value into the data memory in a

designated location.
To properly evaluate the netlist, the instruction sequence

should be ordered so that a gate is only evaluated after its

predecessors have been evaluated; that is, the sequence

should be a topological ordering of the circuit netlist. To

control each gate evaluation, this processor needs an

instruction that specifies the gate function and the location

in data memory for the four data inputs. This will require

24 þ 4 log2ðNÞ bits in each instruction. We will assume
that each output is always written into a location based on

its sequence and, therefore, does not require separate

control. It will take a sequence of N such instructions in

order to evaluate the entire netlist. To apply this sequence,

we add an instruction memory that is logically N words

deep, where each word is ð24 þ 4 log2ðNÞÞ-bits wide. A

counter can then be used as an address to sequence

through the N instructions to evaluate the entire netlist.
Fig. 1(b) shows how an N ¼ 7 instance of such a processor

(shown with 2-LUTs for simplicity) is programmed to

implement the example netlist shown in Fig. 1(a).

B. Spatially Reconfigurable
The extreme spatially reconfigurable architecture uses

N of the 4-input LUTs to evaluate the N gates in the netlist.

As before, each 4-LUT needs 24 bits to specify its function.

For the spatial case, we need a way to configurably wire up

the four inputs to each gate from the outputs of the N
gates. Conceptually, the easiest way to do this is with an

N-input, 4N-output crossbar. The crossbar is a set of input

wires that crosses a set of output wires with a program-

mable junction at every wire crossing (Fig. 2). If the input

should be connected to the output, the junction is con-

figured to connect the crossing input wire to the crossing

output wire. We maintain the invariant that only one such

programmable junction is connectedVprogrammed into

the ‘‘on’’ stateVfor a given output; that is, there is no
conflict for the output. Each gate input is associated with a

crossbar output. To program up the crossbar, each gate

input specifies the crossbar input (gate output) that it

wants to receiveVequivalently, the crosspoint junction

connected to the output wire that should be programmed

‘‘on.’’ This requires log2ðNÞ bits for each input, or

4 log2ðNÞ interconnect instruction bits for each gate.

Fig. 1(c) shows how an N ¼ 7 instance of this spatially
reconfigurable architecture (also shown with 2-LUTs for

simplicity and consistency) is programmed to implement

the example netlist shown in Fig. 1(a).

As we will soon see, the crossbar is a very expensive

interconnect structure, and there are much better options

to use (Sections VIII and X). We start with the crossbar

because it enables a very simple description and concep-

tual model to illustrate the essence of a spatially reconfigu-
rable architecture.

C. Analyzing Architectural Characteristics
To develop meaningful comparisons, we must model

the memories, switches, and interconnect. For these first

two extremes, it suffices to focus on the memory bits and

crossbar crosspoints since memories and crossbars will

dominate the area, delay, and energy of these implementa-

tions. As we explore more sophisticated architectures, we

will need to account for wiring complexity (Section IX).

Interconnect wires contribute the largest factor to de-
lay and energy. Consequently, we will need to quantify the

size of structures to understand wire length. A key relation

to note is that the energy required to switch a wire is linear

in the length of the wire.1 With proper buffering, the delay

of a wire is also linear in the length of the wire. For today’s

VLSI technology, wire capacitance dominates transistor

gate capacitance, so we will focus our illustrative modeling

on wire capacitance.

1) Memories: We consider a memory block where we

store M, W-bit words in one large array. For large mem-

ories, the area of the memory is roughly linear in the

number of bits stored ðW �MÞ. A more precise model for

the area of an arbitrary W-bit word from a random-access

memory (RAM) is [9]

ArmemðW;MÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WMAbit

p
þ FP

log2ðMÞ
2

� �� �2

: (1)

Here, FP is the full pitch for wires, including the wire

width and the spacing between wires, and Abit is the area

for one RAM bit. The logarithmic term is for the address

1Think of the wire as a parallel plate capacitance; the capacitance
grows in linear proportion with the length of the wire. Dynamic switching
energy is proportional to CwireV2. With V fixed, energy scales as
capacitance, which scales as wire length.Fig. 2. N�M crossbar.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

358 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

decoder and output selector. We arrange the W �M bits

into a
ffiffiffiffiffiffiffiffi
WM
p

�
ffiffiffiffiffiffiffiffi
WM
p

array (Fig. 3). This means the ad-

dress lines that access the memory and the word lines that

bring data in and out of the memory are of length
ffiffiffiffiffiffiffiffi
WM
p

,

meaning the delay and energy of a memory reference is

also proportional to
ffiffiffiffiffiffiffiffi
WM
p

DrmemðW;MÞ ¼ 2
ffi
ArmemðM;WÞ

p
(2)

ErmemðW;MÞ ¼ Eu log2ðMÞ þ 2ð2W þ 2Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WMAbit

p
: (3)

Here, Eu is the energy switched per-unit length of wire.

Sequentially accessed memories, as appropriate for the

instruction memories, can avoid the cost of addressing. A

simple shift register can activate the appropriate rows and

control the output multiplexer. The energy switched for a

sequentially accessed memory is

EsmemðW;MÞ ¼ Eu 2ð2W þ 1Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WMAbit

p
: (4)

The area of the sequential memory is

AsmemðW;MÞ ¼ WMAbit þ
ffiffiffiffiffiffiffiffi
WM
p

Ashift

þ
ffiffiffiffiffi
M

W

r
Ashift þ ð

ffiffiffiffiffiffiffiffi
WM
p

�WÞAmux: (5)

Instead of using an address decoder, we can use a shift

register across the width and height of the array (Ashift

terms) for addressing. When we read W bits at a time from

the array, we only need one select bit per word ð
ffiffiffiffiffiffiffiffi
WM
p

=
W ¼

ffiffiffiffiffiffiffiffiffiffiffi
M=W

p
Þ across the width of the memory array.

Finally, we need multiplexing to route the selected word to

the output.

2) Crossbars: An N �M crossbar needs N �M crosspoints,
typically arranged as N rows of M crosspoints (Fig. 2). The

area is directly

AxbarðN;MÞ ¼ N �M � Axpoint: (6)

The typical crosspoint area Axpoint is around twice the area

of a memory bit ðAxpoint � 2AbitÞ. The wires are of length

N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Axpoint
p

and M
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Axpoint
p

. This makes the crosspoint delay

proportional to ðNþMÞ ffiffiffiffiffiffiffiffiffiffiffiffiAxpoint
p

, and the crosspoint energy

ExbarðN;MÞ ¼ Eu � 2N �M �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Axpoint

p
(7)

3) Processor: With the models for memories and cross-

bars established, we can now build models to characterize

the processor. The processor area is dominated by the two
memories

Aproc ¼ Asmem 24 þ 4 log2ðNÞ;N
� �

þ Armemð1;NÞ: (8)

This gives us an area that grows proportional to N logðNÞ
when supporting N gates. The delay is also dominated by
these memories. As long as we sequentially execute all

gates, the instruction memory is pipelineable, so cycle

time is dominated by the data memory access, which scales

with
ffiffiffiffi
N
p

, for a total circuit evaluation delay that scales as

N1:5, since we must execute N of these cycles to evaluate

the graph. Energy is similarly

Eproc ¼ N 24 þ 4 log2ðNÞ
� �

Esmem 24 þ 4 log2ðNÞ;N
� ��
þ 5Ermemð1;NÞÞ: (9)

We must read each of the four inputs to the 4-LUT and

write the result back to memory, requiring five RAMs.

Equation (9) means the energy-required scales as

ðN logðNÞÞ1:5, driven by the energy required to read in-

structions from the instruction memory.

4) Spatially Reconfigurable Crossbar: The crossbar-based,

spatially reconfigurable architecture is dominated by the

crossbar. The area will be AxbarðN; 4NÞ, the energy

ExbarðN; 4NÞ. This means crossbar area and energy scale

are proportional to N2. The per-gate-evaluation delay

scales as 5N
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Axpoint
p

, meaning a depth d circuit has a total

circuit evaluation delay 5dN
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Axpoint
p

.

D. Discussion
Both designs need Nð24 þ 4 log2ðNÞÞ instruction bits.

However, the processor adds only a single 4-LUT to the

Fig. 3. Memory array (shown with M ¼ 8, W ¼ 2).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 359

memory to store instruction and data bits, while the cross-
bar uses N 4-LUTs and an N2 area crossbar. The crossbar-

based spatially reconfigurable design area ðN2Þ and energy

ðN2Þ scale poorly compared to the processor (N logðNÞ
area and ðN logðNÞÞ1:5 energy). When the critical path

length d scales slower than
ffiffiffiffi
N
p

, the spatially reconfigura-

ble crossbar circuit evaluation time scales better ðdNÞ than

the processor ðN1:5Þ; many functions have log-depth cir-

cuits,2 and circuits are typically pipelined such that d is a
constant, so the net benefit for the area and energy cost is a

reduction in delay.

E. Ideals
These metrics are generally far from the ideal lower

bounds that we might expect. A spatial design, even a

custom one, will require some area for each gate, so we

cannot expect designs to take an area that is any less than

linear in the number of gates; for some design characteris-

tics, we will see that even custom implementations cannot

achieve this density (Section IX). Similarly, each gate
evaluation will take unit energy, so evaluation energy will,

at best, scale linearly with the number of gates. Further-

more, in the best case, we would perform one operation in

each time unit on each unit area gate, for a computational

density that is constant as N scales.

IV. LOCALITY

Do they need to come from any of the other gates in the

circuit netlist? In both designs, we have considerable

freedom to assign gates in the circuit netlist to timeslots

(processors) or physical locations (crossbar based, spatially
reconfigurable architecture). Can we assign these locations

so that producer and consumer gates are close together,

reducing the need for long wires?

Consider a subcircuit of m 4-LUTs within a larger cir-

cuit of size N (N > m). If the m 4-LUTs are chosen at

random, in the worst case, all inputs and outputs connect

outside the subcircuit, meaning we need 5m external con-

nections. However, assuming m is large compared to the
input/output (I/O) for the entire enclosing circuit, we can

always improve on that grouping. If we instead started

with any random m=5 gates, we could grab, at most, 4m=5

predecessors to the m=5 gates and add them to make a

group of size no greater than m (Fig. 4). If it does not make

a group of size m, we can fill in the remaining cluster with

any gates. This group of m gates would have, at most,

5� ð4m=5Þ þ m=5¼4:2m external connections. We could
likely do even better because: a) some gates will have the

same predecessors as others and b) some gates will have all

of their successors within the group. This raises the general

question: how should we expect the number of external

connections ðIOÞ to relate to the number of gates in a

subcircuit ðNÞ when we are trying to organize subcircuits

to minimize IO?

In 1960, E. F. Rent at IBM characterized this relation-
ship for the IBM 1401 [12]. Based on the data he collected,

he proposed an empirical model that captured the

relationship

IO ¼ cNp (10)

where c and p were tuning parameters. Later, Landman

and Russo used partitioning algorithms to verify that the

Rent model worked well for larger circuits [13]. Bhatt and

Leighton use a similar relationship to characterize proper-

ties of VLSI layouts of circuits [14]. The constant c can

roughly be viewed as characterizing the complexity of the

nodes in the graph (e.g., if the nodes are 2-input, 1-output
gates, the c might be around 3, whereas if they are 8� 8

multipliers producing a 16b result, c might be around 32).

The Rent Exponent, p, can be seen as a measure of locality.

Designs with essentially no locality have the maximum p of

1.0, as illustrated by our case before where all four inputs

and the output of every gate must make an external

connection. Designs with a smaller fraction of wires

entering and exiting a region, smaller IO, are charac-
terized by a smaller p. Very local designs, like an N-stage

shift register, will have p ¼ 0. A typical memory array, with

word lines that span the width of the array and bit-lines that

span the height, has p ¼ 0.5, as shown in Fig. 3.3 A fast

Fourier transform (FFT) has p ¼ 1 [15]. Landman and

Russo [13], as well as later works, noted that typical designs

have 0:5 � p � 0:7, with cost-sensitive designs typically

closer to p ¼ 0.5, and performance-oriented designs closer
to p ¼ 0.7. Rent locality directly implies the wire-length

distributions in a design [16]. If the circuit has a Rent

Exponent of less than 0.5, the average wire length is a
2The complexity class NC characterizes computations that have a poly-

logarithmic depth [10]. It is an open question of whether all computations
can have low depth, but there are circuits known to be P-complete [11].

Fig. 4. Subcircuit grouping to reduce external connections.

3When W is a small constant, the memory can be implemented as a
tree such that it will have p ¼ 0.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

360 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

constant independent of the number of gates N. For the 2-D

circuit layout, when the circuit has a Rent Exponent greater

than 0.5, the average wire length scales as Np�0:5.

When there is locality ðp G 1Þ, the crossbar intercon-

nect extreme assumed in Section III-B is excessive. In

particular, if we consider breaking the N 4-LUTs into two
groups of N=2 4-LUTs, we do not need to send all N=2 gate

outputs from each half into the other half. We should need

only cðN=2Þp wires from each half (see Fig. 5). For small p
and large N, this can be significantly fewer than N=2. For

example, if N ¼ 2� 106, c ¼ 5, and p ¼ 0.5, N=2 is 106,

whereas cðN=2Þp is 5000. This reduction can be used

recursively on each of the halves, and we will explore more

efficient configurable networks based on this observation
in subsequent sections (Sections VIII, X, and XI).

Roadmap: Now that we have seen the fencepost ex-

tremes of sequential processors and spatially reconfigur-

able architectures, we will start with the simple sequential

processor and incrementally expand and refine our model,

optimizing the processor and working our way back to

FPGAs (Section VIII) and a broader set of reconfigurable
architectures (Section XI).

V. DESCRIPTION LOCALITY (PROCESSORS)

This Rent locality can allow us to reduce the size of the

instruction memory in the stored-program processor case.

The instruction memory stores the circuit netlist. By ex-

ploiting Rent locality, we can represent the netlist connec-
tivity more compactly, thereby reducing instruction

memory. For designs with locality where p G 1, we can

partition the circuit into two halves with a small number of

edges between the halves as just established. In particular,

each half has only cNp external connections. These exte-

rnal connections in this top partition will need all log2ðNÞ
bits to describe their source. However, the other connec-

tions are contained in smaller subtrees and can use fewer

bits. We can recursively subdivide each of the halves to

more fully identify and exploit locality (See Fig. 6.) The

number of bits required to specify an edge is now propor-

tional to the logarithm of the capacity of the smallest sub-

tree that contains the edge rather than logðNÞ. We can
count the number of bits required by charging each edge

for each subtree it must exit, that is, when a graph edge

needs to cross out of the top of a tree at level i, we need one

bit to specify which way the edge connects at that tree

level. Thus, the number of instruction bits we need to

specify communication Iibits is

Iibits¼
Xlog2ðNÞ

i¼0

N

2i
� cð2iÞp

� �
¼cN

Xlog2ðNÞ

i¼0

ð2iÞðp�1Þ
� �

:

The first term N=2i is the number of subtrees at height i
from the leaf, while the second term is Rent’s Rule (10)
applied to the size of the subtree ð2iÞ. For p ¼ 1, the term

being summed is one, so Iibits becomes proportional to

N logðNÞ as we saw in Section III-A when we did not

assume any locality. However, when p G 1, the exponent

p� 1 is less than one, making the term being summed a

Fig. 5. Reduced bisection wiring from Rent’s Rule. (a) Reference crossbar. (b) Reduced interconnect between halves.

Fig. 6. Recursive bisection wiring by Rent’s Rule.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 361

fraction that decreases geometrically with i. As a result,
the sum converges to a constant, and we have Iibits linear

in N.

Impact on the Processor Case: If we exploit this locality

when p G 1, the instruction memory in the processor

(Section III-A) only needs to be linear in N. This reduces

the area for the processor to linear in N, saving a loga-

rithmic factor in N. Furthermore, the total bits read from
the instruction memory will be proportional to N instead

of N logðNÞ. Here, we assume that we must also specify the

destination address in data memory, so we must specify

five addresses per instruction. Concretely, the total num-

ber of instruction bits becomes:

IbitsðN; pÞ ¼ 5

1� 2p�1
þ 24

� �
N: (11)

The first term captures the bits to describe communica-

tion, while the second term captures the bits to describe

the computation in the 4-LUT. This reduces the area

required for the processor in this description locality case

Apdesc to

Apdesc ¼ Asmem 1; IbitsðN; pÞð Þ þ Armemð1;NÞ: (12)

Energy becomes

Epdesc ¼ 5NErmemð1;NÞ
þ IbitsðN; pÞEsmem 1; IbitsðN; pÞð Þ: (13)

The total instruction memory energy reduces from pro-

portional to ðN logðNÞÞ1:5 to N1:5. The data memory energy

that is proportional to
ffiffiffiffi
N
p

logðNÞ per gate means a total

energy across all N gates that is proportional to

N1:5 logðNÞ, which now dominates instruction energy
and determines how the energy of operation scales with N.

VI. INSTRUCTION SHARING
(WIDE-WORD PROCESSORS)

Equation (11) shows us that the instruction memory is

larger than the data memory by a significant constant

factor. For p ¼ 0.7, Ibits=N � 43, making the instruction
memory almost 43� larger than the data memory. This

is driven by the need to store unique instructions for

every gate. However, for many regular circuit operations,

the instructions can be the same for different data values

and can be potentially reused, allowing us to reduce the

size of the instruction memory and, consequently, its

energy costs.

A. Looping
A common form of this instruction sharing is looping,

where a set of instructions, the loop body, is reused across

a large set of data. Low-level image processing or cellular

automata are some of the most familiar examples of this

kind of looping, applying the same set of operations to each

neighborhood region of data (e.g., Fig. 7). For a general
formulation, we introduce a separate architecture param-

eter I for the total number of unique instructions required

and allow that to be independent of N.

While we use looping to concretely illustrate the op-

portunity to compress the instruction description, other

techniques, such as procedural abstraction, also reduce

instruction bits. At the high level used in this analysis, the

impact is the sameVwe can use a smaller number of in-
structions I that is potentially independent of N. Our pri-

mary use of I here is to show the magnitude of impact that

this sharing can possibly have on implementations. To first

order, I can also be viewed as modeling the impact of a

first-level instruction cache for a processor, assuming the

instruction trace is sufficiently localized that all references

are effectively satisfied in this cache.

B. Word Width
We can also reduce the number of instructions by

sharing them across a wide word W . One defining property

of processors is that they do not operate on single-bit data

elements, but rather operate on a set of bits (e.g., 8, 16, 32,

64) grouped into words. This allows them to read many

bits from memory, both reducing the number of addresses

that must be specified and amortizing out the cost of spe-

cifying the address. Assuming the data bits stay fixed, this
also reduces the number of instructions, since an instruc-

tion is now applied to a group of W bits. The word opera-

tions typically apply the same operation to each bit (e.g.,

bitwise-and, bitwise-xor), and even arithmetic operations,

such as add and subtract, effectively tell each bit of the

datapath to act like an adder bitslice. (See Fig. 8.) This is

known as a single-instruction, multiple-data (SIMD)

Fig. 7. Example loop that shares instructions across data elements.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

362 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

operation [17] since a single instruction is reused to

control the W data bits in the datapath.

C. Processor Impact
We can reformulate the energy, delay, and area for the

processor in terms of the SIMD width W and the total

instructions I

Ap ¼ Asmem 1; IbitsðI; pÞð Þ þ Armem W;
N

W

� �
(14)

Ep ¼ 5
N

W

� �
Ermem W;

N

W

� �
þ IbitsðN; pÞ

W

� �
� Esmem 1; IbitsðI; pÞð Þ (15)

Dp ¼ 4
N

W

� �
ð
ffiffiffiffiffi
Ap

p
þW

ffiffiffiffiffiffiffiffiffiffiffiffi
A4LUT

p
Þ: (16)

A4LUT is the area of the 4-LUT without any configuration
memory.

Fig. 9(a) compares the energy ratios at p ¼ 0.7 to show
the impact of limited instructions and SIMD word width.

As the ‘‘data energy only’’ curves show, there is a clear

crossover point where data energy begins to dominate

instruction memory energy. Fig. 9(b) shows how the area

scales for the I ¼ N, W ¼ 1 case and for an instruction-

sharing case with I � 128 and W ¼ 64. With no sharing,

the area per gate converges to the area for the instruction

bits and the data bit ðIbitsðN; pÞ=N þ 1Þ. With high sharing,
the area per gate converges to the area of the data bit. In

today’s 22-nm process, if we assume 6-transistor SRAM

memory cells, we can fit more than a billion ð230Þmemory

cells into a square centimeter of silicon, and a 6-nm

process will hold 10 billion. Since a logic gate is larger than

a memory bit, this is even smaller than a custom design

that directly implements the circuit with a physical gate for

every gate in the netlist.
Fig. 9(c) shows how increasing W decreases area,

delay, and energy. Except for delay, the benefit saturates

when data area and energy dominate the instruction area

and energy as noted before. This illustrates that instruction

sharing is a net constant effect on area and energy, so it

does not change the scaling relations with respect to NV
the area remains proportional to N and energy propor-

tional to N1:5 logðNÞ.

D. Takeaway
At the extreme, stored-program processors are about

compactness, fitting the computation into the minimum

area possible. With these optimizations, for typical compu-
tations, data-storage area and energy dominate everything

else, including instruction storage and computation. The

density of ‘‘gates’’ approaches the density of memory bits

[Fig. 9(b)]. However, sequentialization means the compu-

tational densityVthe computation performed per-unit area

and timeVscales as N�1:5. While the word-width operations

help the absolute energy costs, the energy per gate evaluation

still grows as logðNÞ
ffiffiffiffi
N
p

due to reads from the data
memoryVlarger computations become less efficient per gate.

Fig. 8. W ¼ 4 SIMD word control for the 3-LUT programmable gate.

Fig. 9. Processor characteristics at p ¼ 0.7. (a) Energy scaling (15); (b) area scaling (14); (c) energy, delay, and area scaling for N ¼ 230 (14)–(16);

all ratios to I ¼ N, W ¼ 1 case.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 363

VII. DATA LOCALITY

After exploiting description locality and instruction shar-

ing, the dominant energy component comes from data-

memory access. Since we bring the data to a single location

to evaluate the gate, we must pay energy proportional toffiffiffiffi
N
p

for every data fetch from the memory. That is, we are

not exploiting any locality in the movement of the data.

To create and exploit locality in data movement, we can

perform the gate evaluation at different places and arrange

the data for minimal movement. We layout the gates in a

square grid and use an H-Tree to interconnect them

together (Fig. 10).4 Since the average wire length in a 2-D

VLSI circuit is constant when p G 0.5 and proportional to
Np�0:5 when p > 0.5 (Section IV), this will reduce the

energy requirements per node when p G 1 and will come

very close to achieving energy linear in the number of gates

when p G 0.5.

A. Analysis
To assign gates to processing elements (PEs) at the

leaves of the H-Tree (Fig. 10), we perform the recursive
bisection of the circuit graph to minimize cut sizes for

Rent’s Rule (Fig. 6). Assuming the fanout associated with

each gate is limited to a constant k, the node will need

instruction storage space only for its gate operation and the

node location of its k successors (log2ðNÞ bits for each

successor).5 The bits specifying the location of each suc-

cessor are used as a packet header to route the output bit

through the network to the successor PE. For concrete-
ness, we will assume k ¼ 4 to be symmetric with the gate

inputs. The PE will only need data-storage space for the

four inputs to the 4-LUT. Each PE will have an area pro-

portional to logðNÞ driven by the logðNÞ instruction bits to

specify successors, making the entire structure area grow
as N logðNÞ. All links in the H-tree have a single-bit-wide

uplink and downlink, so that the H-tree adds area only

linear in the number of leaves supported. The internal

nodes in the tree serve as a bit-serial, packet-switched

network. We can compute the area of a data local PE, Adlpe.

Combined with the area of a bit-serial, packet-switched

routing node in the H-tree, Asw, we can compute the area

of this composite data local design Adata as

AdlpeðNÞ ¼ A4LUT þ 4Abit þ Asmem 1; k log2ðNÞð Þ
AdataðNÞ ¼N � AdlpeðNÞ þ N � Asw: (17)

Evaluation energy at the leaf nodes remains constant

per gate, meaning total energy that is linear in the number

of gates. We can sequentially access the successor gate

address memory. While there are k log2ðNÞ bits in each PE

to handle the worst-case successor link, locality means that

most successors can be described with fewer bits. Conse-

quently, we introduce a separate variable Nsuccbitsi
to denote

the number of successor bits we actually need to read for PE

i. As a result, the instruction read energy for PE i ðEidpei
Þ is

Eidpei
¼ Nsuccbitsi

� Esmem 1; k log2ðNÞð Þ:

The bits configuring the 4-LUT never change, so there is

no energy required to read them. The total number of bits
we need to read across all N nodes is the same as in the

description locality case

XN

i¼0

Nsuccbitsi
¼ 5

1� 2p�1

� �
N: (18)

From Rent’s Rule, this tells us how many total instruction

bits must be read without directly identifying the number

of bits that must be read in each PE Nsuccbitsi
. This brings

the total energy for reading instruction memory to

Eidata ¼
5

1� 2p�1

� �
N � Esmem 1; k log2ðNÞð Þ: (19)

This leaves the energy required to route the data to the
successors over the H-tree network. Here, we must ac-

count for the number of edges that must be routed to each

height in the tree, the bits that specify the destination, and

the lengths of the wires at each tree height.

• There are N=2i subtrees at height i from the leaf.

• By Rent’s Rule, we know we have cð2iÞp edges that

must cross out of each of those subtrees. We will

Fig. 10. Sequential communication exploiting data locality.

4The scaling results derived in this section will not change if we used
a constant width mesh instead of the H-Tree.

5Any netlist can be transformed into one with bounded fanout with
only a constant factor change in the critical path and gate count [18].

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

364 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

take c ¼ 8 to capture the left-to-right and right-to-
left traffic at the root.

• The packet will need an address specification as

well as the data bit. The number of bits in an

address will be no greater than logðNÞ; for

simplicity, we make no further attempt to account

for the fact that many stages see fewer bits.

• The length of the top wire in the tree is
ffiffiffiffiffiffiffiffiffiffi
Adata

p
.

• Wire lengths halve every other stage.
Putting this together, we obtain

Ecdata�
Xlog2ðNÞ

i¼0

N

2i
8ð2iÞp log2ðNÞ þ 1ð Þ2 i

2d e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Adata=N

p� �
(20)

� 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � Adata

p
log2ðNÞ þ 1ð Þ

Xlog2ðNÞ
2

	

i¼0

ð2iÞð2p�1Þ
� �

Edata ¼ Eidata þ Ecdata: (21)

For p > 0.5, we have

Ecdataðp > 0:5Þ / Npþ0:5 log1:5ðNÞ: (22)

At p ¼ 1, this energy is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðNÞ

p
larger than the memory

case in Section V due to the area increase to hold N logðNÞ
bits for the description; however, for any p G 1, the benefit

from locality of data movement is greater, and this scheme

has lower energy growth since Npþ0:5 G N1:5. Picking spa-
tial locations for computations and moving the data minimally
to these locations saves energy. For p G 0.5, we have

Ecdataðp G 0:5Þ / N log1:5
2 ðNÞ: (23)

With this high locality, energy is within a log1:5ðNÞ factor
of linear in N. If we define p0 ¼ maxð0:5; pÞ, we can state

both results as

Ecdata / Np0þ0:5 log1:5
2 ðNÞ: (24)

In any case, Ecdata grows faster than Eidata, defining the

growth rate for Edata. Fig. 11 ðNPE ¼ NÞ shows that this

always results in lower energy than the processor when

there is no instruction sharing (W ¼ 1, I ¼ N). This is true
for any p G 1, with the level of benefit dependent on p (See

Fig. 12.) When high instruction sharing is possible in the

processor, this scheme, as described so far, will not be a

net energy reduction until the circuit size becomes very

large (e.g., above 236 in Fig. 11).

With a separate 4-LUT for each gate, the circuit eval-

uation will not be serialized on computation. However, the

critical path could be needed to cross the entire chip taking

delay proportional to
ffiffiffiffiffiffiffiffiffiffi
Adata

p
for each crossing, or in the

worst case, a total delay proportional to d
ffiffiffiffiffiffiffiffiffiffi
Adata

p
. Further-

more, communication between the two halves of the chip

must be serialized. A total of 4Npðlog2ðNÞ þ 1Þ bits must

cross the bisection in each direction. For p > 0.5, this will

typically be the rate limiter for the design.

B. Energy-Delay-Area Tradeoff (Packet-Switched,
Parallel Processors)

With each gate getting its own PE, the area for this

design tends to NðAdlpe þ AswÞ. Since the area for the pro-

cessor design tends to N � Abit with high instruction sharing

(Section VI), this data local design will be larger by a factor

of ðAdlpe þ AswÞ=Abit. This ratio is technology dependent,

but might be 300–400 when N is 224 for conventional VLSI.

It is the larger size, which translates into longer wires, that

makes the pure data local case higher energy than the
instruction-sharing cases for smaller circuit graphs (Fig. 11).

Between these two extremes, we could use 1 G NPE G N by

serializing a group of N=NPE gates at each leaf PE. We can

exploit instruction sharing (Section VI) within the PE and for

communication between PEs, so we parameterize the mod-

eling based on I and W (See Apendix B).

Fig. 11. Data local energy p ¼ 0.7 (15), (21), (39), (Appendix B).

Fig. 12. Data local energy for NPE ¼ N ¼ 224, W ¼ 1, I ¼ N (15), (21).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 365

Fig. 13(a) and (b) shows how area, delay, and energy

change as we vary the number of processing elements. We

estimate leakage as the product of area and delay to cap-

ture gross scaling; the weighting between dynamic and

leakage energy will be process and operating point depen-
dent, so we make no attempt to combine the two.

The dominant components of area in these designs are

the instruction memory [I ¼ N case in Fig. 13(a)], data

memory [I � 128 case in Fig. 13(b)], and switches. As we

increase the NPE, the instruction and data memory area do

not change, but the switch area increases as shown. As a

result, at small NPE, where instruction and data memory

area still dominate, the switch area, the total area remains
flat. Only when the switch area rises to become compa-

rable to memory area does the total area show a noticeable

change. This occurs at a lower NPE in the high-sharing case

[Fig. 13(b)] since the instruction memory and, hence, total

memory is significantly reduced as previously noted.

As NPE rises from 1, the instruction and data memories

shrink, reducing memory energy. However, since the total

area is increasing, the distances where data must be moved
in nonlocal cases are increasing. These two competing ef-

fects combine to provide an energy-minimizing point that

is not at the fully spatial extreme. This means that we can

save even more energy with these intermediate points, and

do so with an area closer to the processor case. The NPE ¼
N0:7 ðW¼1Þ and NPE¼N=64 ðW¼64Þ lines in Fig. 11

show how energy scales for the energy-minimizing NPE

selections. The W ¼1 case is always less than the proces-
sor, and the W ¼ 64 case is less for any size over 32 K gates.

The resulting architecture here is a large set of small

PEs that exploit SIMD parallelism. At a gross level, this

might look like a general-purpose graphical processing unit

(GPGPU). There is a significant difference. Today’s

GPGPUs do not have a network among the PEs. They store

all of their data in a central memory, usually an off-chip

DRAM. As a result, they do not exploit communication
locality, which is essential in reducing energy. If all data

must be moved to a central memory, energy scales as N1:5

rather than the smaller Np0þ0:5 identified here when the

design exploits communication locality.

C. Takeaway
The dominant energy in the processor is data move-

ment. Exploiting data locality reduces energy over the

stored-program processor case. It is possible to reduce

energy to within a logarithmic factor of linear in N for

p G 0.5. For larger p G 1, energy scales roughly as

Npþ0:5ðlogðNÞÞ1:5. This comes at the expense of a design

that is larger by a constant factorVa concrete example

where we can tradeoff area with energy; specifically, we

can gain the energy benefits by trading away as little as a
factor of four in area density. [See Fig. 13(c).] The compu-

tational density improves to ðd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N logðNÞ

p
Þ�1 when p G 0.5

and N�p log�1ðNÞ for p > 0.5. The bit-serial link between

the two halves of the tree is a bottleneck that prevents us

from reducing the delay below 4Np for designs with p > 0.5.

VIII . INSTRUCTION LOCALITY (FPGAs)

While the data locality case reduced energy and delay, it

still suffered from the need to spend significant area-

storing instructions and significant energy-sending head-
ers on the packets. It also had a limited delay benefit due to

the serial bottleneck. Instead, we could build a richer net-

work between PEs. In the extreme, we build a tree or mesh

that has one wire per signal we want to send so that com-

munications do not need to be sequentialized. This allows

us to place the configuration for the interconnect local to

the switches that must be configured, and it means the

configurations do not need to change during circuit eval-
uation, thus eliminating instruction energy completely.

This resulting architecture is that of an FPGA, with dedi-

cated compute elements, 4-LUTs, for each logical gate in

the netlist and dedicated wire links supporting the edges.

This is the same instruction configuration as the crossbar-

based, spatially reconfigurable architecture (Section III-C4),

except that we substitute a more efficient, locality-exploiting

Fig. 13. Data local scaling for p ¼ 0.7. (a) Energy, delay, and area for W ¼ 1, I ¼ N for N ¼ 224 as a function of NPE (21), (40), (17);

(b) energy, delay, and area for W ¼ 64, I � 128 for N ¼ 224 as a function of NPE (38)–(40); (c) area scaling (38).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

366 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

interconnection network for the crossbar. For highly local
designs ðp G 0.5), this has linear area for interconnect,

compared to the quadratic area in the crossbar. Compared to

the data local designs in the previous section, for highly local

designs ðp G 0.5), we will remove the logarithmic terms,

and achieve designs that are fully linear in area and energy,

while achieving lower delay. For designs with less locality

(0.5 G p G 1.0), the energy and area are larger than the data

locality case, but the delay is lower.

Butterfly Fat-Tree Interconnect: We specifically consider

using a butterfly fat-tree (BFT) [19] (or HSRA [20]) for

the interconnection network to simplify analysis. (See

Fig. 14.) Unlike the H-tree used for the data local case

(Fig. 10), fat tree interconnect grows toward the root of the

tree, similar to the branches on a real tree. The BFT is

designed so that the interconnect at the root of each
subtree follows Rent’s Rule, growing as cNp, where N is the

number of leaves in the subtree. The BFT variant of the fat

tree uses switches of constant size [Fig. 14(b)]. At the root

of each subtree, each wire is connected to a single switch,

such that the number of switches is linear in the subtree

IO. The total number of switches needed by the BFT is

linear in the number of nodes supported. (See (26).), so

linear in circuit size N for any p G 1. Note that this is in
contrast to the crossbar that required switches propor-

tional to N2.

While the switch and leaf resources are linear in N, the

BFT has more wiring than the data local case. It is nec-

essary to account for the wiring in order to properly char-

acterize the area, delay, and energy of this architecture.

IX. VLSI WIRING COMPLEXITY

When we have a large number of wires, as we do in a

crossbar or in the upper channels of the BFT, we must

account for the fact that wires require area. Particularly, if

we have a limited number of wiring layers, as we typically
do for any particular VLSI fabrication process, large num-

bers of wires can determine the area of the implementation.

As previously noted, wires will have a minimum width

and minimum spacing to adjacent wires determined by the

process, defining a minimum pitch FP. Both the wire width

and spacing are related to the feature size in the process, so

the pitch is as well. In fact, most processes are named by

their half pitch, or roughly, the width of a minimum size
transistor. A collection of B wires placed on a single metal

layer requires a width of at least B � FP. If we can distribute

them across L wire layers, this can be reduced to ðB � FPÞ=
L. A typical digital VLSI discipline will allocate half of the

interconnect wiring metal layers to horizontal connections

and half to vertical, making the available wire layers for a

bus in a single direction half the routing wiring layers.

Accounting for the wire area is important because
wiring, not gates nor switches, can end up determining the

area in designs. For example, for any design characterized

by a Rent Exponent p > 0.5, the lower bound on the chip

area is higher than linear in the gate count. Specifically, we

know the top cut will require cNp wires. If we are limited

to a fixed number of metal layers L, this means the wires

that need to cross between the two halves of the chip must

take up width ðcNp � FPÞ=L=2. By a similar argument, when
we look at the wires for the next tree level, it requires

width 2ððcðN=2Þp � FPÞ=L=2Þ in the other dimension. (See

Fig. 15.) Together, this means the area for the design must

grow at least in proportion to N2p, which is greater than

linear when p > 0.5. This result can be seen as a conse-

quence of the fact that the perimeter of a 2-D region grows

as the square-root of the area in the region. If we need to
Fig. 14. Butterfly fat tree (BFT). (a) N ¼ 16, c ¼ 2, p ¼ 0.5;

(b) switch composition.

Fig. 15. Wire-driven lower bound on the VLSI area.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 367

bring more signals in or out of the region than
ffiffiffiffi
N
p

, the
region size will be determined by the perimeter rather

than the capacity to hold gates inside the region. For more

on VLSI complexity theory, see [14], [15], [21], and [22].

X. SPATIALLY RECONFIGURABLE
COMPUTATION

Building on the VLSI wiring model, we can characterize
the area, delay, and energy for the spatially reconfigurable

architecture. We compute area as the sum of the active

transistor area and the wiring area.

Starting with the active transistor area, the area in the

leaf PE is

Aspe ¼ A4lut þ 24Abit þ ðc� 4Þ4Þð ÞðAmux þ AbitÞ: (25)

The ðc� 4Þ4 term deals with selecting inputs to the PE

from the BFT network [23]. From Fig. 14, we see that each

directional wire pair at the top of a subtree is associated

with a switch. Each connection needs 3 two-input multi-

plexers [Fig. 14(b)]. Counting based on wiring at each tree

level gives the total switch area

Asws ¼ c
Xlog2ðNÞ

i¼0

2ip N

2i

� � !
ð3Abit þ 3AmuxÞ

�N
c

1� 2p�1

� �
ð3Abit þ 3AmuxÞ: (26)

Here, 2ip is the number of wires in a channel at level i, and

N=2i is the number of such channels. Putting these together

Aactive ¼ NAspe þ Asws: (27)

For wiring, we must not only account for the cNp wires

at the top level as previously noted (Section IX) but also for

all of the wire channels in the horizontal and vertical

dimension across all tree levels. We first count the number

of wire channels needed across the width of the chip by

looking across all overlapping wiring channels

Wires ¼ cNp þ 2cNp 1

2

� �2p

þ 4cNp 1

2

� �4p

þ . . .

 !

¼ cNp
Xlog2ðNÞ

l¼0

2ð1�2pÞl: (28)

The exponent increases by a factor of two since we are

counting every other stage to account for the contribution

of wires to a single dimension. The constant in front dou-
bles since we are doubling the number of wire channels

that parallel each other at every other tree stage. To turn

this into a length, we consider the wire layers L

Lwire ¼
Wires� FP

L=2
¼ 2FP�Wires

L
: (29)

The length of the side of the entire design is thus

Lside �
ffiffiffiffiffiffiffiffiffiffiffiffi
Aactive

p
þ Lwire: (30)

The total area is the square of the side length

Aspatial ¼ ðLsideÞ2: (31)

When p G 0.5, Lwire is proportional to
ffiffiffiffi
N
p

, and the entire

area is linear in N. When p > 0.5, Lwire becomes
proportional to Np, making the area proportional to N2p.

Fig. 16(a) shows how area scales with N.

The benefit of this additional area is reduced delay.

There is no node or interconnect serialization here, only

the critical path delay. In the worst case, all links in the

critical path must cross the chip, such that delay scales as

the product of the side length Lside and the critical path

length d

Dspatial ¼ d � Lside: (32)

This means a delay proportional to d
ffiffiffiffi
N
p

for p G 0.5 and

proportional to dNp for p > 0.5, which is better scaling

than the crossbar (Section III-C4). For logarithmic critical

paths, the p G 0.5 delay can be a factor of N lower than the

processor case.

We determine the total wire energy switched by sum-
ming up the energy of all the wires

Espatial ¼
Xlog2ðNÞ

l¼0

cNp2l 1

2l

� �p
Lside

2
l
2d e

� �
Eu: (33)

The sum ranges over all levels l by computing the wire

energy per level. At each level, we must consider the total

number of wires at the level and their length.

• At the top level ðl ¼ 0Þ, there is one channel bun-

dle with cNp (Rent’s Rule) wires that cross the

entire chip ðLsideÞ.
• In general, there are 2l channels in each level.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

368 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

• By Rent’s Rule, the number of wires in each

channel at a level is smaller by a factor of ð2lÞp.
• Every other channel extends in a different dimen-

sion, so the subtree width ðLside=2dl=2eÞ shrinks to

half the previous side length every other level to-

ward the leaf. The ceiling in the exponent ðdl=2eÞ
accounts for this shrink on alternating levels.

When p G 0.5, the sum results in a term that is linear in N.

When p> 0.5, the total energy is proportional to N2p. This

is less than the processor energy of ðN logðNÞÞ1:5 when
pG 0.75, but is larger when p>0:75. Fig. 16(b) shows how

the energy compares to the processor and data local cases

when p ¼ 0:7, and Fig. 16(c) shows the comparison with

p¼0:8. We pick p ¼ 0:7 and p ¼ 0:8 to illustrate these

trends since they are immediately on either side of the

p ¼ 0:75 breakpoint where the processor and spatial design

both scale by roughly N1:5. Fig. 21 shows how the energy

difference widens as we move further away from the p¼0:75
breakpoint. Also note that p¼0:7 is the high-end, high-

performance Rent Exponent typically observed in circuits.

Instruction Sharing: Note that there is no SIMD sharing

case for this spatially reconfigurable, instruction locality

case. Since instructions never switch, no dynamic energy
goes into reading or writing instructions, and so there is no

energy to save. The instructions do take up space, but they

are small compared to the switches and wiring they control.

For regular designs, it is possible to exploit a form of

instruction and datapath sharing by spatially instantiating

some number of instances of the common computational

graph (e.g., loop body) and reusing those graphs in time

with different data. Architecturally, this will demand data
memory to hold the data items that share the spatial graph.

In modern FPGAs, these data memories show up as em-

bedded RAMs [24]. This implementation raises many

additional issues that make direct comparisons across ar-

chitectures beyond the scope of this paper. See [25] for

quantitative experiments illustrating how parallelism tun-

ing with embedded memories can reduce FPGA energy.

Takeaway: With a locality-exploiting network, such as

the BFT, the spatially configurable design achieves area
and energy linear in the number of gates supported when

locality is high enough p G 0.5, and it avoids the sequential

communication bottleneck of the data locality case. The
linear area and energy scaling achieved with this FPGA-style
architecture when p G 0.5 is optimal to within constant
factors. When p G 0.5, this achieves a computational

density of ðd
ffiffiffiffi
N
p
Þ�1

. This style of storing the instructions

local to the resources they control eliminates instruction
energy, resulting in lower energy than the processors for

any p G 0.75. When p > 0.75, wiring complexity results in

longer interconnection wires and greater energy than the

processor case.

While we have developed specific results based on a

BFT, similar scaling results can be achieved with a suitably

designed mesh. See [26] for details on how to relate tree

and mesh results.

XI. TIME-MULTIPLEXED INTERCONNECT
(MULTICONTEXT, CGRA)

While the FPGA-style, spatially reconfigurable computa-

tions are achieving optimal area and energy for highly lo-
cal, p G 0.5 tasks, they can be larger and use more energy

than the data locality designs (Section VII) and even the

processors (Section VI) for large p. As we saw, it is the fully

spatial wiring area that drives the fully spatial design to

consume more area, send data on longer wires, and conse-

quently consume more energy than the data local design

with serialized interconnect. In this section, we will see

that it is possible to achieve higher bandwidth communi-
cation than the data local architecture without demanding

substantially more area.

To do so, we consider an architectural variation that

combines the best aspects of the spatially reconfigurable

design with the data local design. In particular, rather than

providing a unique wire for every signal, we provide only

as much wiring as we can without exceeding linear switch

Fig. 16. Spatial area and energy assuming eight metal layers. (a) Area scaling (31), (b) energy compare for p ¼ 0.7 (15), (33), (39);

(c) energy comparison for p ¼ 0.8 (15), (33), (39).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 369

and wire area. That means we must build the physical

network with a limited wiring growth rate, pnet G 0.5.6

The root of the tree will still be a bottleneck on communi-

cation since it supports cnetNpnet G cNp. However, this

means the design only serializes communication by

ðc=cnetÞNp�pnet rather than completely serializing it by
cNp as in the serial H-Tree data local design.

The data local design requires an N logðNÞ area in

order to store the successor destinations and spends up to

log1:5ðNÞ
ffiffiffiffi
N
p

energy to send instruction bits from their

storage at the leaf PEs up to the switches they must control

in the interconnect. We can remove these logarithmic

terms by placing the instruction bits that control switching

local to the network segments they control rather than in
the PEs; that is, since we must sequentially reuse the net-

work links in this design, we place small instruction mem-

ories in the network along with the switches. (See Fig. 17.)

These instruction memories control the behavior of the

switches over time. Since pnet G p, the wires higher in the

network will have a larger sharing factor than the wires

close to the leaf of the tree. At height i in the tree, the

sharing factor is ðc=cnetÞð2iÞp�pnet . This means the instruc-
tion memories become deeper as we move toward the root

of the tree. Nonetheless, the total instruction memory area

remains linear in N. The energy from the memories scales

as the wire energy, which scales similar to the data local

design (20) with the benefit that the total area is linear in

N rather than N logðNÞ. As a result, the basic scaling is

Atm /N (34)

p0 ¼ maxð0:5; pÞ (35)

Etm /Np0þ0:5 (36)

Dtm / d
ffiffiffiffi
N
p

: (37)

This is the least area, energy, and delay of any of the

designs.

As with the data local case, we can also consider clus-

tering multiple gates at the leaf of the tree and serializing

them to reduce area. Fig. 18 shows the composition of this

leaf PE. S in Fig. 18 captures the level of serialization at the
leaf of the network. We can also exploit instruction sharing

for this hybrid design. We divide the instruction storage in

the PE by W and the instruction storage in the network.

This roughly provides a model for coarse-grained reconfi-

gurable arrays (CGRAs) (e.g., [28]–[33]). At word width of

one, this is a model for multicontext FPGAs (e.g., [34]–

[36]). Appendix C summarizes the modeling for this time-

multiplexed design, and many design details are elaborated
in [9].

A. Characteristics
Fig. 19 shows how the energy, delay, and area change as

we vary the number of PEs, suggesting a modest sequen-

tialization at the leaves saves energy. As we increase the

time multiplexing (decrease NPE), the area decreases then

flattens out as memory dominates switching. For large

time multiplexing, the area increases because we are not
exploiting description locality within the PE in this simple

formulation. Similarly, as we increase time multiplexing,

the serialization increases delay for the W ¼ 1 case. How-

ever, since the area is decreasing, wire lengths are shorter,

causing delay to increase more slowly than the sequentia-

lization factor. In the W ¼ 64 case, we actually see the

wire length effects dominating the sequentialization effect

for modest (up to 16) levels of time-multiplexing. Simi-
larly, energy is reduced by modest (4 or 32 depending on

W) time-multiplexing. With no time-multiplexing, the

wire energy dominates. Time-multiplexing that reduces

area, reduces wire lengths, and, hence, wire energy at the

cost of adding instruction and data memory energy. As

long as the reduction in energy due to wire lengths is

larger than the increase due to memories, additional

6Leiserson shows that these p ¼ 0.5 fat trees are area-universal in the
sense that they are within a polylogarithmic factor of the performance of
any network that can be built in the same area [27].

Fig. 17. Time-multiplexed butterfly fat tree (BFT) with cnet ¼ 1, pnet ¼
0.25 supporting c ¼ 2 and p ¼ 0.5. Fig. 18. Multicontext leaf-processing element (PE).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

370 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

time-multiplexing is a benefit. The memories in the SIMD
ðW ¼64) cases grow more slowly than in the W ¼ 1 case,

so they benefit from greater levels of sequentialization.

Fig. 20 compares energy scaling across the various

designs, showing that the time-multiplexed design with

pnet ¼ 0.49 achieves the least energy of all the designs

when supporting more than 4096 gates at p ¼ 0.7 and
p ¼ 0.8. The magnitude of the benefit grows with design

size. There is an advantage to exploiting SIMD sharing

when it is possible, but the benefit is small compared

to the advantage gained from the time-multiplexed

implementation.

Fig. 19. Time multiplexed with pnet ¼ 0.49 at N ¼ 224 (49)–(51), Appendix C. (a) p ¼ 0.7, W ¼ 1; (b) p ¼ 0.7, W ¼ 64; (c) p ¼ 0.8, W ¼ 1;

(d) p ¼ 0.8, W ¼ 64.

Fig. 20. Energy scaling comparison (15), (33), (39), (49). (a) p ¼ 0.7 and (b) p ¼ 0.8.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 371

Fig. 21 shows that the fully spatial design can have lower

energy at low p, but as p increases, this time-multiplexed

design achieves the lowest energy. This matches our

growth expectations with the time-multiplexed energy
growing as Np0þ0:5 and the spatial design energy growing

as N2p. We deliberately chose pnet ¼ 0.49 to reduce the

high energy costs in routing when p > 0.5.

Fig. 22 shows that the time-multiplexed design

achieves this energy efficiency and performance improve-

ment at the expense of area compared to the processor

design [Fig. 9(b)]. The area is larger than the processor

cases because it adds parallel PEs and switches that are not
included in the sequential processor case. Nonetheless,

with the time-mulitplexed design where NPE G N, we

limit the contribution to switches. In the W ¼ 1 case, with

NPE ¼ N0:85, the area per gate trends to 410Abit compared

to 43Abit for the sequential processor case. In the SIMD

case, the area trends to 8Abit compared to one Abit for the

sequential processor case.

Fig. 23 rounds up delay, showing that the time-multi-

plexed design achieves delay close to the spatial imple-

mentation and better than data local and processor

alternatives. For the SIMD cases, the time-multiplexed
design gives up little performance to gain these energy and

area benefits compared to the spatial design. The energy-

minimizing time-multiplexed case sacrifices more speed as

we saw in Fig. 19, but remains substantially faster than the

sequential processor cases.

Table 1 rounds up the scaling comparison and provides

point density and energy comparisons.

B. Takeaway
Using time multiplexing, it is possible to exploit both

instruction locality and wire sharing to further reduce area

and energy. This is especially useful when the communi-

cation locality is low ðp > 0.5). This achieves the best

energy scaling identified, linear in Np0þ0:5 both with and

without instruction sharing. The area scales as N, and

Fig. 21. Energy scaling comparison versus rent exponent p at N ¼ 224 (15), (33), (39), (49). (a) W ¼ 1 and (b) W ¼ 64.

Fig. 22. Multicontext area for p ¼0.7 assuming eight metal layers (51).

Fig. 23. Delay comparison for p ¼ 0.7 assuming eight metal layers

d ¼ 10 (16), (32) (40), (50).

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

372 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

computational density scales as 1=ðd
ffiffiffiffi
N
p
Þ, the best of all

the designs.

C. Open
As noted at the end of Section X, embedded memories

provide another model for exploring the reconfigurable

architecture design space between the fully spatial and the

fully sequential extremes, particularly when regularity

allows instruction sharing. Characterizing the relation

between these approaches is an important topic that merits

further research.

XII. MISMATCH ARCHITECTURAL AND
APPLICATION PARAMETERS

The characterization shown so far assumes that the appli-

cation characteristics match the architectural parameters.

From the graphs shown [Figs. 9(c), 13(c), and 20], it is

clear how the implementation can be more costly if the

SIMD word width supported by the architecture ðWarchÞ is
smaller than the SIMD width allowed by the task ðWappÞ.
We will suffer a different kind of inefficiency if the archi-

tecture has a smaller natural SIMD word width than the

application. For example, if Warch ¼ 64 but Wapp ¼ 16, we

lack the ability to control the gates independently. This

may mean we need a larger component to accommodate

the task ðNarch ¼ ðWarch=WappÞNappÞ, making memories

larger and requiring more energy per operation.
Similar inefficiencies occur when the locality is mis-

matched. We can see directly from the graphs [Figs. 16 and

21] that higher locality (lower p) results in less area,

energy, and delay. Using a larger p than necessary

ðparch > pappÞ directly leads to more costly implementa-

tions. Similarly, if parch G papp, we may again need a larger

component to accommodate the task ðNarch ¼ ððNappÞpapp=

ðNappÞparchÞNapp ¼ ðNappÞ1þpapp�parchÞ, which will cost more

area, energy, and delay.

Mismatches between task size and the size of the com-

ponent device can also lead to inefficiencies. For example,
if we place a circuit with 218 gates on a component de-

signed to support 220 gates, we are using a design that is

larger than necessaryVin addition to the obvious area

inefficiency, this can be an energy and delay inefficiency

for architectures where energy and delay are driven by N.

Specifically, the processor with monolithic memory will

use logðNÞ
ffiffiffiffi
N
p

energy per gate even if the actual number of

gates evaluated is smaller. With appropriately placed IOs,
the locality exploiting designs may be able to spend energy

only proportional to the actual design size.

Reference [37, Ch. 36] treats the impact of SIMD and

serialization mismatches on computational density, and

[38] treats the impact of p mismatches on area. It is often

possible to select architectural parameters that limit the

inefficiency due to mismatches with the application.

XIII . HYBRID ARCHITECTURES

The treatment in this paper has also focused on pure

building blocks assuming applications have homogeneous

characteristics and architectures are built to support a

single set of parameters. In practice, applications contain a

mix of subcomputations with different characteristics. The

architectural points explored here can be seen as com-
ponent building blocks for the composition of heteroge-

neous, hybrid architectures that combine portions of each.

The famous 90/10 rule from Knuth suggests that 90% of

the runtime is spent in only 10% of the code [39]. Such a

profile might benefit from an architecture that had two

componentsVone that focused on area minimization for

the 90% of the code that runs only 10% of the time, and

Table 1 Comparison of Scaling and Sample Densities at N ¼ 224 Across Architectures

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 373

another focused on maximizing computational density and
minimizing the energy for the 10% of the code that runs

90% of the time. This has led to designs that combine the

area efficiency of a processor with the computational den-

sity and energy efficiency of a spatially reconfigurable

compute engine, starting from Estrin’s Fixed+Variable

computer [40], through a host of design proposals (e.g.,

[41], [42]), leading to today’s FPGAs with embedded pro-

cessors, such as Xilinx’s Zynq and Altera’s Arria and
Cyclone V SoC.

XIV. ENERGY AND POWER DENSITY

In the past, densityVhow large a computation we could

build with limited materials (vacuum tubes, transistors,

silicon area)Vwas our key limitation. As Moore’s Law’s

exponential growth reduced the cost per transistor, perfor-
mance per cost mattered, making computational density

the key concern; high computational density allowed us to

achieve higher performance for a given, limited die size

(cost). Today, the increasing role of mobile devices makes

energy efficiencyVthe energy cost per operationVthe

dominant metric for many applications.

Energy is also becoming the critical limiter to perfor-

mance. During the era of Dennard Scaling [43], as transis-
tors shrunk, we were also able to scale down operating

voltages to maintain a constant power densityVwe were

able to put exponentially more transistors onto a silicon die

without increasing the power per die or per centimeter

squared. However, subthreshold leakage now prevents us

from scaling voltage according to ideal Dennard Scaling

laws [44], [45]. The result is rising power density to the

point where our ability to remove the heatVto cool the
deviceVlimits the density and speed of operation. That is,

we can now place more transistors on a silicon die than we can
afford to turn on at their maximum operating speed [46]Va

phenomenon known as dark silicon [45], [47]. In the

extreme, in this new era of dark silicon, energy efficiency

determines performance [48]. The architecture that min-

imizes the energy per gate evaluation will maximize the

performance per Watt and, hence, the performance when
operating with a limited area in a limited power density

envelope. The energy efficiency of reconfigurable architec-

tures (Fig. 21 and Table 1) may be their key asset in years

to come.

XV. BETTER THAN CUSTOM ASIC?

We pay for postfabrication configurability with areaVarea
to store the configuration, area for gates that have more

functionality than strictly necessary, and area for wires

that may not be used. A large area makes wires longer,

increasing delay, and decreasing performance. Longer

wires mean more energy to communicate with the data. In

cases that are not fully spatial, we also pay energy-reading

configurations from memory. For these reasons, our post-

fabrication reconfigurable designs are less dense, lower
performance, and higher energy than a custom integrated

circuit (IC) that performs a single function, an ASIC [49].

Nonetheless, the postfabrication device can use its

strengths to outperform the ASIC.

The postfabrication capability means the device can be

specialized to the instantaneous needs of the task in a way

that is not practical for an ASIC [37, Ch. 22]. For example,

an FPGA can be programmed to implement a specific set of
constant coefficient multiplications for a filter [50], match

a particular pattern [51], or perform Boolean constraint

propagation on a particular SAT instance [52], when an

ASIC must be prepared to handle any set of coefficients,

any pattern match, or any SAT instance. This reduces or

inverts the traditional ASIC advantage over FPGAs. On a

longer time scale, this ability to change the configuration

allows rapid adoption of new algorithms and standards.
This allows already fabricated products to benefit from the

latest conceptual advances, which can also improve the

reconfigurable solution relative to an ASIC running old

algorithms or standards. If a design bug manifests after the

chip has been fielded, an inflexible ASIC solution could be

rendered useless, whereas a reconfigurable solution can be

corrected in the fielded system.

As we scale to smaller feature sizes and integrate more
transistors onto a single design, it becomes increasingly

impossible to fabricate every one of the multiple billions of

transistors on a silicon die perfectly. A variation in feature

dimensions and doping levels leads to a wide variation in

transistor characteristics [53]. This means some transistors

will be unusable. Other transistors will operate only at

high voltages, further aggravating attempts to reduce volt-

age to reduce energy and power density. The characteris-
tics of devices will change during operation, meaning

many transistors will fail during operation. Postfabrication

reconfigurable devices can mitigate these yield, variation,

and aging problems by identifying the unusable devices

and changing the assignment of gates and interconnect to

physical 4-LUTs and wiring segments to avoid the unusable

devices [54]–[58]. This allows postfabrication architec-

tures to use more aggressive technologies (smaller feature
sizes and voltages) [59] and maintain their performance

for longer operational lifetimes, also reducing the tradi-

tional gap with ASICs.

The VLSI complexity results (Section IX) show that

less local designs ðp > 0.5) can become wire dominated.

At the wire-dominated extreme, the additional area over-

head for programmable switches does not matter, reducing

one of the key costs of postfabrication devices. Moreover,
as we have shown (Section XI), in these regimes of opera-

tion, it is more energy efficient to time-multiplex the

wiresVshare them among signalsVthan to dedicate a wire

to a single signal. If the ASIC stays with fully spatial wiring,

a postfabrication device that time-multiplexes its wires will

close the gap and can ultimately be smaller and lower

energy than the ASIC.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

374 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

Of course, a custom ASIC can use all of these tech-
niques too. It can provide, perhaps limited, reconfigur-

ability to changing task needs, evolving standards, and

in-circuit repair. It can include spare resources to address

yield, variation, and aging. It can time-share its intercon-

nect. However, as it does so, it increases its reconfigur-

ability and, itself, becomes a reconfigurable device.

XVI. SUMMARY

Postfabrication programmable architectures remove man-

ufacturing as a bottleneck between concepts or repairs and

implementation. Design customization becomes an infor-

mation problem where we specify the instruction bits that

configure the generic device to perform a specific task. By

exploiting a typical application structure, such as commu-

nication locality and wide-word instruction sharing, we

can reduce the overhead associated with storing and ap-
plying these instruction bits. Within the space of postfab-

rication programmable architectures, reconfigurable

architectures use spatially distributed processing elements

and efficient interconnection networks to exploit data and

instruction locality. This reduces computation time and

computation energy at a cost of area (decreased gate den-

sity) compared to stored-program processors. As we

continue to scale technology to smaller, error- and
variation-prone feature sizes with more raw capacity on

inexpensive chips but increasing nonrecurring engineering

costs, reconfigurability will play an increasing role in all

computational components. h

APPENDIX

A. Symbol
Tables 2–5 summarize the symbols used in this paper.

B. Models for Data Local Case
Here are the full models for the data local case as we

vary the number of processing elements NPE and as a

function of the instruction-sharing parameters I and W .

The PE will have data memory that holds its fraction of

the total data N=NPE and this data memory is as wide as

the SIMD word width. It also need not hold more than I
instructions

AdlpeðN;NPEÞ ¼ A4LUT þ Armem W;
N

W � NPE

� �
þ Asmem 1; I 16þ k logðNÞð Þð Þ:

The total area is the area of all the PEs and switches

AdataðN;NPEÞ ¼ NPE � AdlpeðN;NPEÞ þ Aswitch

� �
: (38)

This data local PE requires energy to read its data, Eddpe.

The implementation also spends energy reading the in-

structions, Eidpe, and communicating amongst PEs, Ecdata:

EddpeðN;NPEÞ ¼ 4
N

NPE

� �
� Ermem W;

N

W � NPE

� �
EidpeðN;NPEÞ ¼Nsuccbits � Esmem 1; I 16þ k logðNÞð Þð Þ

EcdataðN;NPEÞ � 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NPE � Adl

p logðNÞ
W

þ 1

� �

Table 2 Technology Parameters

Table 3 Design Netlist Parameters

Table 4 Architecture Parameters

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 375

�
Xlog2ðNÞ

2

	

i¼ log2 NoverNPEð Þ

2

	
 ð2iÞð2p�1Þ
� �0

B@
1
CA

EdataðN;NPEÞ ¼NPE � EddpeðN;NPEÞ þ EidpeðN;NPEÞ

þ EcdataðN;NPEÞ: (39)

The total computation time could be limited by the PE

serialization N=NPE, the interconnect serialization cNp,

or the critical path communication latency across the

chip d
ffi
AdataðN;NPEÞ

p
. We assume the cycle time is set

by the wire lengths in the PE
ffi
AdlpeðN;NPEÞ

p

DdataðN;NPEÞ �
N

NPE
þ cNp

� � ffi
AdlpeðN;NPEÞ

p
þ d

ffi
AdataðN;NPEÞ:

p
(40)

B. Models for the Time-Multiplexed Case
Here are the full models for the time-multiplexed in-

terconnect case as we vary the number of processing ele-

ments NPE and as a function of the instruction-sharing

parameters I and W .

The serialization of computation at the PE S is

S ¼ N

NPE

We use a context factor CF to estimate precedent con-

straint effects [9]. For concrete illustration in this paper,

we assume CF ¼ 4. The total number of cycles that the PE

needs to execute is the greater of the serialization of the

computation and the communication between the PE and

the network

Cp ¼
CF

W

� �
max S;

c

cnet
ðSÞp�pnet

� �
(41)

The PE must hold the data for the S 4-LUTs and instruc-

tions for the 4-LUTs and communication

Ape ¼ 4Amux cnetSpnetð Þ þ 4Armemð1; SÞ þ A4lut

þ 4Asmem log cnetS
pnet þ 1ð Þ þ log

S

W

� �
; Cp

� �

þ Asmem 4 log
S

W

� �
þ 16;

S

W

� �
:

Similarly, the energy per node evaluated in the PE

accounts for data reads and writes and instruction reads

Epe ¼ 8Ermemð1; SÞ

þ 4
Cp

W � S Esmem log cnetSpnet þ 1ð Þ þ log
S

W

� �
; Cp

� �

þ 1

W

� �
Esmem 4 log

S

W

� �
þ 16;

S

W

� �

þ 2� 6Cwire

ffi
Armemð1; SÞ

p
log

S

W

� �
þ 1

� �
:

Table 5 Characteristic Models

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

376 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

We count the switches at each tree level and account for
their local memories

Asws ¼
XlogðNÞ

l¼logðSÞ

N

2l

� �
cnetð2lÞpnet

� 3Amux2 þ Asmem 3;
CF � c

W � cnet
2l
� �p�pnet

� �� �
: (42)

The total active area is the switch area and PE area

Amcactive ¼ NPE � Ape þ Asws: (43)

Similar to the spatial design, we must calculate the wire

contribution to compute the wire lengths

MCWires ¼ 2
XlogðNÞ

2

l¼logðSÞ
2

ffiffiffiffiffiffi
N

22l

r !
cnetð22lÞpnet

(44)

Lmcwire ¼
2� FP�MCWires

L
(45)

Lmcside �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amcactive

p
þ Lmcwire: (46)

We can then calculate the total energy in wires and the

instruction memories local to the switches in the tree

Emcwire ¼Eu

XlogðNÞ

l¼logðSÞ

N

2l

� �
ðc2lpÞ Lmcside

2 ðlogðNÞ�lÞ=2d e

� �
(47)

Emcimem ¼
XlogðNÞ

l¼logðSÞ

N

2l

� �
cnet

W

� �
ð2lÞpnet c

cnet
2l p�pnetð Þ

� �

� Esmem 3;
CF � c

W � cnet
ð2lÞp�pnet

� �
: (48)

We must also account for the energy in the clocking
network. CSF accounts for the fact that the clock switches

multiple times per evaluation; we use CSF ¼ 4

Eclk ¼ CSF � CF � c

cnet
� ðEtdist þ EsdistÞ

Etdist ¼ Eu
Lmcside

2

X
2lðp�ptÞ

ffiffiffiffi
N
p

2
l
2

� �

Esdist ¼ Eu

Xl¼logðNÞ

l¼logðSÞ
ð2lÞp�pt 3

2

� �
NswðlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AswmðlÞ

p

NswðlÞ ¼
N

2l

� �
cnetð2lÞpnet

AswmðlÞ ¼

ffi
A1:1 þ Aimem 3;

CF � c
W � cnet

ð2lÞp�pt

� �� �
:

s

Finally, we put this altogether to estimate the overall

energy, delay, and area for the time-multiplexed

designs

Etm ¼N � Epe þ Emcwire þ Emcimem þ Eclk (49)

Dtm ¼
CF � c
cnet

� �
Nðp�pnetÞ � Lmcside (50)

Atm ¼ðLmcsideÞ2: (51)

Acknowledgment

The authors would like to thank B. Fugate, B. Gojman,

E. Kadric, D. Lakata, N. Roessler, S. Vijayvargiya, and the

anonymous IEEE reviewers for providing feedback on early

drafts of this paper.

RE FERENCES

[1] A. M. Turing, ‘‘On computable numbers,
with an application to the entscheidungs
problem,’’ in Proc. London Math. Soc.,
1936, vol. 42, no. 2.

[2] A. M. Turing, ‘‘On computable numbers, with
an application to the entscheidungs problem:
A correction,’’ in Proc. London Math. Soc.,
1938, vol. 43, no. 6, pp. 544–546.

[3] G. E. Moore, ‘‘Cramming more components
onto integrated circuits,’’ Electron. Mag., p. 4,
1965.

[4] G. Moore, ‘‘No exponential is forever: But
‘‘forever’’ can be delayed! [semiconductor
industry],’’ in Proc. ISSCC,, Feb. 2003, vol. 1,
pp. 20–23.

[5] C. Rowen et al., ‘‘A pipelined 32b NMOS
microprocessor,’’ in Proc. ISSCC, Feb. 1984,
pp. 180–181.

[6] J. von Neumann, ‘‘First draft of a report on
EDVAC,’’ Moore School Elect. Eng., Univ.
Pennsylvania, Jun. 30, 1945, Tech. rep.

[7] H. H. Goldstine and A. Goldstine, ‘‘The
electronic numerical integrator and computer
(ENIAC),’’ Math. Tables Other Aids Comput.,
vol. 2, no. 15, pp. 97–110, Jul. 1946.

[8] W. S. Carter et al., ‘‘A user programmable
reconfigurable logic array,’’ in Proc. IEEE
CICC,, May 1986, pp. 233–235.

[9] A. DeHon, ‘‘Wordwidth, instructions, looping,
virtualizationVThe role of sharing in absolute
energy minimization,’’ in Proc. FPGA, 2014,
pp. 189–198.

[10] F. T. Leighton, Introduction to Parallel
Algorithms and Architectures: Arrays, Trees,
Hypercubes. San Mateo, CA, USA: Morgan
Kaufmann, 1992.

[11] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, Eds.,
Limits to Parallel Computation: P-Completeness

Theory. New York, NY, USA: Oxford
University Press, 1995.

[12] E. F. Rent, ‘‘Memorandum to: File, subject:
Microminiature packaging-logic block to pin
ratio,’’ IEEE Solid-State Circuits Mag., vol. 2,
no. 1, pp. 40–41, Winter 2010, reprint of
original 1960 IBM memo.

[13] B. S. Landman and R. L. Russo, ‘‘On pin
versus block relationship for partitions of logic
circuits,’’ IEEE Trans. Comput., vol. C-20,
no. 12, pp. 1469–1479, Dec. 1971.

[14] S. Bhatt and F. T. Leighton, ‘‘A framework
for solving VLSI graph layout problems,’’ J.
Comput. Syst. Sci., vol. 28, pp. 300–343, 1984.

[15] C. Thompson, ‘‘Area-time complexity for VLSI,’’
in Proc. ACM STOC, May 1979, pp. 81–88.

[16] W. E. Donath, ‘‘Placement and average
interconnection lengths of computer logic,’’
IEEE Trans. Circuits Syst., vol. 26, no. 4,
pp. 272–277, Apr. 1979.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

Vol. 103, No. 3, March 2015 | Proceedings of the IEEE 377

[17] M. J. Flynn, ‘‘Very high speed computing
systems,’’ Proc. IEEE, vol. 54, no. 12,
pp. 1901–1909, Dec. 1966.

[18] H. J. Hoover, M. M. Klawe, and
N. J. Pippenger, ‘‘Bounding fan-out in
logical networks,’’ J. ACM, vol. 31, no. 1,
pp. 13–18, Jan. 1984.

[19] R. I. Greenberg and C. E. Leiserson,
‘‘Randomized Routing on Fat-Trees, earlier
MIT/LCS/TM-307,’’ in Randomness in
Computation, vol. 5. Greenwich, CT,
USA: JAI Press, 1988, ser. Advances in
Computer Research.

[20] W. Tsu et al., ‘‘HSRA: High-speed, hierarchical
synchronous reconfigurable array,’’ in Proc.
FPGA, Feb. 1999, pp. 125–134.

[21] J. E. Savage, ‘‘Planar circuit complexity
and the performance of VLSI algorithms,’’
in VLSI Syst. Comput., 1981, pp. 61–68.

[22] F. T. Leighton, ‘‘New lower bound techniques
for VLSI,’’ in Proc. IEEE Symp. FOCS, 1981,
pp. 1–12.

[23] K. Fujiyoshi, Y. Kajitani, and H. Niitsu,
‘‘Design of minimum and uniform bipartites
for optimum connection blocks of FPGA,’’
IEEE Trans. Comput.-Aided Design, vol. 16,
no. 11, pp. 1377–1383, Nov. 1997.

[24] S. J. E. Wilton, J. Rose, and
Z. G. Vranesic, ‘‘Architecture of centralized
field-configurable memory,’’ in Proc. FPGA,
1995, pp. 97–103.

[25] E. Kadric, K. Mahajan, and A. DeHon,
‘‘Kung fu data energy–minimizing
communication energy in FPGA
computations,’’ in Proc. IEEE FCCM,
Boston, MA, USA, 2014.

[26] A. DeHon, ‘‘Unifying Mesh- and Tree-Based
Programmable Interconnect,’’ IEEE Trans.
Very Large Scale Integr. Syst., vol. 12, no. 10,
pp. 1051–1065, Oct. 2004.

[27] C. E. Leiserson, ‘‘Fat-trees: Universal
networks for hardware efficient
supercomputing,’’ IEEE Trans. Comput.,
vol. C-34, no. 10, pp. 892–901, Oct. 1985.

[28] D. C. Chen and J. M. Rabaey, ‘‘A
reconfigurable multiprocessor IC for rapid
prototyping of algorithmic-specific high-speed
DSP data paths,’’ IEEE J. Solid-State Circuits,
vol. 27, no. 12, pp. 1895–1904, Dec. 1992.

[29] E. Mirsky and A. DeHon, ‘‘MATRIX: A
reconfigurable computing architecture
with configurable instruction distribution
and deployable resources,’’ in Proc. IEEE
FFCM, Apr. 1996, pp. 157–166.

[30] C. Ebeling, D. Cronquist, and P. Franklin,
‘‘RapidVReconfigurable pipelined datapath,’’
in Proc. FPL. New York, NY, USA: Springer,
no. 1142, Sep. 1996, pp. 126–135, ser. Lecture
Notes in Computer Science.

[31] A. Marshall, T. Stansfield, I. Kostarnov,
J. Vuillemin, and B. Hutchings, ‘‘A
reconfigurable arithmetic array for
multimedia applications,’’ in Proc. FPGA,
1999, pp. 135–143.

[32] S. C. Goldstein et al., ‘‘Piperench: A
reconfigurable architecture and compiler,’’
IEEE Comput., vol. 33, no. 4, pp. 70–77,
Apr. 2000.

[33] F.-J. Veredas, M. Scheppler, W. Moffat, and
B. Mei, ‘‘Custom implementation of the
coarse-grained reconfigurable ADRES
architecture for multimedia purposes,’’ in
Proc. FPL, 2005, pp. 106–111.

[34] A. DeHon, ‘‘DPGA utilization and
application,’’ in Proc. FPGA, Feb. 1996,
pp. 115–121.

[35] S. Trimberger, D. Carberry, A. Johnson, and
J. Wong, ‘‘A time-multiplexed FPGA,’’ in Proc.
IEEE FCCM, Apr. 1997, pp. 22–28.

[36] T. R. Halfhill, ‘‘Tabula’s time machine,’’
Microprocessor Rep., Mar. 29, 2010.

[37] S. Hauck and A. DeHon, Eds., Reconfigurable
Computing: The Theory and Practice of
FPGA-Based Computation. New York, NY,
USA: Elsevier, 2008, ser. Systems-on-Silicon.

[38] A. DeHon, ‘‘Balancing interconnect and
computation in a reconfigurable computing
array (or, why you don’t really want 100%
LUT utilization),’’ in Proc. FPGA, Feb. 1999,
pp. 69–78.

[39] D. E. Knuth, ‘‘Empirical study of fortran
programs,’’ Softw. Practice Exper., vol. 1, no. 1,
pp. 105–133, 1971.

[40] G. Estrin, ‘‘Organization of computer sytems:
The fixed plus variable structure computer,’’
in Proc. Western Joint Comput. Conf., 1960,
pp. 33–40.

[41] R. Razdan and M. D. Smith, ‘‘A
high-performance microarchitecture
with hardware-programmable functional
units,’’ in MICRO, Nov. 1994, pp. 172–180,
IEEE Comput. Soc.

[42] T. Callahan, J. Hauser, and J. Wawrzynek,
‘‘The garp architecture and C compiler,’’ IEEE
Comput., vol. 33, no. 4, pp. 62–69, Apr. 2000.

[43] R. H. Dennard et al., ‘‘Design of ion-implanted
MOSFET’s with very small physical
dimensions,’’ IEEE J. Solid-State Circuits,
vol. 9, no. 5, pp. 256–268, Oct. 1974.

[44] M. Bohr, ‘‘A 30 year retrospective on
dennard’s MOSFET scaling paper,’’ in Proc.
IEEE Solid-State Circuits Soc. Newslett.,
Winter 2007, vol. 12, no. 1, pp. 11–13.

[45] H. Esmaeilzadeh, E. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger, ‘‘Dark
silicon and the end of multicore scaling,’’
in Proc. ISCA, 2011, pp. 365–376.

[46] M. Horowitz et al., ‘‘Scaling, power, the future
of CMOS,’’ in Proc. IEDM, Dec. 2005, pp. 7–15.

[47] G. Venkatesh et al., ‘‘Conservation cores:
Reducing the energy of mature computa-
tions,’’ in Proc. ASPLOS, 2010, pp. 205–218.

[48] S. H. Fuller and L. I. Millett, Eds., The Future
of Computing Performance: Game Over or Next
Level?, The National Academies Press,
Washington, DC, USA, 2011.

[49] I. Kuon and J. Rose, ‘‘Measuring the
gap between FPGAs and ASICs,’’ IEEE
Trans. Comput.-Aided Design, vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[50] A. DeHon, ‘‘Trends toward spatial
computing architectures,’’ in Proc. IEEE
ISSCC, Feb. 1999, pp. 362–363.

[51] J. Villasenor, B. Schoner, K.-N. Chia, and
C. Zapata, ‘‘Configurable computer solutions
for automatic target recognition,’’ in Proc.
IEEE FCCM, Apr. 1996, pp. 70–79.

[52] P. Zhong, M. Martonosi, P. Ashar, and
S. Malik, ‘‘Accelerating boolean satisfiability
with configurable hardware,’’ in Proc. IEEE
FCCM, Apr. 1998, pp. 186–195.

[53] K. Bernstein et al., ‘‘High-performance
CMOS variability in the 65-nm regime and
beyond,’’ IBM J. Res. Develop., vol. 50, no. 4/5,
pp. 433–449, Jul./Sep. 2006.

[54] J. Lach, W. H. Mangione-Smith, and
M. Potkonjak, ‘‘Low overhead fault-tolerant
FPGA systems,’’ IEEE Trans. Very Large
Scale Integr. Syst., vol. 6, no. 2, pp. 212–221,
Jun. 1998.

[55] R. Amerson, R. Carter, W. B. Culbertson,
P. Kuekes, and G. Snider,
‘‘Teramac-configurable custom computing,’’
in Proc. IEEE FCCM, Apr. 1995, pp. 32–38.

[56] S. Srinivasan et al., ‘‘Toward increasing FPGA
lifetime,’’ IEEE Trans. Dep. Secure Comput.,
vol. 5, no. 2, pp. 115–127, Apr. 2008.

[57] R. Rubin and A. DeHon,
‘‘Choose-your-own-adventure routing:
Lightweight load-time defect avoidance,’’
ACM Trans. Reconfig. Tech. Syst., vol. 4, no. 4,
Dec. 2011.

[58] A. DeHon and N. Mehta, ‘‘Exploiting partially
defective LUTs: Why you don’t need perfect
fabrication,’’ in Proc. ICFPT, Kyoto, Japan,
Dec. 2013.

[59] N. Mehta, R. Rubin, and A. DeHon,
‘‘Limit study of energy & delay benefits
of component-specific routing,’’ in Proc.
FPGA, 2012, pp. 97–106.

ABOUT THE AUT HOR

André DeHon (Member, IEEE), received the S.B.,

S.M., and Ph.D. degrees in Electrical Engineering

and Computer Science from the Massachusetts

Institute of Technology in 1990, 1993, and 1996,

respectively.

From 1996 to 1999, he co-ran the BRASS group

in the Computer Science Department at the

University of California at Berkeley. From 1999

to 2006, he was an Assistant Professor of Com-

puter Science at the California Institute of Tech-

nology. Since 2006, he has been in the Electrical and Systems

Engineering Department at the University of Pennsylvania where he is

now a Full Professor. He is broadly interested in how we physically

implement computations from substrates, including VLSI and molecular

electronics, up through architecture, CAD, and programming models. He

places special emphasis on spatial programmable architectures (e.g.

FPGAs) and interconnect design and optimization.

DeHon : Fundamental Underpinnings of Reconfigurable Computing Architectures

378 Proceedings of the IEEE | Vol. 103, No. 3, March 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

