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A B S T R A C T  
Estimation of the area complexity of a Boolean func- 
tion from its functional description is an important step 
towards a power estimation capability a t  the register 
transfer level (RTL). This paper addresses the prob- 
lem of computing the area complexity of single-output 
Boolean functions given only their functional descrip- 
tion, where area complexity is measured in terms of the 
number of gates required for an optimal implementation 
of the function. We propose an area model to estimate 
the area based on a new complexity measure called the 
average cube complexity.  This model has been imple- 
mented, and empirical results demonstrating its feasi- 
bility and utility are presented. 

1. Introduction 

Rapid increase in the design complexity and the need to 
reduce design time have resulted in a need for CAD tools 
that can help make important design decisions early in 
the design process. To do so, these tools must oper- 
ate with a design description at  a high level of abstrac- 
tion. One design criterion that has received increased 
attention lately is power dissipation. This is due to the 
increasing demand for low power mobile and portable 
electronics. As a result, there is a need for high level 
power  e s t i m a t i o n  and optimization. Some of the first 
papers to report work on high level power estimation 
techniques include [l, 2, 31. However, these papers only 
discuss the estimation of average switching activity in 
a circuit. In order to provide a high-level estimate of 
power, one should multiply the average activity value 
by a measure of the circuit total  capacitance. 

How can one predict total capacitance given only a 
high level functional view of a circuit? Among other 
things, circuit capacitance depends on the circuit func- 
tion, the gate library and the delay constraint. 

*This work was supported in part by Intel Corp. and 
by the Semiconductor Research Corp. 

Obviously, a given Boolean function can be imple- 
mented in different ways, leading to different values of 
total Capacitance. Thus, it seems at  first glance that 
capacitance estimation from a high level view is im- 
possible. Nevertheless, we have made some significant 
progress towards solving this problem, based on the 
following approach. We assume that the total capaci- 
tance is proportional to the product of two terms: I) 
a technology-independent measure of circuit area, e.g., 
an estimate of the gate-count, and 2) a technology- 
dependent measure of average capacitance per gate. The 
second term (depends on the gate library and on the de- 
lay specification, while the first term does not. In this 
paper, we report on work related to the estimation of 
the first term, hence the title “area complexity.” 

In an early work [4], Shannon studied area complex- 
ity, measured in terms of the number of relay elements 
used in buildiing a Boolean function (switch-count). In 
this paper Shannon proved that the asympto t ic  complex- 
ity of Boolean functions is exponential  in the number 
of inputs (n), and that for large n, almost  every Bool- 
ean function is exponentially complex. In [5], Muller 
demonstrated the same result for Boolean functions im- 
plemented u,sing logic gates (gate-count measure). A 
key result of his work is that a measure of complexity 
based on gate-count is independent of the nature of the 
library used for implementing the function. 

Several researchers have also reported results on the 
relationship between area complexity and entropy (E) 
of a Boolean function. These include [6], [7] [8] and 
[9]. The model of [9], where area complexity was mea- 
sured as literal count, was derived empirically for small 
n from randomly  generated Boolean functions. As one 
tries to apply that model to realistic VLSI circuits, it 
quickly breaks down due to the exponential dependence 
on n, leading to  unrealistically large predictions of cir- 
cuit area. Fcir example, for a circuit with 32 inputs, this 
model predicts an area of M 400 million gates, whereas 
the circuit can in reality be implemented with only 84 
gates! 

In this paper, we use “gate-count” as a measure 
of complexity, mainly due to the key fact observed by 
Muller [5], and also because of the popularity of cell- 
based or library-based design. As mentioned above, it 
is clear thai a given Boolean function can be imple- 
mented in many different ways, with different resulting 
areas and gate-counts. For instance, a circuit may con- 
tain redundant logic, which artificially increases its area 
and is not reflected in the circuit function. Since redun- 
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dant logic is undesirable anyway, we aim to estimate the 
gate-count of an optimized implementation of a Boolean 
function. Specifically, in our experiments, we have com- 
pared our estimated gate-counts to the gate-counts for 
optimal circuit implementations that were obtained us- 
ing the SIS synthesis system. 

Our estimation technique is based on the novel con- 
cept of average cube compbezity of a Boolean function, 
t o  be introduced in the paper. Based on this, we will 
provide an area prediction model which gives reason- 
able results for realistic circuits, which is a significant 
improvement over traditional techniques [9]. This will 
be demonstrated with experimental results on a large 
set of benchmarks, for which we compare our predicted 
gate-counts to those obtained from SIS. Our technique 
is, for now, limited to single-output Boolean functions 
and we are in the process of generalizing it to multiple- 
output functions. 

Before leaving this section, it may be worthwhile, for 
completeness, to  mention some previous work on layout 
area estimation. In [lo], [11] and [12] layout area was 
estimated from gate or transistor level description of the 
circuit where a standard cell layout is assumed. In [13], 
a layout area model for datapath and control for two 
commonly used layout architectures was proposed. In 
[14], the above model was modified to  account for effects 
of floorplanning. As the models of [13] and E141 require 
the SOP expression for generating a netlist, they are 
impractical for large circuits. 

The paper is organized as follows: In section 2 we 
give a background discussion of the complexity of ran- 
domly generated Boolean functions. In section 3 we 
define the new complexity measure average cube com- 
plezity, used to  estimate the area complexity. In section 
4 we present an algorithm for computing the average 
cube Complexity. We propose an area prediction model 
in section 5 and present empirical results in section 6 to 
demonstrate its utility and feasibility. We end the paper 
with some conclusions presented in section 7. 

2. Randomly Generated Boolean 
Functions 

We will introduce the notion of randomly generated 
Boolean functions, and discuss models that were pre- 
viously proposed for estimating their area complexity. 
Throughout this paper, we will use terminology that is 
consistent with the definitions in [15]. 

It was pointed out by Shannon [4] that for large n, 
Boolean functions of n inputs have exponential complex- 
ity in n, based on a switch-count measure of complex- 
ity. A similar result was also shown by Pippenger [7]. 
While both these results are theoretical and for large 
n, an empirical study by Cheng et. al. [9] shows sim- 
ilar behavior for small n. Specifically, they observe an 
exponential complexity dependence on n for randomly 
generated Boolean functions with n inputs, for n = 8, 
9, and 10, using a literal-count measure (the same was 
observed by the authors when gate-count was used as 
a measure of complexity). By randomly generated, we 
mean that these functions were selected by making a 
random choice for each point in the Boolean space, as 
t o  whether i t  belongs in the on-set or off-set of the func- 
tion. 

In [4], it was also pointed out that for sufficiently 
large n, all except a fraction 6 of functions of n vari- 

ables require a t  least (1 - E ) :  switch elements. This 
suggests that the average area complexity of an n-input 
Boolean function (with the average taken over the set 
of all Boolean functions on n variables) varies exponen- 
tially with n. Perhaps based on the assumption that 
typical logic functions used in practice may be “aver- 
age” (or close to  average), the method in [9] applies this 
to  every Boolean function, leading to the following area 
model 

where n is the number of inputs, 7-1 is the entropy of 
the output of the Boolean function (with independent 
inputs, each with probability 0.5), and A is the area 
complexity measured as gate-count. The proportional- 
ity constant depends on the library being used. 

Risking abuse of terminology, we will refer to  a Bool- 
ean function for which the above model holds as an av- 
erage function. Unfortunately, we have found that logic 
functions that are typically used in VLSI are far from 
being average, in the above sense, so that the above 
model breaks down very quickly for reasonable values 
of n. This is dramatically illustrated by the 32-input 
84gate circuit mentioned in the introduction, for which 
this model predicts an area close to 400 million gates. 
This behavior is typical of what we have seen. 

Why is it that typical circuits are far from being 
average in terms of area complexity? We have inves- 
tigated this by examining the structure of the on-sets 
for randomly generated functions, and found that their 
on-sets consist of points that are randomly scattered in 
the Boolean space, with no preferred direction. How- 
ever, we have found that typical VLSI circuits have well 
structured distributions of their on-sets in the Boolean 
space, so that a function has certain preferred directions 
in which many of its cubes lie. This seems to translate 
to tremendous reduction in the area complexity relative 
to  the (unstructured) randomly generated functions. 

Thus typical VLSI circuits belong to  the small mi- 
nority of circuits whose area does not satisfy the model 
of Cheng et. al. [9]. Finding a n  area model for such 
functions has remained an open problem. This paper, 
to the best of the authors’ knowledge, is the first to 
utilize the structure of the Boolean space, in addition 
to  the entropy, to  predict the area complexity. We have 
found that the area complexity of realistic VLSI circuits, 
rather than being exponential in n [SI, is better mod- 
eled as being (approximately) exponential in C, where 
C is the average cube complexity of the function, to  be 
described below. 

A lx 2n3t (1) 

3. Average Cube Complexity 

We start with a precise statement of the problem to 
be addressed. Consider an n-input single-output Bool- 
ean function f ( X ) .  Given a library, we would like to  
estimate the minimum number of gates (A)  required 
to implement the function, given only its high level de- 
scription (Boolean equations). It must be noted that we 
would like to  compute A without performing any logic 
synthesis on the function f ( X ) .  The rationale for this is 
that logic synthesis can be computationally expensive, 
and is therefore best avoided in a high-level analysis in 
order to  maintain computational efficiency. 

It seems reasonable to say that the area complexity 
of a Boolean function is related to  the complexity of its 
on-set and off-set. There are many ways of quantifying 
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the on-set/off-set complexity, the simplest being to con- 
sider the sizes of the on-set and off-set relative to the 
size of the Boolean space of the function (this is sim- 
ply the probability of the function when its inputs are 
independent and set to a probability of 0.5, and a modi- 
fication of this is the entropy of the function). However, 
we have found that this simple measure is too general, 
in the sense that many quite different functions can have 
the same on-set probability or entropy. Hence, a com- 
plexity measure based on more detailed analysis of the 
on-set/off-set of the function is required. 

In order to  measure the area complexity of a Boolean 
function, we propose to use (in addition to the entropy) 
the average literal-count of t h e  p r i m e  impl icants  of the 
function, which we will call the average cube complexity. 
Thus the complexity of the cube c = ~152x4 is 3, and 
we write llcll = 3. Intuitively, if a Boolean function has 
a small average cube complexity,  it means that it can 
be represented using cubes of small literal-count, which 
naturally require less area to implement. On the other 
hand, a large average cube Complexity would imply the 
presence of cubes with large literal-counts, which would 
require a large number of logic gates to implement. In 
this paper we use the average cube complezity in con- 
junction with the entropy of the Boolean function to 
compute the area complexity of the function. In the fol- 
lowing, we make the term average cube complexity more 
precise. 

In principle, whatever measure of cube complexity 
is used, one should keep in mind that many other fac- 
tors can influence the gate count, so that the result of 
using the cube complexity to predict area will involve 
some estimation error. For this reason, it does not make 
sense to use very expensive procedures for estimating the 
cube complexity. For instance, it would be prohibitively 
expensive to try and enumerate all the essential prime 
implicants of the function in order to compute their av- 
erage complexity. Instead, we have chosen to estimate a 
certain weighted average of the complexity of the prime 
implicants, not of the essential primes. The weighted 
average can be efficiently computed by an iterative pro- 
cess of logic simulation and is guaranteed to lie between 
two quantities A ( f )  and B ( f ) ,  either of which can itself 
serve as a measure of the average cube complexity and 
both of which are too expensive to compute directly, 
defined as follows. 

Consider an n-input single-output Boolean function 
f .  Let VON be the set of minterms (vertices of the Bool- 
ean space) corresponding to the on-set of the function, 
and let E VON denote a minterm. Also, let ai be the 
largest (i.e,, contains the most minterms) p r i m e  impli-  
cant of f that contains the minterm mi. Then, define 
A(f) to be the following average of the I la ; l ls  over all 
the minterms in VON 

Similarly, define bi to be the smal les t  (i.e., contains 
the least minterms) p r i m e  impl icant  of f that contains 
the minterm m;. And define B ( f )  to be the following 
average of the IIb;lls over all the minterms in VON 

It is clear from the definitions that A ( f )  5 B( f ) .  

(3) 

Each of t8hese measures, A and B,  may itself con- 
tain enough information about the population of prime 
implicants in. the on-set of f to be useful for studying 
its complexity. However, even though they are defined 
in terms of prime implicants, and not essential prime 
implicants, AL and B are still too expensive to compute. 
Instead, we will define a measure C1 which is very easy 
to compute and which lies between A and B. 

For a minterm mi, let til, ci2,. . . , C;N, be all the 
prime implicants that contain m;. In the next section, 
we will describe a (logic simulation based) algorithm by 
which the different prime implicants cij can be obtained 
from m;. Irrespective of how this is done, let pij denote 
the probability that, using our algorithm, cij is obtained 
from mi. Ba,sed on this, we define the following 

Since CyiI I? i j  = 1, 0 5 pij 5 1, and ll~ill 5 llcijll 5 
[ Ibi 1 [, it follows that 

A(f) I Cl(f )  I B(f) (5) 

We refer to C1( f )  as the average cube complezity of t h e  
on-set  of the Boolean function f.  

Likewise, the average cube complexity of the  off-set, 
denoted by CO( f ) ,  can be defined in a similar fashion. 
If only C1 (01; only CO) is used as a complexity measure, 
one runs into cases where the complexity of a function 
and its complement are predicted to be quite different, 
which is clearly unrealistic. Instead, we have found that 
the following composite measure works best 

W )  = P(f)Cl(f) + P(f)CO(f)  (6) 

where P ( f )  denotes the probability of the function f, 
which can be efficiently computed using Monte-Carlo 
techniques [16]. We refer to C(f) as the average cube 
complexity of the function f. 

In this paper we will use C(f), along with the func- 
tion entropy, to estimate the area complexity of a Bool- 
ean function. In order to compute C one needs to com- 
pute CI and CO. It can be shown that C1 and CO can 
be expressed as a mean, or weighted average, of the lit- 
eral counts of all the prime-implicants of the on-set of 
the function. Hence, statistical techniques of m e a n  es- 
t imat ion ,  i.e., Monte Carlo techniques, can be used for 
estimating the above quantities. In the next section we 
present the algorithm used for estimating C1. The com- 
putation of CO is similar. 

4. Algorithm for Computation of C, 
The following are the steps involved in computing C1 
for a given Boolean function f ( X ) .  The algorithm takes 
as input an arbitrary technology independent Boolean 
network representation of the function. Firstly, a point 
in the Boolean space and in the on-set of the Boolean 
function f(X), is chosen at random. The logic vector 

inputs and a. logic simulation is performed to determine 
the corresponding logic values at all gate outputs. Then, 
the process of generating a prime implicant from that 
minterm consists of two steps, which we call backward 

corresponding to this minterm is applied to the circuit 
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scanning and f o rward  s imu la t ion ,  described below. The 
complexity of the generated prime implicant is used to 
modify the estimate of C1, and the process is repeated 
until convergence of C1 is obtained to a user specified 
accuracy and confidence. A stopping criterion used to 
stop the simulation can be derived using an approach 
similar to  that in [17]. A detailed explanation of the 
prime-implicant generation algorithm is given below. 

In the backward scanning step, all circuit nodes (in- 
cluding the inputs) are marked don’t-care without actu- 
ally altering their stored logic values, and the circuit is 
traversed from the output to the inputs, breadth first. 
During the traversal, all inputs to a gate whose logic 
values are controlling and which are marked don’t-care 
are unmarked .  For example, if the output of a two input 
OR gate is ’1’ with one input at logic ’0’ and the other 
at ’17, the input at logic ’1’ is unmarked as a don’t-care. 
If both the inputs are at logic ’17, one of the inputs is 
randomly picked and unmarked. At the end of this step, 
the logic values of any primary inputs that are marked 
don’t-care are changed t o  ’X’ (to denote a logic don’t- 
cure). The resulting primary inputs assignment forms a 
cube (not necessarily a prime implicant) which contains 
the original minterm. 

In order to generate a prime implicant from the above 
cube, we must make sure that all the inputs not marked 
as don’t-care a t  the end of the backward scanning step 
are indeed required t o  evaluate the function correctly. 
This is done in the forward simulation step. Here, the 
input nodes not marked as don’t-care, are selected at  
random and set t o  a don’t-care and a logic simulation 
is performed to  determine if the function evaluates to 
’1’. If so, then the logic value at  that input is set to a 
don’t-cure, otherwise it is reset to its original value. This 
procedure is continued until all unmarked inputs have 
been tested, so that the cube at the end of this step is 
a prime implicant. 

quency (i.e., probability) with which any specific prime 
implicant ci is allowed to be sampled by the algorithm. 
This ceiling value is the same for all prime implicants. 
This procedure ensures that the probability distribution 
is somewhat flattened on the side of cubes with smaller 
cube complexities and somewhat raised on the side of 
cubes with larger cube complexities. This raises the es- 
timates of C,(f) and Co(f) and corrects the bias in the 
original algorithm. The above modification only alters 
the distribution with which certain cubes are obtained 
by our algorithm, but does not alter the definition and 
properties of the measures C1 and CO given previously. 
Likewise, the convergence criterion does not change. We 
have found that a ceiling of 0.15 seems to  produce the 
best results. With this modification, we have used the 
C(f) complexity measure to predict the area complexity, 
as follows. 

We first discuss how the data corresponding to  the 
average functions shown in Fig. 1 was generated. For 
a given value of n, we computed C(f) and obtained an 
estimate of the gate-count, A(f),  from an optimized im- 
plementation for a number of randomly generated Bool- 
ean functions whose output entropy is X(f)  = 1, based 
on all inputs being independent and with 0.5 probabil- 
ity. These points, for each n, were very closely clustered. 
This means that the distribution of A(f) of randomly 
generated Boolean functions (given n and ‘H) is t ight .  It 
also implies that the distribution of C(f) is tight. The 
curve referring to  average functions in Fig. 1 corresponds 
to the average values of each cluster and is close, but not 
exactly equal, to an exponential. 

x - - x Average Functions at H = 1 
0 - 0 VLSI Functions at H = 1 

400 ,,/ 

P 

5 .  The Area Model 

In this section we present the area model to compute the 
area complexity A(f) of Boolean functions. The area 
model is based on the concept of average cube complexi ty  
C(f) introduced earlier. 

Empirical data based on straightforward application 
of the algorithm outlined above for computation of Cl(f) 
and C,(f) showed us that our complexity measure works 
well, but it somewhat under-estimates the area complex- 
ity in many cases. We have been able to fix this bias by 
devising a slight modification of the algorithm, which 
is described below, and which may be thought of as a 
t u n i n g  of the model. 

The values of Cl(f)  and Co(f) depend on the prob- 
ability of occurrence of various cubes (which are de- 
termined by the algorithm). Since cubes with smaller 
cube complexities have a higher probability of occur- 
rence than those with larger cube complexities, the stra- 
ightforward application of the above algorithm can lead 
to  situations where the estimates of Cl(f) and Co(f) 
are severely biased towards cubes with small complex- 
ities. We have come up with a strategy of overcoming 
this bias in the estimate, in a way that does not hurt 
other good data points (benchmarks on which the model 
works well) of the model and maintains computational 
efficiency. 

We have done this by placing a ceiling on the fre- 

CY) 

Figure 1: Typical VLSI functions fall close to the curve 

This almost-exponential A versus C curve is very im- 
portant and is in fact the essence of our area prediction 
model. This is because we have found that not only do 
randomly generated Boolean functions fall on this curve, 
but also typical VLSI functions fall on it or close to  it, 
as shown in Fig. 1. The data points shown in Fig. 1 cor- 
respond to  the subset of the test cases to  be presented 
in section 6 for which the output entropy is equal to  
1. It is noteworthy that the points are not clustered at 
specific points, but spread all over the curve. This illus- 
trates the point made earlier about typical VLSI func- 
tions not being average. Further results will be given 
in the empirical results section, where we will use this 
curve to  predict A(f), having first computed C(f). In 
fact, we use a family of such curves, corresponding to 
different entropy values, as shown in Fig. 2. Additional 
curves can be easily generated for other entropy values. 
These curves need to be generated only once, which is 
an up-front once-only cost, and they can then be used 
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to predict the area of various functions. 

I 

i 2 400 

W H = 0 . 0 2  
$- - -# H = 0.2 
A- - A H  = 0.543 
M H = 0 . 8 1 1  
0--0 H = 0.924 
D - -3 H = 1.00 

2 4 6 8 

CUI 

Figure 2: A(.) versus e(-)  for different values of entropy. 

An important consideration is what the largest n 
should be for which these curves need to be generated. 
Obviously, the curves are going to be more difficult to 
generate for larger n because of the cost of running syn- 
thesis to obtain the A ( f )  values. Luckily, there are two 
reasons why this is not a problem so that considering 
n 5 8 as in Fig. 2 is sufficient. Firstly, we have found 
that for typical VLSI functions, the value of C(f) turns 
out to be much smaller than n in most cases. Indeed, all 
the test cases that we will present (for which n ranges 
from 8 to  67) had C(f) 5 8, so that the curves in Fig. 2 
were sufficient. This fact is key because it illustrates why 
the traditional (exponential in n) model breaks down 
while our (almost-exponential in C) model gives reason- 
able results for typical VLSI functions. 

The second reason why generating the curves only 
for small n is sufficient is that for larger values of n 
the curves become closer to the exponential and can be 
modeled analytically. For larger values of n, one can 
simply compute the area complexity as 

A ( f )  = 2 C ( f ) k ( X )  (7) 
where k ( X )  is a proportionality constant that depends 
on the entropy X. 

6. Empirical Results 
Before presenting the actual data, a word on how the 
benchmarks were generated is in order. Since most of 
the ISCAS-85, ISCAS-89 and MCNC benchmarks are 
multiple-output Boolean functions, these circuits were 
used to generate single-output Boolean functions by delet- 
ing all but one output. The resulting single output func- 
tion was optimized using SIS, for minimum area. The 
script used for optimization was rugged.script of the SIS 
optimizer. Mapping was done using a library consisting 
of a nand2, nor2 and an inverter. The gate count of the 
SIS-optimized circuit was used as the reference value for 
area. A number of single output circuits were generated 
using this method. 

The area complexity values (gate-count predictions) 
of these benchmarks, using our model, were computed 
as follows. Firstly, the probability and the entropy of 
the Boolean function were estimated to a prescribed er- 
ror tolerance and confidence statistically using a Monte- 
Carlo approach [lS . The probability was estimated to 
an  accuracy of 95 d o with a confidence of 95%. The en- 
tropy of the output was computed using the estimated 

probability. Parameters C1 and CO were estimated to an 
accuracy of '90% with a confidence of 90%. Equation 
(6) was used to estimate C(f) and the parameters C(f) 
and R ( f )  were then used to compute the area using the 
approach discussed in the previous section. 

9 400 t 

I 
100 2w 300 400 503 

Aclual Area 

Figure 3: Actual versus Predicted Area. 

The comparison between the predicted and SIS op- 
timized gate count values is given in Fig. 3. While the 
agreement is not perfect, it is nevertheless reasonable, 
especially considering that the predicted gate counts 
were obtained only from a knowledge of the function, 
and no struc:tural information or synthesis procedures 
were required to make those predictions. This repre- 
sents a unique contribution and indicates that high-level 
analysis for power prediction can be realized. It must 
be mentioned that our current approach does not work 
well on circuits which can be realized as xor trees. We 
are currently working on this problem. 

Finally, some words on run time are in order. The 
run times corresponding to 90% confidence with 10% 
error tolerance, on a SUN sparc-5 workstation, for a 
majority of the benchmarks was under 3 minutes. The 
worst case run time was for the circuit (23540-010. For 
this circuit the run time was about 7 minutes. The 
number of iterations for C(f) algorithm were typically 
around 50 or 60 for most circuits, and only rarely did 
the iteration count go over 100. 

7. Conclusions 
Motivated by the need for high-level power estimation 
techniques, we have proposed a new model for predict- 
ing the area of a single-output Boolean function, given 
only its functional specification and no  structural infor- 
mation. This was achieved by reformulating the area 
complexity problem in terms of the average cube com- 
plexity, which was introduced in this paper and for which 
an efficient algorithm was presented. The relationship 
between areit complexity and the average cube complex- 
ity was found empirically to  be almost-exponential, in- 
cluding a dependence on the function output entropy. 
Unlike other existing area models which fail on realistic 
VLSI circuits, this model is reasonably accurate, com- 
pared to SIS-optimized circuit implementations. 

The significance of this work is that it relates a struc- 
tural attribute (area) to a functional attribute (average 
cube complexity), which is a definite requirement for 
high-level power estimation. Future work includes ex- 
tension of the area model in order to  handle multiple- 
output functions. 
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51488-01 14 
s1494-01 14  
cml50a 21 
~ 1 4 8 8 3 1 9  14 
~ 8 8 0 2 1 8  29 

Table 1: Analysis of the area Model 
1 Circuit 1 Input I Opt. area 1 Model I 

61 37 
62 36 
63 89 
67  47 
69 110 

~ 1 4 9 4 0 1 7  
~ 2 6 7 0 ~ 1  
~ 1 1 9 6 ~ 5  1 7  54 48 

i 
~ 5 3 1 5 ~ 7  25 69 106 
~ 1 4 8 8 2 2 4  10 73 37 
C880D21 32 84 110 

f rg ld0  I 25 I 58 I 68 
5123865 1 1 7  I 58 I 50 

~ 

~ 1 4 8 8 ~ 1 2  
~ 1 2 3 8 ~ 1 9  
~ 5 3 1 5 6 2 5  

14 86 54 
19 89 73 
28 90 63 

s1238-023 2 1  195 
c1908al  32 236 
c l 9 0 8 0 8  32 236 
c1908a6 32 242 
~ 5 3 1 5 ~ 3 7  67 242 

170 
267 
235 
171 
95 

dalu-05 
dalu-0 IO 
~ 8 8 0 ~ 2 4  45 186 119 
~ 5 3 1 5 ~ 3 4  55 190 125 
~ 1 1 9 6 ~ 2 0  I 21 1 193 I 311 
alu21, I 10 I 194 I 127 

ah44 1 10 1 289 1 230 
a1u4r I 14 I 489 1 554 

334 


