
PMHLS 2.0: An Automated Optimization of Power
Management During High-Level Synthesis

Dominik Macko
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava, Slovakia

dominik.macko@stuba.sk

Abstract—Design automation is very important in modern
systems-on-chip development, complexity of which is ever
growing. The most crucial issue in highly integrated systems is
the increased power density and the corresponding temperature
problems influencing reliability. Therefore, the power must be
managed in such systems. Power management enables to
implement various power-reduction techniques, such as power
gating, multiple voltages, or voltage and frequency scaling.
However, the automation of power-management design starts at
the register-transfer level. Only the recent research begins to
adopt power management at the system level of abstraction,
which is increasingly used in the industry as a design starting
point. In this paper, we propose an enhanced automation of the
design process by using the optimized power-management high-
level synthesis. This method transforms the system-level power-
management specification to the traditionally used form at the
register-transfer level. We have implemented this method to a
tool called PMHLS, which automates the whole process. It uses
optimization decisions to resolve some kinds of inconsistencies
and thus makes the power management more efficient. This
automation helps to reduce the number of human errors,
potentially introduced by a designer during manual design. It
also significantly speeds up the system development process. The
benefits of the proposed method and the implemented design-
automation tool are supported by the experimental results.

Keywords—design automation; high-level synthesis; low power;
power management; specification

I. INTRODUCTION
Due to the limited capacity of batteries in mobile devices,

enhanced packaging or cooling problems, or just because of
the reduction of energy consumption, the power is managed in
almost every new chip design [1]. A system-on-chip (SoC)
implemented in deep submicron CMOS (Complementary
Metal-Oxide Semiconductor) technology suffers from the
power-density problem, which influences its reliability. To
reduce the SoC power consumption, one must understand the
factors influencing the power. The static power (leakage)
depends on the supply voltage, the threshold voltage for
transistor switching, and the transistor size. The dynamic
power depends on the switching activity, the clock frequency,
the transistor and load capacitances, the supply voltage, and
the short-circuit current [2].

The reduction of dynamic power can be achieved by
reducing the clock frequency and switching activity. However,
it influences the performance of the system. There are
applications, in which not all parts of the system always need
to operate at the full-performance capability. The spared
power can be then saved to reduce the energy consumption, or
redirected to other parts of the system to enhance their
performance. This is called a dynamic power management. It
also enables to reduce static power by temporal modification
of voltage threshold or supply voltage, or by powering the
unused SoC components down.

In highly integrated complex SoCs, the power
management is quite difficult to design, and custom design
approaches are not sufficiently efficient. Therefore, a
systematic low-power design flow has been standardized in
the industry under the no. IEEE Std 1801-2013 [3] (commonly
known as UPF – Unified Power Format). UPF enables to
specify power management at the RTL (Register-Transfer
Level) as an extension to the functional HDL (Hardware
Description Language) model. The low-level power
management elements (such as power switches, level shifters,
and isolation or retention cells), supply ports and supply nets
can be specified and verified at the RTL design stage, and
using the EDA (Electronic Design Automation) tools, they can
be automatically implemented at lower abstraction levels.
Modelling of the power management enables more accurate
power analysis of the designed system at the RTL. Regarding
the specification, UPF enables to divide the system
architecture into so-called power domains. A power domain
groups together components of the system, which always
operate at the same supply-voltage level (i.e. power state). In
the UPF, the power state is defined by a unique combination
of control signals of aforementioned power-management
elements belonging to one power domain. The designer
specifies the possible voltages of each supply port or net and
uses them to create a power-state table. It reflects allowed
combinations of voltages in these ports and nets, what
significantly helps the power-management verification.

To deal with the complexity of modern SoC designs, the
International technology roadmap for semiconductors
suggested the adoption of an abstract electronic system level
(ESL) in the design process [4]. Therefore, the abstraction
offered by the UPF is not sufficient and there are attempts to

This work was partially supported by the Slovak Scientific Grant Agency
(VEGA 1/0616/14 and 1/0836/16) and the Slovak Research and Development
Agency (APVV-15-0789).

978-1-5090-0733-2/16/$31.00 ©2016 IEEE 205

extend this standard to the system level. However, there is
usually missing a connection between the ESL and the RTL
power-management specification, and thus the verification is
somewhat difficult. We introduce this connection in a form of
the power-management high-level synthesis process that we
have previously developed [5]. In this paper, we show how the
power management can be further optimized during this
process to make it more efficient (regarding the area and
power overhead). The result is that the designer does not need
to keep all power-management aspects in mind during the
abstract power-management specification and can focus on the
system function.

This paper is organized as follows. In the next section, the
related research works are described that target the system-
level power management and high-level synthesis. Section III
briefly describes the most commonly used power-reduction
techniques for SoC designs. In Section IV, we introduce the
principles of the previously developed abstract power-
management specification [6]. Section V is devoted to the
power-management high-level synthesis and the proposed
optimization. And finally, before the conclusion, the benefits
of our proposal are proved by the experimental results.

II. RELATED WORK
There are various methods targeting different aspects and

problems of system-level power management. The first group
targets standard-based power-management modelling. The
second group targets in-house modelling of power
management aspects. The third group includes methods that
enable modelling of SoC components’ power consumption;
however, they cannot model power management (switching
between operating states with various power consumptions).
The last analyzed method targets specification of one power-
management technique and its automated implementation in
the synthesized SoC model.

A. Standard-Based Methods
The ESL power-intent model used in [7] is based on the

UPF standard concepts, and therefore the UPF specification
can be automatically generated. It enables to use existing EDA
tools for verification and power analysis. However, the used
power-data model is strictly dependent on design reuse, and
thus it is not suitable for top-down design approach.
Moreover, this method uses similar amount of details for
power-management specification at the ESL as the UPF
specification; therefore, the specification is just translated into
another format. The method [8] includes abstract specification
of voltage relationships, TLM power states, operating
conditions, and so on. It extends the power-domain UPF
concept in such a way that each power domain is mapped to
one clock domain. The disadvantages are missing automation
towards lower abstraction levels and separated specification of
SoC function and power intent. The PwARCH framework [9]
augments an ESL model with abstract UPF concepts (e.g.
power domains, power switches, power nets, or power-state
table). The method requires power annotation to the model;
thus, it is dependent on design reuse. It also uses separated
specification of functional and power-management aspects,
what is fairly unsuitable for the system level of abstraction.

B. Nonstandard Methods
The methods [10-12] also offer ESL power modelling,

including the power management support. The developed
power-intent specification approaches are not based on the
standard concepts – i.e. they use in-house specifications,
limiting the compatibility with the professional EDA tools.
Nevertheless, these methods can be used for power-
architecture exploration at the early design stages, and thus
can help to make suitable power-management policy
decisions. The analyzed methods do not take into account
other important design parameters, such as area or
performance. The used nonstandard concepts also complicate
the verification of the equivalency between ESL and RTL
power management.

C. Power-Estimation Methods
The existing ESL power-estimation methods [13-15] help

to select the most power-efficient SoC architecture. The power
consumptions of the components are required to be specified
manually in the ESL model. Therefore, these approaches are
also based on design reuse. In some cases, the default values
can be used, but it would result in a less accurate power
analysis. These methods do not support power-management
specification. If the power management is introduced into the
design only later, at the RTL, the ESL power estimation would
not correspond to the actual power consumption. Therefore,
these methods are unusable in power-managed SoC designs.

D. High-Level Synthesis Based Methods
A method has been developed [16], which focuses on the

high-level synthesis to quickly obtain an RTL model for
design exploration and more accurate power analysis. Clock
gating specified in the ESL model is passed to the high-level
synthesizer that automatically implements it in the RTL
model. The disadvantage is that the location and activation of
clock gating needs to be specified manually in the ESL model,
what complicates the specification. Also, this method does not
support other power-management techniques; therefore, the
power can be wasted.

We have identified pros and cons of the existing methods
and used this information for development of a new low-
power systems design methodology [5, 6]. The methodology
uses abstracted power-management specification based on
UPF concepts to simplify its introduction (inspired by [8, 9]),
offers high-level synthesis for trade-off among multiple
parameters and more accurate RTL design analysis (inspired
by [16]), and generates UPF standard specification at the RTL
to maintain the compatibility with the existing verification
tools (inspired by [7]). To clarify the developed extension of
the standard UPF-based design flow, we illustrate the offered
design flow in Fig. 1. The extensions are provided in dark-
grey color and the parts further enhanced by the work
described in this paper have a dashed-line border.

III. POWER-REDUCTION TECHNIQUES
There are several power-reduction techniques that are

commonly used in SoC design today. Some of them are
described in more detail in [2] or [17]. However, since not all

206

of these techniques are applicable using the dynamic power
management, we provide their overview with a brief
discussion on their usage in power-managed SoC designs in
Table I.

To apply these techniques in a SoC design, several rules
must be followed, which require additional elements to be
incorporated into the design. For example, when powering-
down a SoC component, its output signals need to get isolated
in order to prevent corruption of data in the powered
components, which these signals are connected to. This is
usually accomplished by some isolation cells added to the
component boundary. These cells are implemented variously,
using a simple AND gate or a more complicated latch-based
elements. Also, the interconnections between components
working at different voltage levels must be level-shifted in
order to correctly exchange information. In some cases, these
elements can be combined to operate as the isolators as well as

the level shifters. Similarly to isolation, a clock signal can be
stopped to apply the clock-gating technique. However, the
designer should carefully consider timing impact when
modifying the clock signal. When using multiple voltages for
some component to increase or decrease its performance, a
power switch is used to switch between different power-
supply nets. This switch is also used to completely power-
down the component. If the state of the component should not
get lost during the power-down, some retention cells have to
be used in its registers.

IV. ESL POWER-MANAGEMENT SPECIFICATION
The developed abstract power-management specification

[6] is targeted towards a simple application of multiple power-
reduction techniques in context of architectural dynamic
power management. Similarly to UPF, it also utilizes power
states, but in more intuitive way. There are no power-
management elements in the abstract ESL specification;
therefore, an abstract power state does not represent a
combination of their control signals, but rather it is defined by
a unique combination of the voltage and frequency values.
Thus, it directly represents more like a performance level.

The power-reduction techniques that are applicable by
dynamic power management can be specified by the
predefined abstract power states (summarized in Table II).
These states actually specify the support of which architectural
power-reduction technique will be introduced at lower
abstraction levels. The OFF and OFF_RET states specify the
application of power gating without and with the state
retention support. The HOLD state introduces the clock gating
in combination with the operand isolation. The DIFF_LEVEL
group of states enables the voltage and frequency scaling and
the use of multiple voltages in the design. And finally, the
NORMAL power state specifies that there will not be any
explicit architectural power-reduction technique applied.

Fig. 1. An illustration of the developed low-power systems design flow.

TABLE I. OVERVIEW OF POWER-REDUCTION TECHNIQUES

Technique Description

Clock gating
It stops the clock signal, and thus prevents loading the same value in a register. From the architectural power-management
perspective, it can be used to stop the operation of a synchronous SoC component. The unnecessary switching can be
prevented in this way, and thus the dynamic power can be saved.

Power gating
It temporarily shuts-off the power from a SoC component when not currently needed. This technique can be used for
reduction of the static power as well as the dynamic power. However, the time requirements for switching between on and off
sates must be kept in mind.

Operand isolation
It isolates an unneeded combinational portion of the circuit, and thus reduces unnecessary switching activity, what saves the
dynamic power. Applied as an architectural power-management technique, it can be used to isolate all input ports of an
unused SoC component.

Voltage scaling
It enables to switch a SoC component between multiple voltage levels – e.g. a high-voltage level for the high performance
and a low-voltage level for the energy saving. Usually, the voltage is scaled in the same way for all components grouped in a
power domain based on the current performance requirements.

Frequency scaling
It enables to switch the clock frequency of a synchronous SoC component. When a component operates at a higher
frequency, it processes the given task faster; however, it consumes more dynamic power. This technique usually works along
with the voltage scaling to reduce power by decreasing the performance when the processed task is not time-critical.

Substrate biasing
It enables to temporarily increase the threshold voltage when the given SoC component is not used or a non-critical task is
processed. It reduces the leakage current and thus reduces the static power. It is usually coupled with clock gating to reduce
both the dynamic and static power of currently unused SoC component.

Multiple voltages, multiple
thresholds, gate sizing, logic
restructuring, pin swapping

These techniques are nowadays automatically implemented by a synthesis tool, selecting a suitable combination of library
cells with various parameters to meet preset constraints. These techniques are used only during the design time and cannot
change the SoC power consumption during the runtime.

Memory partitioning, bus
segmentation, hardware
acceleration

These techniques represent SoC component micro-architectural decisions. When a component is decomposed into smaller
parts, they can be selectively turned into some power-saving states according the current requirements. On the other hand, the
hardware acceleration is used to perform a given task more efficiently, what can eventually save the power.

207

The SoC is usually set to a specific operating mode in
order to process some task. This mode is called a power mode
and it represents a combination of power states to which the
power domains are set in this mode. It is easier for a designer
to change just the power mode than to change the state of each
power domain. Thus, the abstract power-management
specification involves the specification of:

• power domains – the specification includes the name of
the domain and a set of power states, in which the
components of the domain can operate;

• component assignments – the specification includes
assignments of SoC components to some already
specified power domain;

• performance levels – the specification includes the
definition of voltage and frequency values for each
active power state (NORMAL or DIFF_LEVEL);

• power modes – the specification includes the name for
the mode and a sequence of power states (one state for
each power domain);

• policy – the specification involves a definition of how
and when the switching between power modes occurs –
it is incorporated into the functional specification.

For an illustration of SystemC abstract power-management
specification, a code fragment is provided in Fig. 2. The
architectural power management is specified in the top module

of the system. Power domains and power modes are declared
in the declaration part of the model, and then defined in the
functional part such as the constructor. There is a special
variable, called POWER_MODE, which represents the current
power mode. It is initialized to some defined power mode and
used in the functional part of the specification (in this case not
a constructor, but some SystemC process) to change the
system power mode.

V. POWER-MANAGEMENT HIGH-LEVEL SYNTHESIS
Such a simplified power-management specification, along

with architectural relations among components, provides a
sufficient amount of details to implicitly deduce power intent
and utilize the high-level synthesis process to generate a
standard UPF specification [5]. There are some power-
management rules that need to be followed by the high-level
synthesis, which are briefly stated below and mapped to the
abstract power states.

• Input signals of SoC components in the power domain
that operates in the HOLD power state connected to a
component outside of the domain have to be isolated.

• Signals connecting SoC components in different power
domains that operates at different voltages
(DIFF_LEVEL power states) have to be level-shifted.

• Signals connecting SoC components in different power
domains that operates at different frequencies have to
be synchronized.

• The synchronization signal (clock) of a SoC
component in a powered-down domain (OFF or
OFF_RET power states) has to be stopped.

• Signals of SoC components in a powered-down domain
that are connected to a powered component outside of
the domain have to be isolated.

• The power supply of SoC components in the power
domain that is in the OFF or OFF_RET state has to be
switched off.

• The power supply of SoC components of the power
domain that operates in multiple power states with
different voltages (DIFF_LEVEL or NORMAL power
states) has to be switchable.

The benefit of high-level synthesis process automation is
that the designer does not need to keep these rules in mind.
The designer specifies only what should be accomplished, not
how – it is implicit, based on these rules. The developed high-
level synthesis process focused on power management
consists of two parts. The first part involves the synthesis of
power-management specification in the UPF standard form
itself. The other part targets the synthesis of a power-
management unit. It is a controller that drives control signals
for the power-management elements located in the synthesized
UPF – power switches, isolation cells, level shifters, and
retention cells. Firstly, we introduce principles of the
optimization of the power-management high-level synthesis
process, and then, we describe the two parts of this process in
more detail (along with the optimization of these parts).

#include "systemc.h"
#include "pms.h"
SC_MODULE(soc){
 PowerDomain PD1,PD2;
 PowerMode PM1,PM2;
 soc_component C1,C2;
 ...
 SC_CTOR(System):C1("C1"), C2("C2"){
 PD1 = PD(OFF,NORMAL);
 PD2 = PD(NORMAL,DIFF_LEVEL(1));
 Set_Level(DIFF_LEVEL, 1.1 V, 100 MHz);
 Set_Level(NORMAL, 1 V, 50 MHz);
 PD1.AddComponent("C1");
 PD2.AddComponent("C2");
 PM1 = PM(OFF,NORMAL);
 PM2 = PM(NORMAL,DIFF_LEVEL(1));
 POWER_MODE = PM1;
 ...
 }
}

Fig. 2. A sample of power-management specificaiton in SystemC.

TABLE II. ABSTRACT POWER STATES

Power State Description

OFF The components belonging to the power domain in
this state are powered down.

OFF_RET The same as OFF, but the component state is retained.

HOLD The components belonging to the power domain in
this state stop the operation, but stay powered.

DIFF_LEVEL#

The components belonging to the power domain in
this state operate at the performance level different
from the basic one; # represents an ordinal number
enabling the specification of multiple states with
different performance levels.

NORMAL The components belonging to the power domain in
this state operate at the basic performance level.

208

A. Optimization Principles
The whole optimization process is based on the static

analysis of the abstract power-management specification and
of the structural dependencies among the SoC components.
The analysis helps to locate power-management
inconsistencies or redundant parts and the optimization
process resolve them, if possible, based on some predefined
priorities. For example, the specification of power modes has
precedence over the specification of power states in power
domains. It means that if some power state is specified in the
power-mode definition for some power domain (deduced
based on the state position in the sequence – the first state
belongs to the firstly specified power domain), but it is not
specified in the power-domain definition, the specification of
power domain is considered wrong instead of the power mode.
Another example of the stated priorities is in the state
sequence in the power-mode definition. If there is a higher
number of power states specified in a power mode than a
number of power domains in the system, the states from the
left have precedence – i.e. the states from the right exceeding
the number of power domains are redundant.

These are examples of the resolved inconsistencies. Such
an optimization helps only if the abstract power-management
specification is wrong. It automatically corrects the
specification, giving a designer the possibility to focus more
on the functional specification and to not keep all power-
management aspects in mind at the ESL. However, the
optimization also focuses on the analysis of the architectural
dependencies among the SoC components as well as relations
among power domains. For example, if two power domains
are always powered-off during the same period of time and are
in some active state (although not necessary the same) in the
remaining time, the isolation of signals among their
components is not necessary. This optimization results in a
more efficient UPF specification – sparing redundant power-
management elements, which would require area and power.

B. UPF Specification Synthesis
This part of the proposed power-management high-level

synthesis process extracts power intent from the ESL power-
management specification and determines which power-
management elements and power-distribution nets have to be
synthesized in the UPF specification. In the following text, we
briefly describe individual synthesis steps and how the
optimization impacts the eventual specification.

1) Power Domains
The power domains are created as the first step in the UPF

specification. These domains are already defined in the ESL
specification; therefore, they are just rewritten to the UPF
form, along with the assigned components. In the UPF, there
is also a top domain created, which contains the components
that are not explicitly assigned to any power domain in the
ESL specification. Regarding the optimization, there is not
much to do. The optimization influences the domain creation
only if there is some inconsistency in the abstract
specification. For example, if some power domain has no
component assigned, it is considered redundant, and therefore
it is not created in the UPF specification.

2) Power Distribution
After the domains are created, there is a need to create

supply nets for them and connect them to supply ports. For
each voltage level, determined from performance-level
specifications, the individual power-supply port and supply
net are created. If the power supply of a power domain has to
be switchable (i.e. at the ESL, the power domain can operate
in power states with at least two different voltages, including
off state), a dedicated supply net is created. Otherwise, it
reuses some top-domain supply net. In this step, the primary
power and ground nets are assigned to each power domain.
Optimization process determines whether all specified
voltages are also used in the system – i.e. whether the power
domain is set in some power mode to the power state
corresponding to the voltage level and whether this mode is
sometime activated. The support for unused power supplies is
not created using the optimization.

3) Power-Management Elements
Afterwards, the power-management elements can be

specified. For each power domain with a switchable power
supply, a power switch is created. For each power domain that
can be set in the HOLD power state, input isolation is created.
Isolation of both, the inputs and outputs, is created for each
power domain that can be powered down. Level shifters are
created between power domains operating at different
voltages. For each power domain that contains the OFF_RET
power state, the retention is set. Similarly to the previous step,
the optimization checks whether the power states are actually
used in the system, and only then they are taken into account.
It can reduce the number of control signals required by the
power-management elements, or even reduce the number of
these elements. Moreover, the isolation between domains is
created only if they are not always active and inactive at the
same time.

4) Power-State Table
The last step involves creation of the power-state table,

containing the legal combinations of ports voltage states.
However, before it is created, the voltage states for the created
supply ports and the output ports of the created power
switches have to be specified. The possible voltage states of
these ports correspond to the associated supply nets, which
represent the primary power net of some power domain.
Abstract power states of such a power domain then determines
the voltage states of the port. The specification of the power-
state table is based on the ESL power modes; however, the
states are specified for the ports instead of the power domains
and UPF states represent only voltage states, the frequency is
omitted. Moreover, there are additional voltage modes
(analogously to voltage states) generated in the UPF power-
state table. These additional states and modes will be
discussed in more details in the power-management unit
synthesis description (the next subsection). These additional
modes are added to the power-state table only if the
corresponding combination of voltage states is not yet
specified in the table. The optimization influences the number
of ports and their voltage states and the number of additional
voltage modes, and thus it influences the complexness of the
power-state table.

209

C. Power-Management Unit Synthesis
The power-management elements generated in the UPF

specification contains the control signals that need to be
activated and deactivated in a precise time to switch between
power states. This is the task of the power-management unit.
Since the abstract specification does not contain the power-
management elements, there is no such unit in the ESL
specification. Therefore, its functional description has to be
completely generated in this part of the power-management
high-level synthesis process.

The power-management policy algorithm is defined in the
functional ESL specification using the POWER_MODE
variable. The power-management specification high-level
synthesis process precedes the functional synthesis. It
modifies the type of the POWER_MODE variable to the
enumerated type, enumerators of which are the identifiers of
the specified power modes. In this way, the switching between
power modes does not need to be modified – it is correctly
modelled. An enumerator corresponding to the first specified
power mode actually contains an unsigned integer value of 0,
an enumerator of the next power mode contains 1, and so on.
This is a functional description synthesizable by commonly
used EDA tools supporting the high-level synthesis. The
synthesized POWER_MODE variable drives the input of our
power-management unit. This value represents the mode, into
which the SoC should be switched. It is firstly processed by a
power-mode determination component (see Fig. 3) that
converts it to a vector representing a combination of control
signals for the power-management elements in UPF. The
encoded target power mode is then processed by the power-
state machine, which is responsible for the correct transitions
between power modes. It generates a sequence of intermediate
power modes to safely reach the target power mode by
following the power-management rules, summarized below.

• Before a SoC component is powered down, it has to
stop its operation.

• Before a SoC component is powered down, isolation of
its inputs and outputs has to be activated.

• Before a SoC component is powered down, its state
retention (if required) has to be activated.

• Before the state of a SoC component is restored (if
retained), the component has to be powered up.

• Before the isolation of a SoC component is deactivated,
the component has to be powered up.

• Before the state of a SoC component is retained, the
component isolation has to be activated.

• Before the isolation of a SoC component is deactivated,
its state has to be restored (if retained).

• In case a SoC component changes from a high-
performance state to a low-performance state, the
frequency has to be changed before the voltage.

• In case a SoC component changes from a low-
performance state to a high-performance state, the
voltage has to be changed before the frequency.

Such a power-state machine implements the transitions
between all possible power modes, including the intermediate
modes. However, an intermediate power mode cannot be the
target power mode – i.e. it cannot come as an input because
the POWER_MODE variable cannot represent such a mode.
The control signals generated by the power-management unit
do not control only the power-management elements specified
in UPF, but also the clock generator in order to enable the
frequency scaling in SoC components.

The proposed optimization process greatly influences
complexness of the power management unit, and thus it
potentially reduces its area and power requirements. The key
is the reduction of control signals for power-management
elements, since these also represent the required state logic in
the power-state machine, as well as the wiring required to
transfer these signals. An important complexness reduction is
achieved by optimization of the number of power states and
power modes to only actually used ones. It influences the state
logic as well as the transition logic complexness.

D. Equivalence Checking Extension
Because of the optimization of the abstract specification,

the synthesized UPF does not directly correspond to the
original ESL specification. However, the actual power intent
achieved by the original and optimized specification is the
same. Therefore, we have modified the equivalence checking
procedure to verify the actual power intent, not the structural
equivalency between power-management specifications at the
ESL and the RTL. It means that the support of never-used
power states and power modes does not need to coincide in
order the specifications to be equivalent. The modified
algorithm therefore firstly optimizes the original ESL
specification and then checks its equivalence with the
synthesized UPF specification. Thus, the extended power-
management specifications equivalence checking consist of
two procedures – checking of the structural equivalence (i.e.
all specified aspects are checked) and checking of the power-
intent equivalence (i.e. whether the eventual management of
SoC components power is the same).

VI. EXPERIMENTAL RESULTS
In order to experimentally evaluate the proposed

optimization process, we have used a quantitative
pseudorandom approach. Specifically, we have automatically

Fig. 3. The synthesized power-management unit overview.

210

generated over ten thousand artificial abstract power-
management specification samples in SystemC and used them
to synthesize UPF specifications using both high-level
synthesis algorithms, without (original, previously developed)
and with the optimization (modified, proposed in this paper).
The goal was to show the simplification when using the
developed abstract-power management specification at the
ESL compared to the standard UPF specification at the RTL.
Of course, the goal was to also show the comparison of the
UPF specifications synthesized without and with the
optimization, in order to prove the benefits of the optimization
proposed in this paper.

As the comparison parameter, we have selected the
number of characters required for the specification (referred to
as the specification complexity). The reason is that the UPF
specification is based on the Tool Command Language (TCL),
which has long inline commands, and therefore the
comparison of statements would be unfair. Also, we could not
leave the identifiers out from the comparison, because the
abstract power-management is strongly identifier-based. One
must realize that the complexity reduction is not achieved by a
shorter description of some language constructs, but by the
abstraction from the low-level details, such as the power-
management elements and power-distribution network.

To use various complexities of specification samples, the
pseudorandom generation has been based on the scaling of
multiple parameters, including as the number of power states
in power domains, the number of allowed system power
modes, the number of power domains, the number of SoC
components in power domains, and the number of connections

among components.

The results in Fig. 4 illustrate the complexity reduction
when comparing the abstract SystemC power-management
specification to the standard UPF specification synthesized
without the optimization. The case comparing the abstract
specification to the UPF synthesized with the proposed
optimization is illustrated in Fig. 5. The vertical axis in the
charts is provided in a logarithmic scale. The result of the
experiment is that the SystemC power-management
specification is approximately 16.8 times less complex in
average than the UPF specification synthesized without the
optimization and 14.3 times less complex in case of the
optimization being used. Although, the comparison results
show that the optimization brings the worse complexity
reduction, we must realize that it synthesizes the optimized
UPF specification (shorter).

To illustrate the benefit of the optimization in clear way,
Fig. 6 provides the comparison of the UPF specifications
synthesized with the optimization and without. The result of
the experiment is that the optimization brings complexity
reduction of the synthesized UPF specification approximately
by 19% in average. It means that less power-management
supporting logic will be used, but the power intent remains the
same. Thus, the resulted power management is more efficient
in terms of area and power savings achieved by not
implementing the unnecessary elements. However, we must
note that some of the used pseudorandomly generated samples
contained inconsistencies, which could be resolved by the
proposed optimization. For a correct and consistent abstract
power-management specification, the UPF specifications
synthesized without and with the optimization would not have
as much difference. Nevertheless, the optimization fulfills its
purpose, because a designer can focus on the functional part of
the SoC specification. The power-management specification at
the ESL does not need to be completely correct/consistent, in
order the consistent UPF specification at the RTL to be
synthesized.

As another experiment, we have used a professional EDA
tool (Modelsim SE 10.2c) to verify the syntactical and
semantical correctness of the synthesized UPF specifications
as well as the synthesized power-management unit.
Specifically, we have used UPF static analysis and power-
aware simulation capabilities, offered by this tool. However,
for this purpose, we have used only 15 selected samples with

Fig. 4. A comparison of the SystemC abstract power-management

specification and the UPF specification synthesized without the
optimization.

Fig. 5. A comparison of the SystemC abstract power-management

specification and the UPF specification synthesized with the
optimization.

Fig. 6. The UPF specifications synthesized with the optimization

compared to the UPF specifications synthesized without the
optimization.

211

various complexities, because it would take a lot of time to
create test-benches for all the generated samples and to
simulate them. For verification of the power-management unit,
we have used the assertion-based verification – the assertions
regarding the correct control sequences for power-
management elements are automatically synthesized during
the power-management high-level synthesis (this has been
also developed in our previous work). All of these samples,
synthesized to the optimized UPF, have successfully passed
through the modified equivalence checking and have been
successfully analyzed by the Modelsim power-aware static
checks. The synthesized power-management units have been
exercised during short simulations (each covering more than
80% of the power modes) and there was no assertion violated.

VII. CONCLUSIONS AND FURTHER WORK
This paper is focused on the optimization of the power-

management high-level synthesis process, which fills the gap
between the abstract ESL power-management specification
and the more-detailed RTL power management. The power-
management high-level synthesis process analyzes the abstract
power-management specification and automatically generates
the standard well-supported UPF specification along with the
functional description of the corresponding power-
management unit.

The proposed optimization is able to automatically resolve
some kinds of specification inconsistencies, potentially
introduced by a designer at the specification stage. Using the
developed abstract power-management static analysis and SoC
components structural relations, the optimized power-
management high-level synthesis process generates only the
required power-management elements at the RTL. The
proposed automated error-recovery simplifies the abstract
power-management specification, because a designer does not
need to keep all the power-management rules in mind. It is
especially useful in the early design stages. The designer has
more time to focus on the correct functional specification.

The experiments using a pseudorandom approach have
proved the benefit of the developed optimization. The results
have shown that the optimization can reduce the complexity of
the synthesized UPF specification by not implementing the
support for never-used abstract power states and power modes
in the RTL model. The eventual power intent however
remains the same. It has been verified by the modified
equivalence checking that we have also proposed in this paper.
Such an equivalence checking takes into account the
optimization decisions. The specifications at the ESL and the
RTL do not need to be structurally equivalent to have the
equivalent power intent. The developed power-management
high-level synthesis is intended to run alongside the functional
high-level synthesis that is already used in the industry.
Together, the proposed automated high-level synthesis
significantly speeds-up low-power SoC development process
and avoids many human errors, potentially introduced by the
manual transition from the ESL to the RTL.

The further work in this area can be focused on automated
dividing of SoC components into power domains and

automated selection of suitable power states for power
domains. It could bring us closer to a complete abstraction
from power management at the ESL and its implicit
introduction during the high-level synthesis. It could speed-up
low power SoC development even more.

REFERENCES
[1] M. Keating, D. Flynn, R. Aitken, A. Gibbons and K. Shi, Low Power

Methodology: For System-on-Chip Design, Springer, 2007.
[2] Power Forward Initiative, A practical guide to low power design: User

experience with CPF. Power Forward, 2012.
[3] IEEE standard for design and verification of low power integrated

circuits. IEEE, 2013. IEEE Std 1801-2013.
[4] The international technology roadmap for semiconductors: Design.

ITRS, 2011 edition, 2011.
[5] D. Macko, K. Jelemenská, and P. i ák, “Power-management high-level

synthesis,” in The 23rd IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), 2015, pp. 63-68.

[6] D. Macko, K. Jelemenská, and P. i ák, “Power-Management
Specification in SystemC,” in 2015 IEEE 18th International Symposium
on Design and Diagnostics of Electronic Circuits & Systems, 2015, pp.
259-262.

[7] J. Karmann and W. Ecker, “The semantic of the power intent format
UPF: Consistent power modeling from system level to implementation,”
in 2013 23rd international workshop on power and timing modeling,
optimization and simulation (PATMOS), 2013, pp. 45-50.

[8] F. Mischkalla and W. Mueller, “Advanced SoC virtual prototyping for
system-level power planning and validation,” in 2014 24th International
Workshop on Power and Timing Modeling, Optimization and
Simulation (PATMOS), 2014, pp. 112-119.

[9] O. Mbarek, A. Pegatoquet, and M. Auguin, “Using unified power format
standard concepts for power-aware design and verification of systems-
on-chip at transaction level,” IET Circuits, Devices & Systems, vol. 6,
no. 5, pp. 287-296, 2012.

[10] Y. Xu, R. Rosales, B. Wang, M. Streubühr, R. Hasholzner, C. Haubelt,
and J. Teich, “A very fast and quasi-accurate power-state-based system-
level power modeling methodology,” in ARCS'12 Proceedings of the
25th international conference on architecture of computing systems,
2012, pp. 37-49.

[11] H. Lebreton and P. Vivet, “Power modeling in SystemC at transaction
level, Application to a DVFS architecture,” in IEEE Computer society
annual symposium on VLSI, 2008, pp. 463-466.

[12] T. Bouhadiba, M. Moy, and F. Maraninchi, “System-level modeling of
energy in TLM for early validation of power and thermal management,”
in DATE '13 Proceedings of the conference on design, automation and
test in Europe, 2013, pp. 1609-1614.

[13] M. Giammarini, M. Conti and S. Orcioni, “System-Level Energy
Estimation with Powersim,” in 18th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), 2011, pp. 723-726.

[14] D. Greaves and M. Yasin, “TLM POWER3: Power Estimation
Methodology for SystemC TLM 2.0,” Models, Methods, and Tools for
Complex Chip Design, LNEE, vol. 265, pp. 53-68, 2014.

[15] F. Klein, R. Azevedo, L. Santos and G. Araujo, “SystemC-Based Power
Evaluation with PowerSC,” in Electronic System Level Design: An
Open-Source Approach, S. Rigo, R. Azevedo and L. Santos, Eds.,
Springer, 2011, pp. 129-144. ISBN 978-1-4020-9939-7.

[16] S. Ahuja, High level power estimation and reduction techniques for
power aware hardware design, Faculty of the Virginia Polytechnic
Institute and State University, 2010. Dissertation thesis.

[17] Y. Shin, “Low-Power Circuits: A System-Level Perspective,” in Energy-
Aware System Design: Algorithms and Architectures, C.-M. Kyung and
S. Yoo, Eds., Springer, 2011, pp. 17-46. ISBN 978-94-007-1678-0.

212

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

