
PMHLS 2.0: An Automated Optimization of Power 
Management During High-Level Synthesis 

 

Dominik Macko 
Faculty of Informatics and Information Technologies 

Slovak University of Technology 
Bratislava, Slovakia 

dominik.macko@stuba.sk 
 
 

Abstract—Design automation is very important in modern 
systems-on-chip development, complexity of which is ever 
growing. The most crucial issue in highly integrated systems is 
the increased power density and the corresponding temperature 
problems influencing reliability. Therefore, the power must be 
managed in such systems. Power management enables to 
implement various power-reduction techniques, such as power 
gating, multiple voltages, or voltage and frequency scaling. 
However, the automation of power-management design starts at 
the register-transfer level. Only the recent research begins to 
adopt power management at the system level of abstraction, 
which is increasingly used in the industry as a design starting 
point. In this paper, we propose an enhanced automation of the 
design process by using the optimized power-management high-
level synthesis. This method transforms the system-level power-
management specification to the traditionally used form at the 
register-transfer level. We have implemented this method to a 
tool called PMHLS, which automates the whole process. It uses 
optimization decisions to resolve some kinds of inconsistencies 
and thus makes the power management more efficient. This 
automation helps to reduce the number of human errors, 
potentially introduced by a designer during manual design. It 
also significantly speeds up the system development process. The 
benefits of the proposed method and the implemented design-
automation tool are supported by the experimental results. 

Keywords—design automation; high-level synthesis; low power; 
power management; specification 

I.  INTRODUCTION 
Due to the limited capacity of batteries in mobile devices, 

enhanced packaging or cooling problems, or just because of 
the reduction of energy consumption, the power is managed in 
almost every new chip design [1]. A system-on-chip (SoC) 
implemented in deep submicron CMOS (Complementary 
Metal-Oxide Semiconductor) technology suffers from the 
power-density problem, which influences its reliability. To 
reduce the SoC power consumption, one must understand the 
factors influencing the power. The static power (leakage) 
depends on the supply voltage, the threshold voltage for 
transistor switching, and the transistor size. The dynamic 
power depends on the switching activity, the clock frequency, 
the transistor and load capacitances, the supply voltage, and 
the short-circuit current [2]. 

The reduction of dynamic power can be achieved by 
reducing the clock frequency and switching activity. However, 
it influences the performance of the system. There are 
applications, in which not all parts of the system always need 
to operate at the full-performance capability. The spared 
power can be then saved to reduce the energy consumption, or 
redirected to other parts of the system to enhance their 
performance. This is called a dynamic power management. It 
also enables to reduce static power by temporal modification 
of voltage threshold or supply voltage, or by powering the 
unused SoC components down. 

In highly integrated complex SoCs, the power 
management is quite difficult to design, and custom design 
approaches are not sufficiently efficient. Therefore, a 
systematic low-power design flow has been standardized in 
the industry under the no. IEEE Std 1801-2013 [3] (commonly 
known as UPF – Unified Power Format). UPF enables to 
specify power management at the RTL (Register-Transfer 
Level) as an extension to the functional HDL (Hardware 
Description Language) model. The low-level power 
management elements (such as power switches, level shifters, 
and isolation or retention cells), supply ports and supply nets 
can be specified and verified at the RTL design stage, and 
using the EDA (Electronic Design Automation) tools, they can 
be automatically implemented at lower abstraction levels. 
Modelling of the power management enables more accurate 
power analysis of the designed system at the RTL. Regarding 
the specification, UPF enables to divide the system 
architecture into so-called power domains. A power domain 
groups together components of the system, which always 
operate at the same supply-voltage level (i.e. power state). In 
the UPF, the power state is defined by a unique combination 
of control signals of aforementioned power-management 
elements belonging to one power domain. The designer 
specifies the possible voltages of each supply port or net and 
uses them to create a power-state table. It reflects allowed 
combinations of voltages in these ports and nets, what 
significantly helps the power-management verification. 

To deal with the complexity of modern SoC designs, the 
International technology roadmap for semiconductors 
suggested the adoption of an abstract electronic system level 
(ESL) in the design process [4]. Therefore, the abstraction 
offered by the UPF is not sufficient and there are attempts to 
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extend this standard to the system level. However, there is 
usually missing a connection between the ESL and the RTL 
power-management specification, and thus the verification is 
somewhat difficult. We introduce this connection in a form of 
the power-management high-level synthesis process that we 
have previously developed [5]. In this paper, we show how the 
power management can be further optimized during this 
process to make it more efficient (regarding the area and 
power overhead). The result is that the designer does not need 
to keep all power-management aspects in mind during the 
abstract power-management specification and can focus on the 
system function. 

This paper is organized as follows. In the next section, the 
related research works are described that target the system-
level power management and high-level synthesis. Section III 
briefly describes the most commonly used power-reduction 
techniques for SoC designs. In Section IV, we introduce the 
principles of the previously developed abstract power-
management specification [6]. Section V is devoted to the 
power-management high-level synthesis and the proposed 
optimization. And finally, before the conclusion, the benefits 
of our proposal are proved by the experimental results. 

II. RELATED WORK 
There are various methods targeting different aspects and 

problems of system-level power management. The first group 
targets standard-based power-management modelling. The 
second group targets in-house modelling of power 
management aspects. The third group includes methods that 
enable modelling of SoC components’ power consumption; 
however, they cannot model power management (switching 
between operating states with various power consumptions). 
The last analyzed method targets specification of one power-
management technique and its automated implementation in 
the synthesized SoC model. 

A. Standard-Based Methods 
The ESL power-intent model used in [7] is based on the 

UPF standard concepts, and therefore the UPF specification 
can be automatically generated. It enables to use existing EDA 
tools for verification and power analysis. However, the used 
power-data model is strictly dependent on design reuse, and 
thus it is not suitable for top-down design approach. 
Moreover, this method uses similar amount of details for 
power-management specification at the ESL as the UPF 
specification; therefore, the specification is just translated into 
another format. The method [8] includes abstract specification 
of voltage relationships, TLM power states, operating 
conditions, and so on. It extends the power-domain UPF 
concept in such a way that each power domain is mapped to 
one clock domain. The disadvantages are missing automation 
towards lower abstraction levels and separated specification of 
SoC function and power intent. The PwARCH framework [9] 
augments an ESL model with abstract UPF concepts (e.g. 
power domains, power switches, power nets, or power-state 
table). The method requires power annotation to the model; 
thus, it is dependent on design reuse. It also uses separated 
specification of functional and power-management aspects, 
what is fairly unsuitable for the system level of abstraction. 

B. Nonstandard Methods 
The methods [10-12] also offer ESL power modelling, 

including the power management support. The developed 
power-intent specification approaches are not based on the 
standard concepts – i.e. they use in-house specifications, 
limiting the compatibility with the professional EDA tools. 
Nevertheless, these methods can be used for power-
architecture exploration at the early design stages, and thus 
can help to make suitable power-management policy 
decisions. The analyzed methods do not take into account 
other important design parameters, such as area or 
performance. The used nonstandard concepts also complicate 
the verification of the equivalency between ESL and RTL 
power management. 

C. Power-Estimation Methods 
The existing ESL power-estimation methods [13-15] help 

to select the most power-efficient SoC architecture. The power 
consumptions of the components are required to be specified 
manually in the ESL model. Therefore, these approaches are 
also based on design reuse. In some cases, the default values 
can be used, but it would result in a less accurate power 
analysis. These methods do not support power-management 
specification. If the power management is introduced into the 
design only later, at the RTL, the ESL power estimation would 
not correspond to the actual power consumption. Therefore, 
these methods are unusable in power-managed SoC designs. 

D. High-Level Synthesis Based Methods 
A method has been developed [16], which focuses on the 

high-level synthesis to quickly obtain an RTL model for 
design exploration and more accurate power analysis. Clock 
gating specified in the ESL model is passed to the high-level 
synthesizer that automatically implements it in the RTL 
model. The disadvantage is that the location and activation of 
clock gating needs to be specified manually in the ESL model, 
what complicates the specification. Also, this method does not 
support other power-management techniques; therefore, the 
power can be wasted. 

We have identified pros and cons of the existing methods 
and used this information for development of a new low-
power systems design methodology [5, 6]. The methodology 
uses abstracted power-management specification based on 
UPF concepts to simplify its introduction (inspired by [8, 9]), 
offers high-level synthesis for trade-off among multiple 
parameters and more accurate RTL design analysis (inspired 
by [16]), and generates UPF standard specification at the RTL 
to maintain the compatibility with the existing verification 
tools (inspired by [7]). To clarify the developed extension of 
the standard UPF-based design flow, we illustrate the offered 
design flow in Fig. 1. The extensions are provided in dark-
grey color and the parts further enhanced by the work 
described in this paper have a dashed-line border. 

III. POWER-REDUCTION TECHNIQUES 
There are several power-reduction techniques that are 

commonly used in SoC design today. Some of them are 
described in more detail in [2] or [17]. However, since not all 
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of these techniques are applicable using the dynamic power 
management, we provide their overview with a brief 
discussion on their usage in power-managed SoC designs in 
Table I. 

To apply these techniques in a SoC design, several rules 
must be followed, which require additional elements to be 
incorporated into the design. For example, when powering-
down a SoC component, its output signals need to get isolated 
in order to prevent corruption of data in the powered 
components, which these signals are connected to. This is 
usually accomplished by some isolation cells added to the 
component boundary. These cells are implemented variously, 
using a simple AND gate or a more complicated latch-based 
elements. Also, the interconnections between components 
working at different voltage levels must be level-shifted in 
order to correctly exchange information. In some cases, these 
elements can be combined to operate as the isolators as well as 

the level shifters. Similarly to isolation, a clock signal can be 
stopped to apply the clock-gating technique. However, the 
designer should carefully consider timing impact when 
modifying the clock signal. When using multiple voltages for 
some component to increase or decrease its performance, a 
power switch is used to switch between different power-
supply nets. This switch is also used to completely power-
down the component. If the state of the component should not 
get lost during the power-down, some retention cells have to 
be used in its registers. 

IV. ESL POWER-MANAGEMENT SPECIFICATION 
The developed abstract power-management specification 

[6] is targeted towards a simple application of multiple power-
reduction techniques in context of architectural dynamic 
power management. Similarly to UPF, it also utilizes power 
states, but in more intuitive way. There are no power-
management elements in the abstract ESL specification; 
therefore, an abstract power state does not represent a 
combination of their control signals, but rather it is defined by 
a unique combination of the voltage and frequency values. 
Thus, it directly represents more like a performance level. 

The power-reduction techniques that are applicable by 
dynamic power management can be specified by the 
predefined abstract power states (summarized in Table II). 
These states actually specify the support of which architectural 
power-reduction technique will be introduced at lower 
abstraction levels. The OFF and OFF_RET states specify the 
application of power gating without and with the state 
retention support. The HOLD state introduces the clock gating 
in combination with the operand isolation. The DIFF_LEVEL 
group of states enables the voltage and frequency scaling and 
the use of multiple voltages in the design. And finally, the 
NORMAL power state specifies that there will not be any 
explicit architectural power-reduction technique applied. 

 
Fig. 1. An illustration of the developed low-power systems design flow. 

TABLE I.  OVERVIEW OF POWER-REDUCTION TECHNIQUES

Technique Description 

Clock gating 
It stops the clock signal, and thus prevents loading the same value in a register. From the architectural power-management 
perspective, it can be used to stop the operation of a synchronous SoC component. The unnecessary switching can be 
prevented in this way, and thus the dynamic power can be saved. 

Power gating 
It temporarily shuts-off the power from a SoC component when not currently needed. This technique can be used for 
reduction of the static power as well as the dynamic power. However, the time requirements for switching between on and off 
sates must be kept in mind. 

Operand isolation 
It isolates an unneeded combinational portion of the circuit, and thus reduces unnecessary switching activity, what saves the 
dynamic power. Applied as an architectural power-management technique, it can be used to isolate all input ports of an 
unused SoC component. 

Voltage scaling 
It enables to switch a SoC component between multiple voltage levels – e.g. a high-voltage level for the high performance 
and a low-voltage level for the energy saving. Usually, the voltage is scaled in the same way for all components grouped in a 
power domain based on the current performance requirements. 

Frequency scaling 
It enables to switch the clock frequency of a synchronous SoC component. When a component operates at a higher 
frequency, it processes the given task faster; however, it consumes more dynamic power. This technique usually works along 
with the voltage scaling to reduce power by decreasing the performance when the processed task is not time-critical. 

Substrate biasing 
It enables to temporarily increase the threshold voltage when the given SoC component is not used or a non-critical task is 
processed. It reduces the leakage current and thus reduces the static power. It is usually coupled with clock gating to reduce 
both the dynamic and static power of currently unused SoC component. 

Multiple voltages, multiple 
thresholds, gate sizing, logic 
restructuring, pin swapping 

These techniques are nowadays automatically implemented by a synthesis tool, selecting a suitable combination of library 
cells with various parameters to meet preset constraints. These techniques are used only during the design time and cannot 
change the SoC power consumption during the runtime. 

Memory partitioning, bus 
segmentation, hardware 
acceleration 

These techniques represent SoC component micro-architectural decisions. When a component is decomposed into smaller 
parts, they can be selectively turned into some power-saving states according the current requirements. On the other hand, the 
hardware acceleration is used to perform a given task more efficiently, what can eventually save the power. 
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The SoC is usually set to a specific operating mode in 
order to process some task. This mode is called a power mode 
and it represents a combination of power states to which the 
power domains are set in this mode. It is easier for a designer 
to change just the power mode than to change the state of each 
power domain. Thus, the abstract power-management 
specification involves the specification of: 

• power domains – the specification includes the name of 
the domain and a set of power states, in which the 
components of the domain can operate; 

• component assignments – the specification includes 
assignments of SoC components to some already 
specified power domain; 

• performance levels – the specification includes the 
definition of voltage and frequency values for each 
active power state (NORMAL or DIFF_LEVEL); 

• power modes – the specification includes the name for 
the mode and a sequence of power states (one state for 
each power domain); 

• policy – the specification involves a definition of how 
and when the switching between power modes occurs – 
it is incorporated into the functional specification. 

For an illustration of SystemC abstract power-management 
specification, a code fragment is provided in Fig. 2. The 
architectural power management is specified in the top module 

of the system. Power domains and power modes are declared 
in the declaration part of the model, and then defined in the 
functional part such as the constructor. There is a special 
variable, called POWER_MODE, which represents the current 
power mode. It is initialized to some defined power mode and 
used in the functional part of the specification (in this case not 
a constructor, but some SystemC process) to change the 
system power mode. 

V. POWER-MANAGEMENT HIGH-LEVEL SYNTHESIS 
Such a simplified power-management specification, along 

with architectural relations among components, provides a 
sufficient amount of details to implicitly deduce power intent 
and utilize the high-level synthesis process to generate a 
standard UPF specification [5]. There are some power-
management rules that need to be followed by the high-level 
synthesis, which are briefly stated below and mapped to the 
abstract power states. 

• Input signals of SoC components in the power domain 
that operates in the HOLD power state connected to a 
component outside of the domain have to be isolated. 

• Signals connecting SoC components in different power 
domains that operates at different voltages 
(DIFF_LEVEL power states) have to be level-shifted. 

• Signals connecting SoC components in different power 
domains that operates at different frequencies have to 
be synchronized. 

• The synchronization signal (clock) of a SoC 
component in a powered-down domain (OFF or 
OFF_RET power states) has to be stopped. 

• Signals of SoC components in a powered-down domain 
that are connected to a powered component outside of 
the domain have to be isolated. 

• The power supply of SoC components in the power 
domain that is in the OFF or OFF_RET state has to be 
switched off. 

• The power supply of SoC components of the power 
domain that operates in multiple power states with 
different voltages (DIFF_LEVEL or NORMAL power 
states) has to be switchable. 

The benefit of high-level synthesis process automation is 
that the designer does not need to keep these rules in mind. 
The designer specifies only what should be accomplished, not 
how – it is implicit, based on these rules. The developed high-
level synthesis process focused on power management 
consists of two parts. The first part involves the synthesis of 
power-management specification in the UPF standard form 
itself. The other part targets the synthesis of a power-
management unit. It is a controller that drives control signals 
for the power-management elements located in the synthesized 
UPF – power switches, isolation cells, level shifters, and 
retention cells. Firstly, we introduce principles of the 
optimization of the power-management high-level synthesis 
process, and then, we describe the two parts of this process in 
more detail (along with the optimization of these parts). 

#include "systemc.h" 
#include "pms.h" 
SC_MODULE(soc){ 
 PowerDomain PD1,PD2; 
 PowerMode PM1,PM2; 
 soc_component C1,C2; 
 ... 
 SC_CTOR(System):C1("C1"), C2("C2"){ 
  PD1 = PD(OFF,NORMAL); 
  PD2 = PD(NORMAL,DIFF_LEVEL(1)); 
  Set_Level(DIFF_LEVEL, 1.1 V, 100 MHz); 
  Set_Level(NORMAL, 1 V, 50 MHz); 
  PD1.AddComponent("C1"); 
  PD2.AddComponent("C2"); 
  PM1 = PM(OFF,NORMAL); 
  PM2 = PM(NORMAL,DIFF_LEVEL(1)); 
  POWER_MODE = PM1; 
  ... 
 } 
} 

Fig. 2. A sample of power-management specificaiton in SystemC. 

TABLE II.  ABSTRACT POWER STATES 

Power State Description 

OFF The components belonging to the power domain in 
this state are powered down. 

OFF_RET The same as OFF, but the component state is retained. 

HOLD The components belonging to the power domain in 
this state stop the operation, but stay powered. 

DIFF_LEVEL# 

The components belonging to the power domain in 
this state operate at the performance level different 
from the basic one; # represents an ordinal number 
enabling the specification of multiple states with 
different performance levels. 

NORMAL The components belonging to the power domain in 
this state operate at the basic performance level. 
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A. Optimization Principles 
The whole optimization process is based on the static 

analysis of the abstract power-management specification and 
of the structural dependencies among the SoC components. 
The analysis helps to locate power-management 
inconsistencies or redundant parts and the optimization 
process resolve them, if possible, based on some predefined 
priorities. For example, the specification of power modes has 
precedence over the specification of power states in power 
domains. It means that if some power state is specified in the 
power-mode definition for some power domain (deduced 
based on the state position in the sequence – the first state 
belongs to the firstly specified power domain), but it is not 
specified in the power-domain definition, the specification of 
power domain is considered wrong instead of the power mode. 
Another example of the stated priorities is in the state 
sequence in the power-mode definition. If there is a higher 
number of power states specified in a power mode than a 
number of power domains in the system, the states from the 
left have precedence – i.e. the states from the right exceeding 
the number of power domains are redundant. 

These are examples of the resolved inconsistencies. Such 
an optimization helps only if the abstract power-management 
specification is wrong. It automatically corrects the 
specification, giving a designer the possibility to focus more 
on the functional specification and to not keep all power-
management aspects in mind at the ESL. However, the 
optimization also focuses on the analysis of the architectural 
dependencies among the SoC components as well as relations 
among power domains. For example, if two power domains 
are always powered-off during the same period of time and are 
in some active state (although not necessary the same) in the 
remaining time, the isolation of signals among their 
components is not necessary. This optimization results in a 
more efficient UPF specification – sparing redundant power-
management elements, which would require area and power. 

B. UPF Specification Synthesis 
This part of the proposed power-management high-level 

synthesis process extracts power intent from the ESL power-
management specification and determines which power-
management elements and power-distribution nets have to be 
synthesized in the UPF specification. In the following text, we 
briefly describe individual synthesis steps and how the 
optimization impacts the eventual specification. 

1) Power Domains 
The power domains are created as the first step in the UPF 

specification. These domains are already defined in the ESL 
specification; therefore, they are just rewritten to the UPF 
form, along with the assigned components. In the UPF, there 
is also a top domain created, which contains the components 
that are not explicitly assigned to any power domain in the 
ESL specification. Regarding the optimization, there is not 
much to do. The optimization influences the domain creation 
only if there is some inconsistency in the abstract 
specification. For example, if some power domain has no 
component assigned, it is considered redundant, and therefore 
it is not created in the UPF specification. 

2) Power Distribution 
After the domains are created, there is a need to create 

supply nets for them and connect them to supply ports. For 
each voltage level, determined from performance-level 
specifications, the individual power-supply port and supply 
net are created. If the power supply of a power domain has to 
be switchable (i.e. at the ESL, the power domain can operate 
in power states with at least two different voltages, including 
off state), a dedicated supply net is created. Otherwise, it 
reuses some top-domain supply net. In this step, the primary 
power and ground nets are assigned to each power domain. 
Optimization process determines whether all specified 
voltages are also used in the system – i.e. whether the power 
domain is set in some power mode to the power state 
corresponding to the voltage level and whether this mode is 
sometime activated. The support for unused power supplies is 
not created using the optimization. 

3) Power-Management Elements 
Afterwards, the power-management elements can be 

specified. For each power domain with a switchable power 
supply, a power switch is created. For each power domain that 
can be set in the HOLD power state, input isolation is created. 
Isolation of both, the inputs and outputs, is created for each 
power domain that can be powered down. Level shifters are 
created between power domains operating at different 
voltages. For each power domain that contains the OFF_RET 
power state, the retention is set. Similarly to the previous step, 
the optimization checks whether the power states are actually 
used in the system, and only then they are taken into account. 
It can reduce the number of control signals required by the 
power-management elements, or even reduce the number of 
these elements. Moreover, the isolation between domains is 
created only if they are not always active and inactive at the 
same time. 

4) Power-State Table 
The last step involves creation of the power-state table, 

containing the legal combinations of ports voltage states. 
However, before it is created, the voltage states for the created 
supply ports and the output ports of the created power 
switches have to be specified. The possible voltage states of 
these ports correspond to the associated supply nets, which 
represent the primary power net of some power domain. 
Abstract power states of such a power domain then determines 
the voltage states of the port. The specification of the power-
state table is based on the ESL power modes; however, the 
states are specified for the ports instead of the power domains 
and UPF states represent only voltage states, the frequency is 
omitted. Moreover, there are additional voltage modes 
(analogously to voltage states) generated in the UPF power-
state table. These additional states and modes will be 
discussed in more details in the power-management unit 
synthesis description (the next subsection). These additional 
modes are added to the power-state table only if the 
corresponding combination of voltage states is not yet 
specified in the table. The optimization influences the number 
of ports and their voltage states and the number of additional 
voltage modes, and thus it influences the complexness of the 
power-state table. 
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C. Power-Management Unit Synthesis 
The power-management elements generated in the UPF 

specification contains the control signals that need to be 
activated and deactivated in a precise time to switch between 
power states. This is the task of the power-management unit. 
Since the abstract specification does not contain the power-
management elements, there is no such unit in the ESL 
specification. Therefore, its functional description has to be 
completely generated in this part of the power-management 
high-level synthesis process. 

The power-management policy algorithm is defined in the 
functional ESL specification using the POWER_MODE 
variable. The power-management specification high-level 
synthesis process precedes the functional synthesis. It 
modifies the type of the POWER_MODE variable to the 
enumerated type, enumerators of which are the identifiers of 
the specified power modes. In this way, the switching between 
power modes does not need to be modified – it is correctly 
modelled. An enumerator corresponding to the first specified 
power mode actually contains an unsigned integer value of 0, 
an enumerator of the next power mode contains 1, and so on. 
This is a functional description synthesizable by commonly 
used EDA tools supporting the high-level synthesis. The 
synthesized POWER_MODE variable drives the input of our 
power-management unit. This value represents the mode, into 
which the SoC should be switched. It is firstly processed by a 
power-mode determination component (see Fig. 3) that 
converts it to a vector representing a combination of control 
signals for the power-management elements in UPF. The 
encoded target power mode is then processed by the power-
state machine, which is responsible for the correct transitions 
between power modes. It generates a sequence of intermediate 
power modes to safely reach the target power mode by 
following the power-management rules, summarized below. 

• Before a SoC component is powered down, it has to 
stop its operation. 

• Before a SoC component is powered down, isolation of 
its inputs and outputs has to be activated. 

• Before a SoC component is powered down, its state 
retention (if required) has to be activated. 

• Before the state of a SoC component is restored (if 
retained), the component has to be powered up. 

• Before the isolation of a SoC component is deactivated, 
the component has to be powered up. 

• Before the state of a SoC component is retained, the 
component isolation has to be activated. 

• Before the isolation of a SoC component is deactivated, 
its state has to be restored (if retained). 

• In case a SoC component changes from a high-
performance state to a low-performance state, the 
frequency has to be changed before the voltage. 

• In case a SoC component changes from a low-
performance state to a high-performance state, the 
voltage has to be changed before the frequency. 

Such a power-state machine implements the transitions 
between all possible power modes, including the intermediate 
modes. However, an intermediate power mode cannot be the 
target power mode – i.e. it cannot come as an input because 
the POWER_MODE variable cannot represent such a mode. 
The control signals generated by the power-management unit 
do not control only the power-management elements specified 
in UPF, but also the clock generator in order to enable the 
frequency scaling in SoC components. 

The proposed optimization process greatly influences 
complexness of the power management unit, and thus it 
potentially reduces its area and power requirements. The key 
is the reduction of control signals for power-management 
elements, since these also represent the required state logic in 
the power-state machine, as well as the wiring required to 
transfer these signals. An important complexness reduction is 
achieved by optimization of the number of power states and 
power modes to only actually used ones. It influences the state 
logic as well as the transition logic complexness. 

D. Equivalence Checking Extension 
Because of the optimization of the abstract specification, 

the synthesized UPF does not directly correspond to the 
original ESL specification. However, the actual power intent 
achieved by the original and optimized specification is the 
same. Therefore, we have modified the equivalence checking 
procedure to verify the actual power intent, not the structural 
equivalency between power-management specifications at the 
ESL and the RTL. It means that the support of never-used 
power states and power modes does not need to coincide in 
order the specifications to be equivalent. The modified 
algorithm therefore firstly optimizes the original ESL 
specification and then checks its equivalence with the 
synthesized UPF specification. Thus, the extended power-
management specifications equivalence checking consist of 
two procedures – checking of the structural equivalence (i.e. 
all specified aspects are checked) and checking of the power-
intent equivalence (i.e. whether the eventual management of 
SoC components power is the same). 

VI. EXPERIMENTAL RESULTS 
In order to experimentally evaluate the proposed 

optimization process, we have used a quantitative 
pseudorandom approach. Specifically, we have automatically 

 
Fig. 3. The synthesized power-management unit overview. 
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generated over ten thousand artificial abstract power-
management specification samples in SystemC and used them 
to synthesize UPF specifications using both high-level 
synthesis algorithms, without (original, previously developed) 
and with the optimization (modified, proposed in this paper). 
The goal was to show the simplification when using the 
developed abstract-power management specification at the 
ESL compared to the standard UPF specification at the RTL. 
Of course, the goal was to also show the comparison of the 
UPF specifications synthesized without and with the 
optimization, in order to prove the benefits of the optimization 
proposed in this paper.  

As the comparison parameter, we have selected the 
number of characters required for the specification (referred to 
as the specification complexity). The reason is that the UPF 
specification is based on the Tool Command Language (TCL), 
which has long inline commands, and therefore the 
comparison of statements would be unfair. Also, we could not 
leave the identifiers out from the comparison, because the 
abstract power-management is strongly identifier-based. One 
must realize that the complexity reduction is not achieved by a 
shorter description of some language constructs, but by the 
abstraction from the low-level details, such as the power-
management elements and power-distribution network. 

To use various complexities of specification samples, the 
pseudorandom generation has been based on the scaling of 
multiple parameters, including as the number of power states 
in power domains, the number of allowed system power 
modes, the number of power domains, the number of SoC 
components in power domains, and the number of connections 

among components. 

The results in Fig. 4 illustrate the complexity reduction 
when comparing the abstract SystemC power-management 
specification to the standard UPF specification synthesized 
without the optimization. The case comparing the abstract 
specification to the UPF synthesized with the proposed 
optimization is illustrated in Fig. 5.  The vertical axis in the 
charts is provided in a logarithmic scale. The result of the 
experiment is that the SystemC power-management 
specification is approximately 16.8 times less complex in 
average than the UPF specification synthesized without the 
optimization and 14.3 times less complex in case of the 
optimization being used. Although, the comparison results 
show that the optimization brings the worse complexity 
reduction, we must realize that it synthesizes the optimized 
UPF specification (shorter). 

To illustrate the benefit of the optimization in clear way, 
Fig. 6 provides the comparison of the UPF specifications 
synthesized with the optimization and without. The result of 
the experiment is that the optimization brings complexity 
reduction of the synthesized UPF specification approximately 
by 19% in average. It means that less power-management 
supporting logic will be used, but the power intent remains the 
same. Thus, the resulted power management is more efficient 
in terms of area and power savings achieved by not 
implementing the unnecessary elements. However, we must 
note that some of the used pseudorandomly generated samples 
contained inconsistencies, which could be resolved by the 
proposed optimization. For a correct and consistent abstract 
power-management specification, the UPF specifications 
synthesized without and with the optimization would not have 
as much difference. Nevertheless, the optimization fulfills its 
purpose, because a designer can focus on the functional part of 
the SoC specification. The power-management specification at 
the ESL does not need to be completely correct/consistent, in 
order the consistent UPF specification at the RTL to be 
synthesized. 

As another experiment, we have used a professional EDA 
tool (Modelsim SE 10.2c) to verify the syntactical and 
semantical correctness of the synthesized UPF specifications 
as well as the synthesized power-management unit. 
Specifically, we have used UPF static analysis and power-
aware simulation capabilities, offered by this tool. However, 
for this purpose, we have used only 15 selected samples with 

 
Fig. 4. A comparison of the SystemC abstract power-management 

specification and the UPF specification synthesized without the 
optimization. 

 
Fig. 5. A comparison of the SystemC abstract power-management 

specification and the UPF specification synthesized with the 
optimization. 

 
Fig. 6. The UPF specifications synthesized with the optimization 

compared to the UPF specifications synthesized without the 
optimization. 
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various complexities, because it would take a lot of time to 
create test-benches for all the generated samples and to 
simulate them. For verification of the power-management unit, 
we have used the assertion-based verification – the assertions 
regarding the correct control sequences for power-
management elements are automatically synthesized during 
the power-management high-level synthesis (this has been 
also developed in our previous work). All of these samples, 
synthesized to the optimized UPF, have successfully passed 
through the modified equivalence checking and have been 
successfully analyzed by the Modelsim power-aware static 
checks. The synthesized power-management units have been 
exercised during short simulations (each covering more than 
80% of the power modes) and there was no assertion violated. 

VII. CONCLUSIONS AND FURTHER WORK 
This paper is focused on the optimization of the power-

management high-level synthesis process, which fills the gap 
between the abstract ESL power-management specification 
and the more-detailed RTL power management. The power-
management high-level synthesis process analyzes the abstract 
power-management specification and automatically generates 
the standard well-supported UPF specification along with the 
functional description of the corresponding power-
management unit. 

The proposed optimization is able to automatically resolve 
some kinds of specification inconsistencies, potentially 
introduced by a designer at the specification stage. Using the 
developed abstract power-management static analysis and SoC 
components structural relations, the optimized power-
management high-level synthesis process generates only the 
required power-management elements at the RTL. The 
proposed automated error-recovery simplifies the abstract 
power-management specification, because a designer does not 
need to keep all the power-management rules in mind. It is 
especially useful in the early design stages. The designer has 
more time to focus on the correct functional specification. 

The experiments using a pseudorandom approach have 
proved the benefit of the developed optimization. The results 
have shown that the optimization can reduce the complexity of 
the synthesized UPF specification by not implementing the 
support for never-used abstract power states and power modes 
in the RTL model. The eventual power intent however 
remains the same. It has been verified by the modified 
equivalence checking that we have also proposed in this paper. 
Such an equivalence checking takes into account the 
optimization decisions. The specifications at the ESL and the 
RTL do not need to be structurally equivalent to have the 
equivalent power intent. The developed power-management 
high-level synthesis is intended to run alongside the functional 
high-level synthesis that is already used in the industry. 
Together, the proposed automated high-level synthesis 
significantly speeds-up low-power SoC development process 
and avoids many human errors, potentially introduced by the 
manual transition from the ESL to the RTL. 

The further work in this area can be focused on automated 
dividing of SoC components into power domains and 

automated selection of suitable power states for power 
domains. It could bring us closer to a complete abstraction 
from power management at the ESL and its implicit 
introduction during the high-level synthesis. It could speed-up 
low power SoC development even more. 
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