
Parallel Simulation of SystemC TLM 2.0 Compliant MPSoC
on SMP Workstations

Aline Mello , Isaac Maia , Alain Greiner , and Francois Pecheux
{Aline.Vieira-de-Mello, Isaac.Maia, Alain.Greiner, Francois.Pecheux}@lip6.fr

lip6 - Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie

4, Place Jussieu - Paris - France

ABSTRACT

The simulation speed is a key issue in virtual prototyping of
Multi-Processors System on Chip (MPSoCs). The SystemC
TLM2.0 (Transaction Level Modeling) approach accelerates
the simulation by using Interface Method Calls (IMC) to
implement the communications between hardware compo-
nents. Another source of speedup can be exploited by par-
allel simulation. Multi-core workstations are becoming the
mainstream, and SMP workstations will soon contain sev-
eral tens of cores. The standard SystemC simulation engine
uses a centralized scheduler, that is clearly the bottleneck
for a parallel simulation. This paper has two main contri-
butions. The first is a general modeling strategy for shared
memory MPSoCs, called TLM-DT (Transaction Level Mod-
eling with Distributed Time). The second is a truly parallel
simulation engine, called SystemC-SMP. First experimental
results on a 40 processor MPSoC virtual prototype running
on a dual-core workstation demonstrate a 1.8 speedup, ver-
sus a sequential simulation.

Keywords

MPSoC, Parallel Simulation, SystemC, SMP workstations

1. INTRODUCTION
Despite their relative novelty, Multi-Processors System

on Chip (MPSoCs) containing a few cores tend to be re-
placed by Massively Parallel MPSoCs (MP2SoCs), which
integrate dozens or hundreds of processor cores intercon-
nected through a possibly hierarchical network on chip. The
increase of processing power and parallelism creates the need
for faster yet accurate simulation tools for virtual prototyp-
ing, supporting both functional verification and performance
evaluation.

Several industrial and academic frameworks appeared to
help modeling, simulating and debugging these architectures.
The SystemC hardware description language[6] is the effec-
tive backbone of all these frameworks. The SystemC library
of C++ classes allows to describe the hardware at vari-
ous levels of abstraction, ranging from synthezisable RTL
to Transactional Level Modeling (TLM). However, when it
comes to simulate an architecture containing hundreds of
processors, even the simulation speed provided by the TLM
is not enough.

Simultaneously, multi-core workstations are becoming the
mainstream, and SMP (Symmetric Multi Processors) work-

stations will soon contains several tens of cores[11]. Un-
fortunately, the genuine SystemC simulation kernel is fully
sequential and cannot exploit the processing power provided
by these multi-cores machines.

The present work proposes a general modeling strategy
for shared memory MPSoCs, called TLM-DT (Transaction
Level Modeling with Distributed Time). Moreover, it de-
scribes a first implementation of a parallel simulation engine,
called SystemC-SMP.

This paper is composed of five sections. After this in-
troduction, section 2 introduces the principles of the PDES
algorithm and describes the proposed TLM-DT approach.
Section 3 delves into the parallel simulation kernel and the
implementation of the critical synchronization primitives in
a multicore environment. Section 4 presents a full-fledged
experimental setup with a virtual architecture containing
40 processors, and gives the simulation speedup. Section 5
comments these first results and provides some perspectives
on ongoing researches.

2. THE PROPOSED TLM-DT APPROACH
The Transaction Level Modeling (TLM) approach accel-

erates the simulation by using Interface Method Calls (IMC)
to implement the communications between hardware com-
ponents. Another source of speedup can be exploited by
parallel simulation. Multi-core workstations are becoming
the mainstream, and SMP workstations will soon contain
several tens of cores[11]. Anticipating this trend, the Trans-
action Level Modeling with Distributed Time (TLM-DT) is
proposed. It is an extension of the work presented in [12].

A SystemC transaction level model is generally a collec-
tion of SC THREADs modeling the various hardware com-
ponents of the simulated architecture. These SC THREADs
are good candidates to be executed in parallel on the multi-
ple cores of a SMP workstation. The main difficulty for Sys-
temC parallel simulation is that SystemC, as most hardware
description language (including VHDL & Verilog), relies on
the DES (Discrete Event Simulation) algorithm. In most
event-driven simulation engines, the simulation is controlled
by a central scheduler, that contains a list of time-ordered
events and a global simulation time. This means that - in the
standard SystemC simulation engine - all the SC THREADs
are controlled by the same central scheduler, that is clearly
the bottleneck for a parallel simulation.

Several parallelization techniques have been used to get
around this bottleneck. TLM-DT implements the PDES

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



(Parallel Discrete Event Simulation) principles[1], where the
system is described as a set of logical processes that execute
in parallel and communicate via point-to-point channels. In
this approach, the global simulation time does not exist any-
more, each logical process involved in the simulation has its
own local time, and the processes synchronize themselves
through timed messages. In the conservative PDES, a log-
ical process is allowed to increase its local time if and only
if it has the guarantee that it cannot receive on any of its
input channels a message with a timestamp smaller than its
local time. This constraint can be violated in the optimistic
PDES, but a rollback mechanism is needed to restore a pro-
cess into a previous state in case of violation. This rollback
mechanism is very expensive and cannot reasonably be used
with MPSoC. To solve this issue, the conservative PDES al-
gorithm uses null messages, that contain no data, but only
timing information. The null messages must be sent by each
process at regular and bounded time intervals in order to
prevent deadlocks.

2.1 TLM-DT compliance with TLM2.0
The TLM-DT simulation models use the generic payload

and phase, the initiator and target sockets, and the non
blocking transport functions defined by the TLM2.0 stan-
dard. Although TLM-DT models are compliant with TLM2.0,
shifting from global time to distributed time induces some
differences.

In TLM2.0, the synchronization between the hardware
components is accomplished by yielding control to the Sys-
temC central scheduler, that executes sequentially each pro-
cess, respecting the general evaluate-update paradigm[2] that
is the basis of the DES algorithm. Regarding the time rep-
resentation, TLM2.0 suggests two coding styles: approx-
imately-timed and loosely-timed[6]. The approximately-timed
coding style (TLM-AT) is the strict implementation of the
DES algorithm. Timed processes (implemented as SC THR-
EADs) are annotated by specific delays, and synchronize
with the central scheduler using the wait() primitive, which
means that processes are unscheduled at each synchroniza-
tion point. This allows an accurate description of the tim-
ing behaviour of shared memory MPSoC, but the simulation
speed can be very low, as the number of context switches is
very large. The loosely-timed coding style (TLM-LT) sup-
ports temporal decoupling, where processes can run ahead
of the global simulation time (without unscheduling) for a
bounded quantum of time. In this approach, the transport
interface methods are annotated with delays, that are inter-
preted as local time offsets relative to the global simulation
time. The loosely-timed coding style permits a significant
simulation speed improvement by reducing the number of
synchronization events, but it does not ensure correct sys-
tem synchronization.

In TLM-DT, the synchronization between timed processes
is not anymore centralized in the scheduler, but distributed
by annotating all messages with timing information. For this
reason, TLM-DT proposes its own coding style. In TLM-DT
coding style, each SC THREAD has an absolute local time
and sends it as the third argument of the transport interface
methods, as suggested by the TLM-LT. This absolute local
time must be set to zero at the beginning of simulation and
is increased during simulation. It can still be interpreted
as an offset relative to the SystemC global simulation time
because this time is never incremented in TLM-DT. Only

three synchronization primitives are allowed: wait(sc event),
wait(SC ZERO TIME), and sc event.notify(SC ZERO TI-
ME). Any TLM-DT description can be simulated using the
standard SystemC and the standard TLM2.0 package, pro-
vided by the OSCI consortium. As presented in the experi-
mental section, and thanks to the intrinsic properties of the
PDES algorithm, the dispersion between the various local
time is limited, and the timing error of the TLM-DT simu-
lation (versus a cycle accurate simulation) is low.

2.2 Components Modeling
In most cases, a complex MPSoC is structured in several

sub-systems (or clusters). Each cluster can contain several
initiators, several targets, and a local interconnect. A global
interconnect manages the communications between clusters.
The figure 1 depicts a typical shared memory, clusterized
architecture.

Figure 1: TLM-DT system example

A TLM-DT VCI-OCP initiator contains at least one
initiator socket and one SC THREAD. An initiator SC THR-
EAD runs until it reaches an explicit synchronization point
or when it has consumed a predefined time quantum. In
case of explicit synchronization, such as a memory access,
a transaction object is initialized and sent by means of the
nb transport fw() method. Afterwards, the corresponding
SC THREAD is unscheduled by an explicit wait(rsp event),
and waits for the response. When the response is received
by means of the nb transport bw() method, the initiator lo-
cal time is updated, and the SC THREAD is resumed by
a rsp event.notify() primitive. The local time of an initia-
tor is updated in two cases: (1) it is directly increased by
the initiator itself (processing time) and (2) it is updated
with the return time of the nb transport bw method (com-
munication time). Whenever the local time is updated, the
TLM-DT VCI-OCP initiator checks if its time quantum has
been reached. If this is the case, it sends a null message with
its current local time and is unscheduled.

A TLM-DT VCI-OCP target has at least one tar-
get socket and one SC THREAD. A target is reactive, i.e.
the SC THREAD remains sleeping until it receives a re-
quest transaction by means of the nb transport fw() method,
that executes a req event.notify(). When this is the case,



the transaction is processed, the target local time is set to
the transaction time value, and the response transaction is
returned to the initiator by calling the nb transport bw()
method. The local time of a target is updated in two cases:
(1) it is updated to the request transaction time if and only
if this time is greater than the local time (this condition is
satisfied when the interval between two consecutive request
transactions is greater than the target processing time), and
(2) it is directly increased by the target itself (response pro-
cessing time).

A TLM-DT VCI-OCP interconnect represents actu-
ally two fully independent networks for requests and re-
sponses respectively, in order to avoid deadlocks. The re-
quest network is associated to the forward path and the
response network is associated to the backward path.

The request network has two functionalities: (1) it per-
forms the conservative PDES algorithm (transactions must
be processed in a strictly time-ordered manner), and (2)
it implements the routing function (the transaction address
field is analyzed, and the transaction is routed to the proper
target). The request network contains a centralized data
structure (called PDES buffer) to store the transactions and
one SC THREAD. The PDES buffer has a reserved slot for
each input channel (there is of course one target socket per
input channel). When a target socket receives a transaction
by means of the nb transport fw() method, it is stored in
the corresponding slot. The interconnect SC THREAD is
not activated until all slots contain at least one transaction.
When this condition is reached, a temporal filtering is per-
formed to select the request with the smallest timestamp. If
the selected transaction is a null message, it is deleted and
not sent. In another case, the transaction time is increased
by the interconnect latency and the transaction is send on
the proper correct initiator socket.

In principle, the response network can implement a similar
approach to route the nb transport bw() calls. In order to
increase the simulation speed, the contention is not modeled
in the response network. There is neither SC THREAD nor
temporal filtering, and the responses to different initiators
can be sent out of order. In the response network, there is
only a routing function that analyzes the transaction source-
identifier field to route the response to the proper initiator.
This modeling strategy supports hierarchical interconnects.

In a two-level interconnect, the local interconnect connects
the initiators to the targets that belong to the same cluster,
and the global interconnect connects the different clusters.
Both levels have the same structure and behavior.

When it uses standard SystemC simulation engine, the
TLM-DT coding style combines the advantages of the loosely-
timed coding style (simulation speed), and the approximately-
timed coding style (high accuracy). But the main advantage
of the TLM-DT approach is that it does not use anymore
the SystemC global simulation time, and it becomes possible
to use a truly parallel simulation engine.

3. PARALLEL SIMULATION
The main idea of the SystemC-SMP simulation engine

is to take advantage of the TLM-DT distributed approach to
perform parallel simulation on SMP workstations. SystemC-
SMP is dedicated to the TLM-DT coding style and does not
require any modification in the simulation models running
with the standard SystemC[6] simulation kernel.

From the simulation kernel viewpoint, a TLM-DT plat-

form can be seem as a set of communicating SC THREADs
that use sc event objects to synchronize themselves. Re-
garding the SC THREADs scheduling, neither timed nor
immediate notifications are used. This means that the evalua-
te-update scheduling algorithm[2] is not adapted to the Syst-
emC-SMP parallel simulation kernel.

3.1 Simulator Software Architecture
The SystemC-SMP uses a gang-scheduling [10] approach

by grouping related neighboring SC THREADs on the same
physical CPU of the SMP workstation. Communicating SC-
THREADs must be executed on the same physical CPU in

order to benefit the cache hierarchy [7]. Moreover, the gang-
scheduling can minimize the blocking bottleneck [3]. This
approach can be used because the communication graph is
fully determined by the MPSoC hardware architecture, and
can be statically analysed by the system designer. The SC-
THREAD mapping can be explicitly controlled by the sys-

tem designer through configuration directives that are de-
scribed in the section 3.3.

The SystemC-SMP software architecture is represented in
the Figure 2. The TLM-DT Virtual Platform is the user
code after elaboration phase[2]. It is presented in section 2
and it is not part of the simulation engine. The SystemC-
SMP kernel is responsible for the creation and termination
of simulation objects. It implements shared objects visi-
ble to all local schedulers. A local scheduler is responsible
for scheduling all SC THREADs that are executed on the
same physical CPU. Each SC THREAD is implemented as
a QuickThread[4], as in the standard SystemC. The O.S
Kernel is the host Operating System kernel that provides
a POSIX-thread[10] API. Each local scheduler of SystemC-
SMP is executed in a POSIX-thread (pthread) [10] of the
host O.S. With this software architecture, it is possible to
use the CPU-affinity[5] functions provided by the host O.S
to associate each pthread to a physical CPU. The SMP
Hardware is the Symmetric Multiprocessing[7] hardware
implementing a shared memory and several physical CPUs
(with both private L1 caches, and shared L2 caches).

Figure 2: Simulator Software Architecture

3.2 Synchronization
The SC THREADs running in parallel on the SMP work-

station use sc event objects to synchronize. As mentioned



before, TLM-DT models use three primitives: wait(sc event),
sc event.notify(SC ZERO TIME) and wait(SC ZERO TIME).
Considering a certain sc event instance named e, two sce-
narios can occur in a SMP environment. The first scenario
is when e.notify() is executed after wait(e). This is the
normal situation where a SC THREAD blocks and yields
on behalf to another SC THREAD by calling the wait(e)
primitive. It resumes when the e.notify() is called. The sec-
ond scenario is when e.notify() is executed before wait(e).
In this case, the SC THREAD executing the wait(e) must
continue its execution without block.

An sc event can be in one of three states: IDLE, WAIT-
ING and NOTIFIED. The state of a sc event can be changed
by different SC THREADs in the same time, therefore wait(e)
and e.notify() have been implemented using atomic test-
and-set[10] instructions.

3.3 Configuration Directives
SystemC-SMP provides a way to bind groups of SC THR-

EAD to a physical CPU using the macro MAP CPU(cpu n,
module instance). In this macro cpu n is a CPU index and
module instance is an hardware component instantiated in
the simulated architecture (i.e. a sc module instance name).
Using this macro, all SC THREADs within a certain mod-
ule will be mapped to a specific scheduler and it will be
mapped within CPU with the same index. These configura-
tion macros can be included in the SystemC top-cell, using
conditional compilation directives to keep fully compatibil-
ity with standard SystemC.

4. EXPERIMENTAL RESULTS
The conducted experiments can be described by the triplet:

Embedded Application (EA), Hardware Architecture (HA),
and Simulation Engine (SE). The retained EA is an integer
implementation of the Smith-Waterman (SW) algorithm [8]
that performs sequence alignment in biocomputing. We used
a parallel, multi-threaded implementation of this algorithm,
written in C language. The HA is a shared-memory NUMA
structured in clusters, as presented in Figure 1. This archi-
tecture contains 10 clusters interconnected by a global Net-
work on Chip (global interconnect) supporting read/write
communication primitives in the shared address space. Each
cluster contains four 32-bits processors (with data and in-
struction caches), a local memory and a local interconnect.
The SE corresponds to the physical multi-core workstation
on which the simulation takes place. The experiments have
been performed under Linux 2.6.18 on AMD Athlon(tm)
Dual Core Processor 2.3GHz with 128KB L1-cache, 512KB
L2-cache and 1GB RAM.

The experimental results show that a speedup factor equal
to 1.9 is obtained when the performance of the dual-core
SystemC-SMP (263 seconds) is compared to the single-core
Standard SystemC (506 seconds), which is very close to the
threoretical upper bound given by Amdahl’s law.

In order to evaluate the timing accuracy of the parallel
TLM-DT simulation using the SystemC-SMP simulation en-
gine, we performed a cycle accurate simulation for the the
same EA. The HA was described using the CABA (Cycle-
Accurate, Bit-Accurate) simulation models available in [9].
The cycle accurate simulation completed in 68264502 cy-
cles, while the TLM-DT simulation completed in 64400433
cycles, corresponding to a 6% timing error. The execution
time of the cycle accurate simulation (single-core) is 45x

(11980 seconds) slower than the dual-core SystemC-SMP.

5. CONCLUSION
In this paper, a new modeling approach for timed TLM

virtual prototyping of shared memory MPSoCs was pre-
sented. The proposed TLM-DT coding style is fully com-
pliant with the TLM2.0 standard. It enforces the Parallel
Discrete Event Simulation principles and uses a distributed
representation of time instead of the SystemC global simu-
lation time. A TLM-DT model can be simulated with the
standard OSCI simulation engine and the standard TLM2.0
package. In order to take advantage of TLM-DT parallel
behavior, a new parallel simulation kernel was presented
(SystemC-SMP). The SystemC-SMP running on a dual-core
workstation obtained a 1.9 speedup in relation to the stan-
dard SystemC. This is is very close to the threoretical upper
bound given by Amdahl’s law.

TLM-DT coding style and SystemC-SMP simulation en-
gine reduce locking by using small critical sections. For this
reason, these approaches can be truly scalable and used on
SMP workstations containing more of processing cores. This
still has to be demonstrated in future work.

6. REFERENCES
[1] K. M. Chandy and J. Misra. Distributed simulation:

A case study in design and verification of distributed
programs. IEEE Trans. on Softw. Eng, 5(5):440–452,
1979.

[2] D. A. S. Committee. IEEE Std 1666 - 2005 IEEE
standard SystemC language reference manual, 2006.

[3] M. A. Jette. Expanding symmetric multiprocessor
capability through gang scheduling. In IPPS
Workshop Proceedings, page pages. Springer, 1998.

[4] D. Keppel. Tools and techniques for building fast
portable threads packages. Technical Report UWCSE
93-05-06, University of Washington, 1993.

[5] B. Lewis and D. J. Berg. Threads primer: a guide to
multithreaded programming. Prentice Hall Press,
Upper Saddle River, NJ, USA, 1995.

[6] OSCI. SystemC. http://www.systemc.org.

[7] C. Schimmel. UNIX systems for modern architectures:
symmetric multiprocessing and caching for kernel
programmers. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1994.

[8] T. Smith and M. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195–197, 1981.

[9] SoCLib. Soclib project mainpage.
http://www.soclib.fr/.

[10] W. Stallings. Operating Systems (6th ed.): Internals
and Design Principles. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2008.

[11] D. Strom and W. Gruener. Pat gelsinger: A shot at
running intel. Tom’s Hardware Guide, May, 2005.

[12] E. Viaud, F. Pêcheux, and A. Greiner. An efficient
tlm/t modeling and simulation environment based on
conservative parallel discrete event principles. In
DATE Conference Proceedings, pages 94–99, 2006.


