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It is generally accepted that a custom hardware implementation of a set of computations will provide supe-
rior speed and energy-efficiency relative to a software implementation. However, the cost and difficulty of
hardware design is often prohibitive, and consequently, a software approach is used for most applications.
In this paper, we introduce a new high-level synthesis tool called LegUp that allows software techniques to
be used for hardware design. LegUp accepts a standard C program as input and automatically compiles the
program to a hybrid architecture containing an FPGA-based MIPS soft processor and custom hardware
accelerators that communicate through a standard bus interface. In the hybrid processor/accelerator archi-
tecture, program segments that are unsuitable for hardware implementation can execute in software on the
processor. LegUp can synthesize most of the C language to hardware, including fixed-sized multi-dimensional
arrays, structs, global variables and pointer arithmetic. Results show that the tool produces hardware so-
lutions of comparable quality to a commercial high-level synthesis tool. We also give results demonstrating
the ability of the tool to explore the hardware/software co-design space by varying the amount of a program
that runs in software vs. hardware. LegUp, along with a set of benchmark C programs, is open source and
freely downloadable, providing a powerful platform that can be leveraged for new research on a wide range
of high-level synthesis topics.
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General Terms: Design, Algorithms
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performance, power, hardware/software co-design

1. INTRODUCTION

Two approaches are possible for implementing computations: software (running on a stan-
dard processor) or hardware (custom circuits). A hardware implementation can provide
a significant improvement in speed and energy-efficiency versus a software implementa-
tion (e.g. [Cong and Zou 2009; Luu et al. 2009]). However, hardware design requires writing
complex RTL code, which is error prone and can be notoriously difficult to debug. Software
design, on the other hand, is comparatively straightforward, and mature debugging and
analysis tools are freely accessible. Despite the apparent energy and performance benefits,
hardware design is simply too difficult and costly for most applications, and a software
approach is preferred.

This work is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada,
and Altera Corporation.
The authors are with the Dept. of Electrical and Computer Engineering, University of Toronto, Toronto,
ON M5S 3G4 CANADA. T. Czajkowski is with the Altera Toronto Technology Centre, Toronto, ON M5S
1S4 CANADA. E-mail: legup@eecg.toronto.edu
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© 2012 ACM 1539-9087/2012/07-ART1 $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.



1:2 A. Canis, J. Choi, M. Aldham et al.

In this paper, we propose LegUp – an open source high-level synthesis (HLS) framework
we have developed that aims to provide the performance and energy benefits of hardware,
while retaining the ease-of-use associated with software. LegUp automatically compiles a
standard C program to target a hybrid FPGA-based software/hardware system-on-chip,
where some program segments execute on an FPGA-based 32-bit MIPS soft processor and
other program segments are automatically synthesized into FPGA circuits – hardware ac-
celerators – that communicate and work in tandem with the soft processor. Since the first
FPGAs appeared in the mid-1980s, access to the technology has been restricted to those
with hardware design skills. However, according to labor statistics, software engineers out-
number hardware engineers by more than 10X in the U.S. [United States Bureau of Labor
Statistics 2010]. An overarching goal of LegUp is to broaden the FPGA user base to include
software engineers, thereby expanding the scope of FPGA applications and growing the size
of the programmable hardware market – a goal we believe will keenly interest commercial
FPGA vendors and the embedded systems community.
The decision to include a soft processor in the target system is based on the notion that

not all C program code is appropriate for hardware implementation. Inherently sequential
computations are well-suited for software (e.g. traversing a linked list); whereas, other com-
putations are ideally suited for hardware (e.g. addition of integer arrays). Incorporating
a processor into the target platform also offers the advantage of increased high-level lan-
guage coverage – program segments that use restricted C language constructs can execute
on the processor (e.g. calls to malloc/free). We note that most prior work on high-level
hardware synthesis has focused on pure hardware implementations of C programs, not a
hybrid software/hardware system.
LegUp is written in modular C++ to permit easy experimentation with new HLS algo-

rithms. We leverage the state-of-the-art LLVM (low-level virtual machine) compiler frame-
work for high-level language parsing and its standard compiler optimizations [LLVM 2010],
and we implement hardware synthesis as new back-end compiler passes within LLVM. The
LegUp distribution includes a set of benchmark C programs [Hara et al. 2009] that the user
can compile to pure software, pure hardware, or a combined hardware/software system. For
the hardware portions, LegUp produces RTL code that can be synthesized using standard
commercial synthesis tools. In this paper, we present an experimental study demonstrat-
ing that LegUp produces hardware implementations of comparable quality to a commercial
tool [Y Explorations (XYI) 2010]. We also give results illustrating LegUp’s ability to effec-
tively explore the design space between a pure software implementation and pure hardware
implementation of a given program.
While the promise of high-level hardware synthesis has been touted for decades (consider

that Synopsys introduced its Behavioral Compiler tool in 1996), the technology has yet to
be embraced broadly by industry. We believe its widespread adoption has been impeded by
a number of factors, including a lack of comprehensive C/C++ language support, and, in
some cases, the use of non-standard languages (e.g., [Huang et al. 2008]). While a number
of research groups have developed high-level hardware synthesis tools, few have gained
sustained traction in the research community and the tools have been kept proprietary in
many cases. The open source nature of LegUp is a key differentiator relative to prior work.
Prior high-quality open source EDA projects have had a tremendous impact in spurring

new research advances. As an example, the VPR system has enabled countless studies on
FPGA architecture, packing, placement, and routing [Betz and Rose 1997]. Similarly, the
ABC logic synthesis system has reinvigorated low-level logic synthesis research [Mishchenko
et al. 2006]. High-level hardware synthesis and application-specific processor design can
likewise benefit from the availability of a robust publicly-accessible framework such as LegUp
– a framework used and contributed to by researchers around the world. In fact, at the time
of acceptance, the tool has been downloaded over 350 times by research groups around the
world (since March 2011).
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A key usage scenario for the LegUp tool is in the area of FPGA-based embedded systems
design, which frequently include a soft processor [Wayne Marx 2008]. LegUp can improve
computational throughput and energy-efficiency of such systems by allowing computations
to be migrated from the processor to custom hardware. In addition, since LegUp can also
synthesize a program (or a subset of its constituent functions) to pure hardware, it can be
applied to implement the hardware accelerators in a “server style” processor/accelerator
platform, where a high-end processor communicates with FPGA-based accelerators over a
PCIe bus. While the server scenario is certainly possible, it is the embedded systems usage
model that is explored more heavily in this paper.
A preliminary version of a portion of this work appears in [Canis et al. 2011]. In this

extended journal version, we elaborate on all aspects of the proposed framework, including
background on the intermediate representation (IR) within the LLVM compiler, and how
programs represented in the IR are synthesized to hardware circuits. We describe the pro-
cessor/accelerator interconnection approach in further detail, as well as provide additional
information on the benchmark suite and debugging capabilities. Circuit-by-circuit experi-
mental results for speed, area and power are also included (whereas, only average data was
included in the 4-page conference version). We also describe how LegUp can be modified to
support different FPGA architectures, implement a new scheduling algorithm, and support
parallel accelerators.
The remainder of this paper is organized as follows: Section 2 presents related work.

Section 3 introduces the target hardware architecture and outlines the high-level design
flow. The details of the high-level synthesis tool and software/hardware partitioning are
described in Section 4. An experimental evaluation appears in Section 5. Section 6 presents
three cases studies that serve to demonstrate the extensibility of the LegUp tool: 1) to
target an alternate FPGA device, 2) to evaluate a different scheduling algorithm, and 3) to
support concurrently running accelerators. Conclusions and suggestions for future work are
given in Section 7.

2. RELATED WORK

2.1. High-Level Synthesis

Automatic compilation of a high-level language program to silicon has been a decades-long
quest in the EDA field, with early seminal work done in the 1980s. We highlight several
recent efforts, with emphasis on tools that target FPGAs.
Several HLS tools have been developed for targeting specific applications. GAUT is a

high-level synthesis tool that is designed for DSP applications [Coussy et al. 2010]. GAUT
synthesizes a C program into an architecture with a processing unit, a memory unit, and
a communication unit, and requires that the user supply specific constraints, such as the
pipeline initiation interval.
ROCCC is an open source high level synthesis tool that can create hardware accelerators

from C [Villarreal et al. 2010]. ROCCC is designed to accelerate critical kernels that perform
repeated computation on streams of data, for instance DSP applications such as FIR filters.
ROCCC does not support several commonly-used aspects of the C language, such as generic
pointers, shifting by a variable amount, non-for loops, and the ternary operator. ROCCC
has a bottom-up development process that involves partitioning one’s application into mod-
ules and systems. Modules are C functions that are converted into computational datapaths
with no FSM, with loops fully unrolled. These modules cannot access memory but have data
pushed to them and output scalar values. Systems are C functions that instantiate modules
to repeat computation on a stream of data or a window of memory, and usually consist of
a loop nest with special function parameters for streams. ROCCC supports advanced op-
timizations such as systolic array generation, temporal common subexpression elimination,
and it can generate Xilinx PCore modules to be used with a Xilinx MicroBlaze proces-
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Table I. Release status of recent non-commercial HLS tools.

Open source Binary only No source or binary

Trident xPilot WarpProcessor
ROCCC GAUT LiquidMetal

CHiMPS

sor. However, ROCCC’s strict subset of C is insufficient for compiling any of the CHStone
benchmarks used in this study and described in Section 4.5. Broadly speaking, ROCCC
works and excels for a specific class of applications (streaming-oriented applications), but it
is not a general C-to-hardware compiler. By supporting the CHStone benchmarks, LegUp
provides researchers with the opportunity to compile larger C programs than is possible
with ROCCC.
General (application-agnostic) tools have also been proposed in recent years. CHiMPS

is a tool developed by Xilinx and the University of Washington that synthesizes programs
into a many cache architecture, taking advantage of the abundant small block RAMs avail-
able throughout the FPGA fabric [Putnam et al. 2008]. LiquidMetal is a compiler being
developed at IBM Research comprising a HLS compiler and a new (non-standard) language,
LIME, that incorporates hardware-specific constructs, such as bitwidth specification on in-
tegers [Huang et al. 2008]. xPilot is a tool that was developed at UCLA [Cong et al. 2006]
and used successfully for a number of HLS studies (e.g., [Chen and Cong 2004]). Trident is
a tool developed at Los Alamos National Labs, with a focus on supporting floating point
operations [Tripp et al. 2007]. xPilot and Trident have not been under active development
for several years and are no longer maintained.
Among prior academic work, the Warp Processor proposed by Vahid, Stitt and Lysecky

bears the most similarity to our framework [Vahid et al. 2008]. In a Warp Processor, soft-
ware running on a processor is profiled during its execution. The profiling results guide the
selection of program segments to be synthesized to hardware. Such segments are disassem-
bled from the software binary to a higher-level representation, which is then synthesized to
hardware [Stitt and Vahid 2007]. The software binary running on the processor is altered
automatically to leverage the generated hardware. We take a somewhat similar approach,
with the key differences being that we compile hardware from the high-level language source
code (not from a disassembled binary) and our tool is open source.
With regard to commercial tools, there has been considerable activity in recent years,

both in start-ups and major EDA vendors. Current offerings include AutoPilot from Au-
toESL [AutoESL ] (a commercial version of xPilot, recently acquired by Xilinx, Inc.), Cata-
pult C from Mentor Graphics [Mentor Graphics 2010], C2R from CebaTech [CebaTech 2010],
eXCite from Y Explorations [Y Explorations (XYI) 2010], CoDeveloper from Impulse Ac-
celerated Technologies [Impulse 2010], Cynthesizer from Forte [Forte 2010], and C-to-Silicon
from Cadence [Cadence 2010]. On our experience, attaining a binary executable for evalu-
ation has not been possible for most tools.
Also on the commercial front is Altera’s C2H tool [Altera, Corp. 2009]. C2H allows a

user to partition a C program’s functions into a hardware set and a software set, where
the software-designated functions execute on a Nios II soft processor, and the hardware-
designated functions are synthesized into custom hardware accelerators that connect to the
Nios II through an Avalon interface (Altera’s on-chip interconnect standard). The C2H
target system architecture closely resembles that targeted by our tool.
Table I shows the release status of each non-commercial tool surveyed above, indicating

whether each is: 1) open source, 2) binary only (i.e., only the binary is publicly available),
or 3) no source or binary available. Tools in category #2 cannot be modified by the research
community to explore new HLS algorithms or new processor/accelerator design styles. Re-
sults produced by tools in category #3 cannot be independently replicated. In the open
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Fig. 1. Design flow with LegUp.

source category, the Trident tool was based on an early version of LLVM, however, it is
has not been actively maintained for several years, and it targeted pure hardware and not
a hybrid hardware/processor architecture. ROCCC is actively being worked on, however,
it targets a feed-forward pipeline hardware architecture model. To our knowledge, there is
currently no open source HLS tool that compiles a standard C program to a hybrid pro-
cessor/accelerator system architecture, where the synthesized hardware follows a general
datapath/state machine model. By supporting nearly all of the commonly-used aspects of
the C language, as evidenced by the CHStone benchmark programs [Hara et al. 2009],
LegUp provides researchers with the infrastructure needed to compile larger and more gen-
eral C programs than those supported by ROCCC. Section 6 describes case studies that
demonstrate the tools extensibility.

2.2. Application-Specific Instruction Processors (ASIPs)

The concept of an application-specific instruction set processor (ASIP) (e.g. [Pothineni
et al. 2010], [Pozzi et al. 2006], [Henkel 2003], [Sun et al. 2004]) is also related to the hybrid
processor/accelerator platform targeted by LegUp. An ASIP combines a processor with
custom hardware to improve the speed and energy efficiency of an application. In an ASIP,
a cluster of a program’s instructions is selected, and the cluster is replaced by a (new)
custom instruction that calls a custom hardware unit implementing the functionality of
the cluster. There are two main differences between typical ASIPs and the LegUp plat-
form. First accelerators in ASIPs are closely coupled to the processor. While the coupling
allows the accelerators to access the processor’s registers, it requires the processor to stall
while an accelerator performs computation. Thus, performance is limited in comparison to
LegUp, where the loosely-coupled processor/accelerator architecture permits multiple ac-
celerators and the processor to execute concurrently. Second, the LegUp platform is a full
HLS framework capable of synthesizing an entire program to hardware and is not limited
to synthesizing clusters of instructions.

3. LEGUP OVERVIEW

In this section, we provide a high-level overview of the LegUp design flow and its target
architecture. Algorithmic and implementation details follow in Section 4.
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3.1. Design Flow

The LegUp design flow comprises first compiling and running a program on a standard
processor, profiling its execution, selecting program segments to target to hardware, and
then re-compiling the program to a hybrid hardware/software system. Figure 1 illustrates
the detailed flow. Referring to the labels in the figure, at step ➀, the user compiles a
standard C program to a binary executable using the LLVM compiler. At ➁, the executable
is run on an FPGA-based MIPS processor. We selected the Tiger MIPS processor from the
University of Cambridge [University of Cambridge 2010], based on its support for the full
MIPS instruction set, established tool flow, and well-documented modular Verilog.
The MIPS processor has been augmented with extra circuitry to profile its own execution.

Using its profiling ability, the processor is able to identify sections of program code that
would benefit from hardware implementation, improving program throughput and power.
Specifically, the profiling results drive the selection of program code segments to be re-
targeted to custom hardware from the C source. Profiling a program’s execution in the
processor itself provides the highest possible accuracy, as the executing code does not need
to be altered to be profiled and can run at full speed. Moreover, with hardware profiling,
system-level characteristics that affect performance are properly accounted for, such as off-
chip memory access times. In this paper, we profile program run-time at the function level.
In the first release of our tool the user must manually examine the profiling results and
place the names of the functions to be accelerated in a Tcl file that is read by LegUp.
Having chosen program segments to target to custom hardware, at step ➂ LegUp is

invoked to compile these segments to synthesizeable Verilog RTL. Presently, LegUp HLS
operates at the function level: entire functions are synthesized to hardware from the C
source. Moreover, if a hardware function calls other functions, such called functions are also
synthesized to hardware. In other words, we do not allow a hardware-accelerated function
to call a software function. The RTL produced by LegUp is synthesized to an FPGA imple-
mentation using standard commercial tools at step ➃. As illustrated in the figure, LegUp’s
hardware synthesis and software compilation are part of the same LLVM-based compiler
framework.
In step ➄, the C source is modified such that the functions implemented as hardware

accelerators are replaced by wrapper functions that call the accelerators (instead of doing
computations in software). This new modified source is compiled to a MIPS binary exe-
cutable. Finally, in step ➅ the hybrid processor/accelerator system executes on the FPGA.

3.2. Target System Architecture

Figure 2 elaborates on the target system architecture. The processor connects to one or
more custom hardware accelerators through a standard on-chip interface. As our initial
hardware platform is the Altera DE2 Development and Education board (containing a 90nm
Cyclone II FPGA) [DE2 2010], we use the Altera Avalon interface for processor/accelerator
communication [Altera, Corp. 2010]. Synthesizable RTL code for the Avalon interface is
generated automatically using Altera’s SOPC builder tool. The Avalon interface comprises
point-to-point connections between communicating modules – it is not a shared bus. The
Cyclone II/DE2 was chosen because of its widespread availability.
As shown in Figure 2, a shared memory architecture is used, with the processor and

accelerators sharing an on-FPGA data cache and off-chip main memory (8 MB of SDRAM).
The on-chip cache memory is implemented using block RAMs within the FPGA fabric
(M4K blocks on Cyclone II). Access to memory is handled by a memory controller. Such
an architecture allows processor/accelerator communication across the Avalon interface or
through memory. The shared single cache obviates the need to implement cache coherency
or automatic cache line invalidation. Although not shown in the figure, the MIPS soft
processor also has an instruction cache.
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Fig. 2. Target system architecture.

The architecture depicted in Figure 2 represents the target system most natural for an
initial release of the tool. We expect the shared memory to become a bottleneck if many
processors and accelerators are included in the system. The architecture of processor/ac-
celerator systems is an important direction for future research – research enabled by a
framework such as LegUp – with key questions being the investigation of the best on-chip
connectivity and memory architecture. Moreover, in our initial release, the processor and
accelerators share a single clock signal. Multi-clock domain processor/accelerator systems-
on-chip is an important avenue to explore.

4. DESIGN AND IMPLEMENTATION

4.1. High-Level Hardware Synthesis

High-level synthesis has traditionally been divided into three steps [Coussy et al. 2009]:
allocation, scheduling and binding. Allocation determines the amount of hardware available
for use (e.g., the number of adder functional units), and also manages other hardware con-
straints (e.g., speed, area, and power). Scheduling assigns each operation in the program
being synthesized to a particular clock cycle (state) and generates a finite state machine.
Binding assigns a program’s operations to specific hardware units. The decisions made by
binding may imply sharing functional units between operations, and sharing registers/mem-
ories between variables. We now describe our initial implementation choices for the HLS
steps, beginning with a discussion of the compiler infrastructure.

4.1.1. Low-Level Virtual Machine (LLVM). LegUp leverages the low-level virtual machine
(LLVM) compiler framework – the same framework used by Apple for iPhone/iPad ap-
plication development. At the core of LLVM is an intermediate representation (IR), which
is essentially machine-independent assembly language. C code is translated into LLVM’s
IR then analyzed and modified by a series of compiler optimization passes. Current re-
sults show that LLVM produces code of comparable quality to gcc for x86-based processor
architectures.
Consider an 8-tap finite impulse response (FIR) filter whose output, y[n], is a weighted

sum of the current input sample, x[n] and seven previous input samples. The C code for
calculating the FIR response is given in Figure 3. The unoptimized LLVM IR corresponding
to this C code is given in Figure 4. We highlight a few key elements of the IR here. The LLVM
IR is in single static assignment (SSA) form, which prohibits variable re-use, guaranteeing
a 1-to-1 correspondence between an instruction and its destination register. Register names
in the IR are prefixed by %. Types are explicit in the IR. For example, i32 specifies a 32-bit
integer type and i32* specifies a pointer to a 32-bit integer.
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y[n] = 0;
for(i = 0; i < 8; i++) {

y[n] += coeff[i] * x[n - i];
}

Fig. 3. C code for FIR filter.

In the example IR for the FIR filter in Figure 4, line 1 marks the beginning of a basic
block called entry. A basic block is a contiguous set of instructions with a single entry (at
its beginning) and exit point (at its end). Lines 2 and 3 initialize y[n] to 0. Line 4 is an
unconditional branch to a basic block called bb1 that begins on line 5. phi instructions
are needed to handle control flow-dependent variables in SSA form. For example, the phi
instruction on line 6 assigns loop index register %i to 0 if the previous basic block was
entry; otherwise, %i is assigned to register %i.new, which contains the incremented %i from
the previous loop iteration. Line 7 initializes a pointer to the coefficient array. Lines 8 and
9 initialize a pointer to the sample array x. Lines 10-12 load the sum y[n], sample and
coefficient into registers. Lines 13 and 14 perform the multiply-accumulate. The result is
stored in line 15. Line 16 increments the loop index %i. Lines 17 and 18 compare %i with
loop limit (8) and branch accordingly.
Observe that LLVM instructions are simple enough to directly correspond to hardware

operations (e.g., a load from memory, or an arithmetic computation). Our HLS tool operates
directly with the LLVM IR, scheduling the instructions into specific clock cycles (described
below).
Scheduling operations in hardware requires knowing data dependencies between opera-

tions. Fortunately, the SSA form of the LLVM IR makes this easy. For example, the multiply
instruction (mul) on line 13 of Figure 4 depends on the results of two load instructions on
lines 11 and 12. Memory data dependencies are more problematic to discern; however, LLVM
includes alias analysis – a compiler technique for determining which memory locations a
pointer can reference. In Figure 4, the store on line 15 has a write-after-read dependency
with the load on line 10, but has no memory dependencies with the loads on lines 12 and
13. Alias analysis can determine that these instructions are independent and can therefore
be performed in parallel.
Transformations and optimizations in the LLVM framework are structured as a series

of compiler passes. Passes include optimizations such as dead code elimination, analysis
passes such as alias analysis, and back-end passes that produce assembly for a particular
target machine (e.g. MIPS or ARM). The infrastructure is flexible, allowing passes to be
reordered, substituted with alternatives, and disabled. LegUp HLS algorithms have been
implemented as LLVM passes that fit into the existing framework. Implementing the HLS
steps as distinct passes also allows easy experimentation with different HLS algorithms. For
example, one could modify LegUp to “plug in” a new scheduling algorithm and study its
impact on quality of results.

4.1.2. Device Characterization. For a given FPGA family, LegUp includes scripts to pre-
characterize the hardware operation corresponding to each LLVM instruction for all sup-
ported bitwidths (typically, 8, 16, 32, 64). The scripts synthesize each operation in isolation
for the target FPGA family to determine the propagation delay, required number of logic
elements, registers, multiplier blocks, and power consumption. This characterization data
allows LegUp to make early predictions of circuit speed and area for the hardware acceler-
ators and also to aid scheduling and binding.

4.1.3. Allocation. The purpose of allocation is to determine the amount of hardware that
may be used to implement the circuit. LegUp reads allocation information from a configura-
tion Tcl file, which specifies the target FPGA device and the resource limits for the device,
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1: entry:
2: %y.addr = getelementptr i32* %y, i32 %n
3: store i32 0, i32* %y.addr
4: br label %bb1
5: bb1:
6: %i = phi i32 [ 0, %entry ], [ %i.new, %bb1 ]
7: %coeff.addr = getelementptr [8 x i32]* %coeff,

i32 0, i32 %i
8: %x.ind = sub i32 %n, %i
9: %x.addr = getelementptr i32* %x, i32 %x.ind
10: %0 = load i32* %y.addr
11: %1 = load i32* %coeff.addr
12: %2 = load i32* %x.addr
13: %3 = mul i32 %1, %2
14: %4 = add i32 %0, %3
15: store i32 %4, i32* %y.addr
16: %i.new = add i32 %i, 1
17: %exitcond = icmp eq i32 %i.new, 8
18: br i1 %exitcond, label %return, label %bb1
19:return:

Fig. 4. LLVM IR for FIR filter.

e.g. the number of available multiplier blocks. In general, LegUp HLS operates as though
an unlimited amount of resources are available in the target FPGA. The reason for this is
that resource sharing (i.e. using a single hardware unit to implement multiple operations
within the program being synthesized) requires adding multiplexers to the input ports of a
shared hardware unit, and multiplexers are costly to implement in FPGAs. For example, a
32-bit adder can be implemented using 32 4-input LUTs (and associated carry logic), and
32 2-to-1 multiplexers also require 32 4-input LUTs – the same number of LUTs as the
adder itself! Thus, for the allocation step, LegUp does the following:

—Multiply: Hard multiplier blocks in the FPGA fabric are used. Sharing multipliers is only
done when the benchmark being synthesized requires more multipliers than that available
in the FPGA.

—Divide/Modulus: These operations are implemented with LUTs, and consume significant
area. Therefore, we set the number of divide/remainder units to be the maximum number
used in any cycle of the schedule. Multiplexers are added to the input ports of the unit(s)
to facilitate the resource sharing (described below in the binding section).

4.1.4. Scheduling. Scheduling is the task of assigning operations to clock cycles and building
a finite state machine (FSM). A control flow graph (CFG) of a program is a directed graph
where basic blocks are represented by vertices and branches are represented by edges. For
example, given two basic blocks, b1 and b2, b1 has an edge to b2 in the CFG if b1 can
branch to b2. We can think of a CFG as a coarse representation of the FSM needed to
control the hardware being synthesized – the nodes and edges are analogous to those of a
state diagram. What is not represented in this coarse FSM are data dependencies between
operations within a basic block and the latencies of operations (e.g., a memory access may
take more than a single cycle).
Having constructed the coarse FSM from the CFG, LegUp then schedules each basic block

individually, which amounts to splitting each node in the CFG into multiple nodes, each
corresponding to one FSM state (clock cycle). The initial release of LegUp uses as-soon-as-
possible (ASAP) scheduling [Gajski and et. al. Editors 1992], which assigns an instruction to
the first state after all of its dependencies have been computed. Traversing basic blocks, and
visiting the instructions within each basic block in order, the operands for each instruction
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0 1 2 3 4 5 6 7 8

%y.addr = getelementptr i32* %y, i32 %n

store i32 0, i32* %y.addr

br label %bb1

%i = phi i32 [ 0, %entry ], [ %i.new, %bb1 ]

%coeff.addr = geteptr i32* %coeff, i32 0, i32 %i

%x.ind = sub i32 %n, %i

%x.addr = getelementptr i32* %x, i32 %x.ind

%0 = load i32* %y.addr

%1 = load i32* %coeff.addr

%2 = load i32* %x.addr

%3 = mul i32 %1, %2

%4 = add i32 %0, %3

store i32 %4, i32* %y.addr

%i.new = add i32 %i, 1

%exitcond = icmp eq i32 %i.new, 8

br i1 %exitcond, label %return, label %bb1

Fig. 5. Scheduled FIR filter IR with data dependencies.

are either: 1) from this basic block and therefore guaranteed to have already been assigned
a state, or 2) from outside this basic block, in which case we can safely assume they will be
available before control reaches this basic block. Note that our scheduler properly handles
instructions with multi-cycle latencies, such as pipelined divides or memory accesses.
In some cases, we can schedule an instruction into the same state as one of its operands.

This is called operation chaining. We perform chaining in cases where the estimated delay of
the chained operations (from allocation) does not exceed the estimated clock period for the
design. Chaining can reduce hardware latency (# of cycles for execution) and save registers
without impacting the final clock period.
Fig. 5 is a Gantt chart showing the ASAP schedule of the FIR filter instructions shown

in Fig. 4. The chart shows the same LLVM instructions, now organized into nine states.
Data dependencies between operations are shown; in this case we do not allow operation
chaining (for clarity). Load instructions have a two cycle latency, allowing us to pipeline
our memory controller for higher speed performance. Once a load has been issued, a new
load can be issued on the next cycle. Because our memory controller is single ported, only
one load can be performed every cycle.
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4.1.5. Binding. Binding comprises two tasks: assigning operators from the program being
synthesized to specific hardware units (operation assignment), and assigning program vari-
ables to registers (register allocation). When multiple operators are assigned to the same
hardware unit, or when multiple variables are bound to the same register, multiplexers are
required to facilitate the sharing. We make two FPGA-specific observations in our approach
to binding. First, multiplexers are relatively expensive to implement in FPGAs using LUTs.
Consequently, there is little advantage to sharing all but the largest functional units, namely,
multipliers and dividers. Likewise, the FPGA fabric is register rich – each logic element in
the fabric has a LUT and a register. Therefore, sharing registers is rarely justified.
We have three goals when binding operations to shared functional units. First, we would

like to balance the sizes of the multiplexers across functional units to keep circuit perfor-
mance high. Multiplexers with more inputs have higher delay, so it is desirable to avoid
having a functional unit with a disproportionately large multiplexer on its input. Second,
we want to recognize cases where we have shared inputs between operations, letting us
save a multiplexer if the operations are assigned to the same functional unit. Lastly, during
binding if we can assign two operations that have non-overlapping livetime intervals to the
same functional unit, we can use a single output register for both operations. In this case
we save a register, without needing a multiplexer. We use the LLVM live variable analysis
pass to check for the livetime intervals.
To account for these goals we use the following cost function to measure the benefit of

assigning operation op to function unit fu:

Cost(op, fu) = φ · existingMuxInputs(fu) +

β · newMuxInputs(op, fu)−

θ · outputRegisterSharable(op, fu) (1)

where φ = 0.1, β = 1, and θ = 0.5 to give priority to saving new multiplexer inputs, then
output registers, and finally balancing the multiplexers. Notice that sharing the output
register reduces the cost, while the other factors increase it.
The initial release of LegUp uses a weighted bipartite matching heuristic to solve the

binding problem [Huang et al. ]. The binding problem is represented using a bipartite graph
with two vertex sets. The first vertex set corresponds to the operations being bound (i.e.
LLVM instructions). The second vertex set corresponds to the available functional units.
A weighted edge is introduced from a vertex in the first set to a vertex in the second set
if the corresponding operation is a candidate to be bound to the corresponding functional
unit. We set the cost (edge weight) of assigning an operation to a functional unit using (1).
Weighted bipartite matching can be solved optimally in polynomial time using the well-
known Hungarian method [Kuhn 2010]. We formulate and solve the matching problem one
clock cycle at a time until the operations in all clock cycles (states) have been bound.

4.2. Local Accelerator Memories

The system architecture shown in Figure 2 includes a shared memory between the processor
and accelerators, comprising on-FPGA cache and off-FPGA SDRAM. Accesses to the off-
chip SDRAM are detrimental to performance, as each access takes multiple clock cycles to
complete, and contention may arise in the case of concurrent accesses. To help mitigate this,
constants and local variables used within hardware accelerators (which are not shared with
the processor) are stored in block RAMs in the accelerators themselves. We create local
memories for each variable/constant array used by an accelerator. An advantage of using
multiple memories instead of a single large memory is enhanced parallelism.
Each local memory is assigned a 9-bit tag using the top 9 bits of the 32-bit address

space. The tag is used to steer a memory access to the correct local accelerator memory,
or alternately, to the shared memory, that is, to the memory controller shown in Figure 2.
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Fig. 6. Profiler hardware architecture.

LegUp automatically generates the multiplexing logic to interpret the tags and steer memory
requests. Tag 000000000 is reserved for the NULL pointer, and tag 000000001 indicates that
the memory access should be steered to the shared memory. The remaining 510 different
tags can be used to differentiate between up to 510 local accelerator memories. Using 9 bits
for the tag implies that 23 bits are available for encoding the address. The decision to use
9-bit tags in the initial release of LegUp was taken because the Altera DE2 board contains
an 8 MB SDRAM which is fully addressable using 23 bits. It is straightforward to change
LegUp to use a different tag width if desired.

4.3. Hardware Profiling

As shown in Figure 1, a hardware profiler is used to decide which functions should be
implemented as hardware accelerators. The profiler utilized in LegUp is a non-intrusive,
real-time profiler that performs its analyses at the function level. As a program executes on
the MIPS processor, the profiler monitors the program counter and instruction op-codes to
track the number of cycles spent in each function and its descendants.
At a high-level, our profiler works by associating both an index and a counter with

each function in a program. The index for a function is computed using a hash of the
memory address of the function’s first instruction. The hash can be calculated in hardware
using simple logical and arithmetic operations. The counter tracks the total number of
execution cycles spent in the function and optionally, execution cycles spent in the function’s
descendants. The number of functions being tracked by the profiler is configurable, as are
the widths of the cycle counters. Most importantly, the profiler allows different programs
to be profiled without requiring any re-synthesis.
Fig. 6 provides an overview of the profiler architecture. An operation decoder module

(labeled Op Decoder) monitors instructions issued by the processor, looking for function
calls and returns. When a call is detected, the destination address is passed to the Address
Hash module which computes a unique index for the called function. The function index
is pushed onto a stack in the Call Stack module (the stack is implemented in FPGA block
RAM). A Data Counter module accumulates profiling data for the current function being
executed, while the Counter Storage contains profiling data for all functions in the program.
Pushing and popping function indices onto/from the stack on function calls and returns
allows profiling data to be accrued to the appropriate functions. The profiler represents a

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.



LegUp: An Open Source High-Level Synthesis Tool 1:13

int add (int * a, int * b, int N)
{
int sum=0;
for (int i=0; i<N; i++)
{
sum += a[i]+b[i];

}
return sum;

}

Fig. 7. C function targeted for hardware.

6.7% overhead on the MIPS processor area when configured to track up to 32 functions
using 32-bit counters. Complete details on the profiler, including how it can be extended
to profile energy consumption, are omitted for lack of space, but can be found in [Aldham
et al. 2011].

4.4. Processor/Accelerator Communication

Recall the target architecture shown in Figure 2 comprising a MIPS processor that com-
municates with hardware accelerators. When a function is selected to be implemented in
hardware, its C implementation is automatically replaced with a wrapper function by the
LegUp framework. The wrapper function passes the function arguments to the correspond-
ing hardware accelerator, asserts a start signal to the accelerator, waits until the accelerator
has completed execution, and then receives the returned data over the Avalon interconnec-
tion fabric.
The MIPS processor can do one of two things while waiting for the accelerator to complete

its work: 1) it can continue to perform computations and periodically poll a memory-mapped
register whose value is set to 1 when the accelerator is done, or, 2) it can stall until a
done signal is asserted by the accelerator. The advantage of polling is that the processor
can execute other computations concurrent with the accelerator doing its work, akin to a
threaded computing environment. The advantage of stalling is energy consumption – the
processor is in a low-power state while the accelerator operates. In our initial LegUp release,
both modes are functional; however, we use only mode #2 (stalling) for the results in this
paper.
To illustrate the wrapper concept, consider the C function shown in Figure 7. The func-

tion accepts two N -element vectors as input and computes the sum of the vectors’ pairwise
elements. If function is to be implemented in hardware, it would be replaced with the wrap-
per function shown in Figure 8. The defined memory addresses correspond to the assigned
memory space of the hardware accelerator. Each accelerator contains logic to communi-
cate with the processor according to the signals and addresses asserted through the Avalon
interconnect. Writes to the specified memory addresses translate into data communicated
across the Avalon interface to the accelerator. The write to the STATUS address starts the
accelerator. At this point, the accelerator asserts an input signal to the processor causing
it to stall; the accelerator de-asserts this signal when its work is complete. A read from the
DATA address retrieves the vector addition result from the accelerator.

4.5. Language Support and Benchmarks

LegUp supports a large subset of ANSI C for synthesis to hardware including: function calls,
assignments, loops, integer logical, bitwise and arithmetic operations. Program segments
that use unsupported language features are required to remain in software and execute on
the MIPS processor. Table II lists C language constructs that are frequently problematic for
hardware synthesis, and specifies which constructs are supported/unsupported by LegUp.
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#define STATUS (volatile int *)0xf00000000
#define DATA (volatile int *)0xf00000004
#define ARG1 (volatile int *)0xf00000008
#define ARG2 (volatile int *)0xf0000000C
#define ARG3 (volatile int *)0xf00000010

int add (int * a, int * b, int N)
{
// pass arguments to accelerator
*ARG1 = a;
*ARG2 = b;
*ARG3 = N;
// give start signal
*STATUS = 1;
// wake up and get return data
return *DATA;

}

Fig. 8. Wrapper for function in Figure 7.

Table II. Language support.

Supported Unsupported

Functions Dynamic Memory
Arrays, Structs Floating Point
Global Variables Recursion
Pointer Arithmetic

Table III. Benchmark programs included with LegUp.

Category Benchmarks Lines of C

Arithmetic 64-bit dbl precision 376–755
add, mult, div, sin

Encryption AES, Blowfish, SHA 716–1406

Processor MIPS processor 232

Media JPEG decoder, Motion, 393–1692
GSM, ADPCM

General Dhrystone 491

Unlike many HLS tools, synthesis of fixed-size multi-dimensional arrays, structs, global vari-
ables, and pointer arithmetic are supported by LegUp. Regarding structs, LegUp supports
structs with arrays, arrays of structs, and structs containing pointers. LegUp stores structs
in memory using the ANSI C alignment standards. Functions that return a struct, dynamic
memory allocation, recursion and floating point arithmetic are unsupported in the initial
release of the tool.
With the LegUp distribution, we include 13 benchmark C programs, summarized in

Table III. Included are all 12 programs in the CHStone high-level synthesis benchmark
suite [Hara et al. 2009], as well as Dhrystone – a standard integer benchmark. The pro-
grams represent a diverse set of computations falling into several categories: arithmetic,
encryption, media, processing and general. They range in size from 232-1692 lines of C
code. The arithmetic benchmarks implement 64-bit double-precision floating-point opera-
tions in software using integer types. Notice that the CHStone suite contains a benchmark
which is a software model of a MIPS processor (which we can then run on a MIPS processor).
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A key characteristic of the benchmarks is that inputs and expected outputs are included
in the programs themselves. The presence of the inputs and golden outputs for each pro-
gram gives us assurance regarding the correctness of our synthesis results. Each benchmark
program performs computations whose results are then checked against golden values. This
is analogous to built-in self test in design-for-test methodology. No inputs (e.g. from the
keyboard or a file) are required to run the programs.

4.6. Debugging

The initial release of LegUp includes a basic debugging capability which consists of auto-
matically adding print statements into the LLVM IR to dump variable values at the end of
each basic block’s execution. When the IR is synthesized to hardware, the Verilog can be
simulated using ModelSim producing a log of variable value changes that can be directly
compared with an analogous log from a strictly software execution of a benchmark. We
found even this limited capability to be quite useful, as it allows one to pinpoint the first
LLVM instruction where computed values differ in hardware vs. software, aiding problem
diagnosis and debugging.

5. EXPERIMENTS

The goals of our experimental study are three-fold: 1) to demonstrate that the quality of
results (speed, area, power) produced by LegUp HLS is comparable to that produced by
a commercial HLS tool, eXCite [Y Explorations (XYI) 2010], 2) to demonstrate LegUp’s
ability to effectively explore the hardware/software co-design space, and 3) to compare the
quality of hardware vs. software implementations of the benchmark programs. We chose
eXCite because it was the only commercial tool we had access to that could compile the
benchmark programs. With the above goals in mind, we map each benchmark program
using 5 different flows, representing implementations with successively increasing amounts
of computation happening in hardware vs. software. The flows are as follows (labels appear
in parentheses):

(1) A software-only implementation running on the MIPS soft processor (MIPS-SW ).
(2) A hybrid software/hardware implementation where the second most1 compute-intensive

function (and its descendants) in the benchmark is implemented as a hardware accel-
erator, with the balance of the benchmark running in software on the MIPS processor
(LegUp-Hybrid2 ).

(3) A hybrid software/hardware implementation where the most compute-intensive func-
tion (and its descendants) is implemented as a hardware accelerator, with the balance
in software (LegUp-Hybrid1 ).

(4) A pure hardware implementation produced by LegUp (LegUp-HW ).
(5) A pure hardware implementation produced by eXCite (eXCite-HW )2.

The two hybrid flows correspond to a system that includes the MIPS processor and a
single accelerator, where the accelerator implements a C function and all of its descendant
functions.
For the back-end of the flow, we use Quartus II ver. 9.1 SP2 to target the Cyclone II

FPGA. Quartus II was executed in timing-driven mode with all physical synthesis opti-
mizations turned on3. The correctness of the LegUp implementations was verified using
post-routed ModelSim simulations and also in hardware using the Altera DE2 board.

1Not considering the main() function.
2The eXCite implementations were produced by running the tool with the default options.
3The eXCite implementation for the jpeg benchmark was run without physical synthesis optimizations
turned on in Quartus II, as with such optimizations, the benchmark could not fit into the largest Cyclone
II device.
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Table IV. Speed performance results (frequencies in MHz, times in µS)

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

Benchmark Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time Cycles Freq. Time

adpcm 193607 74.26 2607 159883 61.61 2595 96948 57.19 1695 36795 45.79 804 21992 28.88 761

aes 73777 74.26 993 55014 54.97 1001 26878 49.52 543 14022 60.72 231 55679 50.96 1093

blowfish 954563 74.26 12854 680343 63.21 10763 319931 63.7 5022 209866 65.41 3208 209614 35.86 5845

dfadd 16496 74.26 222 14672 75.01 196 5649 77.41 73 2330 124.05 19 370 24.54 15

dfdiv 71507 74.26 963 15973 77.92 205 4538 65.92 69 2144 74.72 29 2029 43.95 46

dfmul 6796 74.26 92 10784 75.58 143 2471 79.14 31 347 85.62 4 223 49.17 5

dfsin 2993369 74.26 40309 293031 65.66 4463 80678 68.23 1182 67466 62.64 1077 49709 40.06 1241

gsm 39108 74.26 527 29500 61.46 480 18505 61.14 303 6656 58.93 113 5739 41.82 137

jpeg 29802639 74.26 401328 16072954 51.2 313925 15978127 46.65 342511 5861516 47.09 124475 3248488 22.66 143358

mips 43384 74.26 584 6463 75.51 86 6463 75.51 86 6443 90.09 72 4344 76.25 57

motion 36753 74.26 495 34859 73.34 475 17017 79.67 214 8578 91.79 93 2268 42.87 53

sha 1209523 74.26 16288 358405 77.40 4631 265221 75.76 3508 247738 86.93 2850 238009 62.48 3809

dhrystone 28855 74.26 389 25599 77.64 330 25509 76.99 331 10202 85.38 119 - - -

Geomean: 173332.0 74.26 2334.1 86258.3 67.10 1285.9 42700.5 65.65 650.3 20853.8 71.56 291.7 14594.4 40.87 357.1

Ratio: 1 1 1 0.50 0.90 0.55 0.25 0.88 0.28 0.12 0.96 0.12 0.08 0.55 0.15

Three metrics are employed to gauge quality of result: 1) circuit speed, 2) area, and
3) energy consumption. For circuit speed, we consider the cycle latency, clock frequency
and total execution time. Cycle latency refers to the number of clock cycles required for a
complete execution of a benchmark. Clock frequency refers to the reciprocal of the post-
routed critical path delay reported by Altera timing analysis. Total execution time is simply
the cycle latency multiplied by the clock period. For area, we consider the number of used
Cyclone II logic elements (LEs), memory bits, and 9x9 multipliers.
Energy is a key cost metric, as it directly impacts electricity costs, as well as influences

battery life in mobile settings. To measure energy, we use Altera’s PowerPlay power analyzer
tool, applied to the routed design. We gather switching activity data for each benchmark
through a post-route full delay simulation with Mentor Graphics’ ModelSim. ModelSim
produces a VCD (value change dump) file containing activity data for each design signal.
PowerPlay reads the VCD to produce a power estimate for each design. To compute the
total energy consumed by a benchmark for its computational work, we multiply the average
core dynamic power reported by PowerPlay with the benchmark’s total execution time.

5.1. Results

Table IV presents speed performance results for all circuits and flows. Three data columns
are given for each flow: Cycles contains the latency in number of clock cycles; Freq presents
the post-routed critical path delay in MHz; Time gives the total executation time in µS
(Cycles/Freq). The flows are presented in the order specified above, from pure software on
the left, to pure hardware on the right. The second last row of the table contains geometric
mean results for each column. The dhrystone benchmark was excluded from the geomean
calculations, as eXCite was not able to compile this benchmark. The last row of the table
presents the ratio of the geomean relative to the software flow (MIPS-SW ).
Beginning with the MIPS-SW flow, the data in Table IV indicates that the processor runs

at 74 MHz on the Cyclone II and the benchmarks take between 6.7K-29M cycles to complete
their execution. In terms of program execution time, this corresponds to a range of 92-401K
µS4. In the LegUp-Hybrid2 flow, where the second most compute-intensive function (and
its descendants) is implemented as a hardware accelerator, the number of cycles needed for
execution is reduced by 50% compared with software, on average. The Hybrid2 circuits run
at 10% lower frequency than the processor, on average. Overall, LegUp-Hybrid2 provides
a 45% (1.8×) speed-up in program execution time vs. software (MIPS-SW ). Moving onto
the LegUp-Hybrid1 flow, which represents additional computations in hardware, Table IV

4As a comparison, we also ran the benchmarks on the Altera NIOS II/f (fast) soft processor and found the
NIOS II performance to be about twice as fast as Tiger MIPS. Note, however, that NIOS II is not open
source, has a 6-stage pipeline and is specially tuned for Altera devices, whereas, Tiger MIPS has a 5-stage
pipeline and is not optimized for any particular FPGA device architecture.
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shows that cycle latency is 75% lower than software alone. However, clock speed is 12%
worse for this flow, which when combined with latency, results in a 72% reduction in program
execution time vs. software (a 3.6× speed-up over software). Looking broadly at the data for
MIPS-SW, LegUp-Hybrid1 and LegUp-Hybrid2, we observe a trend: execution time decreases
substantially as more computations are mapped to hardware. Note that the MIPS processor
would certainly run at a higher clock speed on a 40/45 nm FPGA, e.g. Stratix IV, however
the accelerators would also speed-up commensurately.
The two right-most flows in Table IV correspond to pure hardware implementations. Ob-

serve that benchmark programs mapped using the LegUp-HW flow require just 12% of the
clock cycles of the software implementations, on average, yet they run at about the same
speed in MHz. When benchmarks are mapped using eXCite-HW, even fewer clock cycles are
required to complete their execution – just 8% of that required for software implementations.
However, implementations produced by eXCite run at 45% lower clock frequency than the
MIPS processor, on average. LegUp produces heavily pipelined hardware implementations,
whereas, we believe eXCite does more operation chaining, resulting in few computation cy-
cles yet longer critical path delays. Considering total execution time of a benchmark, LegUp
and eXCite offer similar results. LegUp-HW provides an 88% execution time improvement
vs. software (8× speed-up); eXCite-HW provides an 85% improvement (6.7× speed-up).
Both of the pure hardware implementations are a significant win over software. The most
favorable LegUp results were for the dfdiv and dfsin benchmarks, for which the speed-up
over pure software was over 30×. The benchmark execution times of LegUp implementa-
tions relative to eXCite are comparable, which bodes well for our framework and gives us
assurance that it produces implementations of reasonable quality.
Observe that neither of the hybrid scenarios provide a performance win over pure hard-

ware for these particular benchmark circuits. Moreover, none of the benchmarks use C
language constructs that are unsupported by LegUp. Nevertheless, the hybrid scenarios
do serve to demonstrate LegUp’s ability to synthesize working systems that contain both
hardware and software aspects.
It is worth highlighting a few anomalous results in Table IV. Comparing LegUp-HW

with eXCite-HW for the benchmark aes, LegUp’s implementation provides a nearly 5×
improvement over eXCite in terms of execution time. Conversely, for the motion benchmark,
LegUp’s implementation requires nearly 4× more cycles than eXCite’s implementation. We
believe such differences lie in the extent of pipelining used by LegUp vs. eXCite, especially
for arithmetic operations such as division. In LegUp, we pipeline arithmetic units to the
maximum extent possible, leading to higher cycle latencies, and improved clock periods.
Area results are provided for each circuit in Table V. For each flow, three columns provide

the number of Cyclone II logic elements (LEs), the number of memory bits used (# bits),
as well as the number of 9x9 multipliers (Mults). As in the performance data above, the
geometric mean and ratios relative to MIPS software alone are given in the last two rows
of Table V. Observe that some columns contain a 0 for one or more circuits, invalidating
the geomean calculation. To calculate the geomean for such columns, the 0’s were taken to
be 1’s5.
Beginning with the area of the MIPS processor, the data in Table V shows it requires

12.2K LEs, 226K memory bits, and 16 multipliers. The hybrid flows include both the MIPS
processor, as well as custom hardware, and consequently, they consume considerably more
area. When the LegUp-Hybrid2 flow is used, the number of LEs, memory bits, and multi-
pliers increase by 2.23×, 1.14×, and 2.68×, respectively, in Hybrid2 vs. the MIPS processor
alone, on average. The LegUp-Hybrid1 flow requires even more area: 2.75× LEs, 1.16×
memory bits, and 3.18× multipliers vs. MIPS. Note that link time optimization in LLVM
was disabled for the hybrid flows, as was necessary to preserve the integrity of the function

5This convention is used in life sciences studies.
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Table V. Area results.

MIPS-SW LegUp-Hybrid2 LegUp-Hybrid1 LegUp-HW eXCite-HW

Benchmark LEs # bits Mults LEs # bits Mults LEs # bits Mults LEs # bits Mults LEs # bits Mults

adpcm 12243 226009 16 25628 242944 152 46301 242944 300 22605 29120 300 16654 6572 28

aes 12243 226009 16 56042 244800 32 68031 245824 40 28490 38336 0 46562 18688 0

blowfish 12243 226009 16 25030 341888 16 31020 342752 16 15064 150816 0 31045 33944 0

dfadd 12243 226009 16 22544 233664 16 26148 233472 16 8881 17120 0 9416 0 0

dfdiv 12243 226009 16 28583 226009 46 36946 233472 78 20159 12416 62 9482 0 32

dfmul 12243 226009 16 16149 226009 48 20284 233472 48 4861 12032 32 4536 0 26

dfsin 12243 226009 16 34695 233472 78 54450 233632 116 38933 12864 100 22274 0 38

gsm 12243 226009 16 25148 232576 114 30808 233296 142 19131 11168 70 6114 3280 2

jpeg 12243 226009 16 46432 338096 252 64441 354544 254 46224 253936 172 30420 105278 20

mips 12243 226009 16 18857 230304 24 18857 230304 24 4479 4480 8 2260 3072 8

motion 12243 226009 16 28761 243104 16 18013 242880 16 13238 34752 0 20476 16384 0

sha 12243 226009 16 20382 359136 16 29754 359136 16 12483 134368 0 13684 3072 0

dhrystone 12243 226009 16 15220 226009 16 16310 226009 16 4985 82008 0 - - -

Geomean: 12243 226009 16 27248 258526 43 33629 261260 51 15646 28822 12 13101 496 5

Ratio: 1 1 1 2.23 1.14 2.68 2.75 1.16 3.18 1.28 0.13 0.72 1.07 0.00 0.32
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Fig. 9. Performance and area results (performance in µS).

boundaries6. However, link time optimization was enabled for the MIPS-SW and LegUp-
HW flows, permitting greater compiler optimization for such flows, possibly improving area
and speed.
Turning to the pure hardware flows in Table V, the LegUp-HW flow implementations

require 28% more LEs than the MIPS processor on average; the eXCite-HW implementa-
tions require 7% more LEs than the processor. In other words, on the key area metric of the
number of LEs, LegUp implementations require 19% more LEs than eXCite, on average.
We consider the results to be quite encouraging, given that this is the initial release of an
open source academic HLS tool. In terms of memory bits, both the LegUp-HW flow and
the eXCite-HW flow require much fewer memory bits than the MIPS processor alone. For
the benchmarks that require embedded multipliers, the LegUp-HW implementations use
more multipliers than the eXCite-HW implementations, which we believe is due to more
extensive multiplier sharing in the binding phase of eXCite.
Figure 9 summarizes the speed and area results. The left vertical axis represents geometric

mean execution time; the right axis represents area (number of LEs). Observe that execution

6Link time optimization permits code optimization across compilation modules.
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Fig. 10. Energy results.

time drops as more computations are implemented in hardware. While the data shows
that pure hardware implementations offer superior speed performance to pure software or
hybrid implementations, the plot demonstrates LegUp’s usefulness as a tool for exploring
the hardware/software co-design space. One can multiply the delay and area values to
produce an area-delay product. On such a metric, LegUp-HW and eXCite-HW are nearly
identical (∼4.6M µS-LEs vs. ∼4.7M µS-LEs) – LegUp-HW requires more LEs vs. eXCite-
HW, however, it offers better speed, producing a roughly equivalent area-delay product.
The area-delay product parity with eXCite gives us further confidence that the HLS results
produced by LegUp are competitive with commercial tools.
Figure 10 presents the geometric mean energy results for each flow. The energy results

bear similarity to the trends observed for execution time, though the trends here are even
more pronouced. Energy is reduced drastically as computations are increasingly imple-
mented in hardware vs. software. The LegUp-Hybrid2 and LegUp-Hybrid1 flows use 47%
and 76% less energy than the MIPS-SW flow, respectively, representing 1.9× and 4.2× en-
ergy reductions. The pure hardware flows are even more promising from the energy stand-
point. With LegUp-HW, the benchmarks use 94% less energy than if they are implemented
with the MIPS-SW flow (an 18× reduction). The eXCite results are similar. Pure hardware
benchmark implementations produced by eXCite use over 95% less energy than software im-
plementations (a 22× reduction). The energy results are promising, especially since energy
was not a specific focus of our initial release.

6. EXTENSIBILITY OF LEGUP: CASE STUDIES

We now move onto illustrating the extensibility of the LegUp framework in several ways: 1)
we describe our recent work on supporting an additional FPGA architecture, 2) we describe
our experiences with incorporating a state-of-the-art scheduling algorithm, and 3) we show
a simple example that utilizes multiple parallel accelerators. Our intent is to demonstrate
LegUp’s utility as an open source tool that can be tailored by the researcher to meet their
particular needs.
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Fig. 11. Cyclone II and Stratix IV logic element architectures.

6.1. Targeting a Different FPGA Device

As described above, the LegUp targets the Altera DE2 board with the Cyclone II FPGA.
We expect, however, that some users will wish to target other platforms and we therefore
investigated the ease with which the tool can be modified to target a different FPGA. We
chose Altera’s 40nm Stratix IV family as the alternative platform [Altera, Corp. 2011].
Stratix IV has a considerably different logic element architecture than Cyclone II. Cyclone
II uses logic elements (LEs) with 4-input LUTs to implement combinational logic functions,
whereas Stratix IV uses an adaptive logic module (ALM). An ALM is a dual-output 6-LUT
that receives eight inputs from the interconnection fabric. The ALM can implement any
6-input function, any two 4-input functions, a 3- and 5-input function, and several other
combinations. Each of the two LUT outputs has a flip-flop that can be optionally bypassed.
The Cyclone II and Stratix IV logic elements are illustrated in Fig. 11.
LegUp HLS depends on the target FPGA architecture in two ways: 1) the area and delay

models for each of the LLVM operations (including the latency of each operator, i.e. the
number of clock cycles each operator takes to complete), 2) architecture-specific aspects of
the Verilog generation. For #2, LegUp’s Verilog is vendor agnostic except in two respects:
block RAM and divider instantiation. Block RAMs are instances of Altera’s ALTSYNCRAM
megafunction and division is done with the LPM DIVIDE megafunction. Thus, very little has
to be changed to target another vendor’s FPGAs or to use the tool as a front-end to the
open source VTR (Verilog-to-routing) FPGA CAD flow being developed at the University
of Toronto [VTR 2011]. VTR accepts Verilog RTL as input.
As mentioned in Section 4.1.2, the speed and area of each LLVM operator is stored in a Tcl

file that is read by LegUp. The area/speed data must be updated if LegUp is to produce good
results for a particular target device, as the data is used within the scheduling and binding
algorithms. To ease migration to alternative FPGA devices, the LegUp installation includes
a set of Verilog modules that implement each LLVM operator in isolation. One can compile
each of the modules to the particular FPGA device being targeted to populate the Tcl file.
For Altera FPGAs specifically, a set of PERL scripts is provided that automatically compile
the single-operator modules using Altera commercial tools and then parse the results to
retrieve the area and speed data. We executed the scripts to gather Stratix IV area and
speed data for each LLVM operator and then manually modified the Tcl script. Gathering
the speed/area data and modifying the Tcl script took a day.
Table VI gives speed and area results for Stratix IV; the results for Cyclone II are repeated

in the table for convenience. Speed and area results are shown on the left and right sides
of the table, respectively. Looking first at the speed data, we see that as expected, all
circuits run considerably faster in Stratix IV vs. Cyclone II – the speed-up ratio is 2.4×,
which we expect is partly due to the more advanced technology node, and partly due to
the Stratix IV architecture. Area values are given in LEs and ALMs for Cyclone II and
Stratix IV, respectively. On average, about 60% fewer ALMs are needed to implement
circuits in Stratix IV vs. LEs in Cyclone II, owing to Stratix IV’s larger dual-output LUTs.
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Table VI. Stratix IV Speed and Area Results.

Performance (MHz) Area (LEs, ALMs)
Benchmark Cyclone II Stratix IV Cyclone II Stratix IV

adpcm 45.79 115.51 22605 9993
aes 60.72 135.81 28490 9088

blowfish 65.41 198.77 15064 7560
dfadd 124.05 247.28 8881 4196
dfdiv 74.72 159.85 20159 7540
dfmul 85.62 248.32 4861 1965
dfsin 62.64 143.97 38933 15044
gsm 58.93 143.43 19131 6662
jpeg 47.09 82.69 46224 24883
mips 90.09 223.21 4479 2541

motion 91.79 248.82 13238 2546
sha 86.93 212.9 12483 4889

dhrystone 85.38 182.32 4985 2735
Geomean: 72.54 171.69 14328.0 5840.8

Porting LegUp to an alternative FPGA device for pure hardware HLS is straightforward,
however, supporting the hybrid processor/accelerator scenario on a non-Altera device is
more involved. In particular, the Tiger MIPS processor makes use of Altera megafunctions
for memory, division and multiplication. The megafunctions would need to be changed to ref-
erence the corresponding modules for the alternate FPGA vendor. Moreover, as described in
Section 3.2, the LegUp hybrid platform uses the Altera Avalon interface for processor/ac-
celerator communication. If a Xilinx FPGA were targeted, processor/accelerator system
generation and communication would need to be modified to use the Xilinx EDK tool and
PLB bus [PLB 2011]. The PLB and Avalon interfaces are quite similar however, as both are
memory-mapped master/slave bus interfaces. We therefore see no significant barriers that
would prevent LegUp from targeting a Xilinx device.

6.2. Implementing a New Scheduling Algorithm

We implemented a new scheduling algorithm in LegUp based on the SDC (system of dif-
ference constraints) formulation, as described in [Cong and Zhang 2006], and used in xPi-
lot [Cong et al. 2006]. The idea is to formulate the scheduling problem as a linear program
(LP) that can be solved with a standard solver (we used lpsolve [LPS 2011]). In SDC
scheduling, each operation is assigned a variable that, after solving, will hold the clock
cycle in which the operation in scheduled. Consider two operations, op1 and op2, and let
the variable cop1 represent the cycle in which op1 is to be scheduled, and cop2 the cycle in
which op2 is to be scheduled. Assume further that op2 depends on op1, then the following
constraint is added to the LP formulation: cop1 ≥ cop2 or equivalently: cop1 − cop2 ≥ 0: a
difference constraint.
Clock period constraints can also be incorporated into SDC scheduling. Let P be the

target clock period and let C represent a chain of anyN dependant combinational operations
in the dataflow graph: C = op1 → op2 → ... → opN . Assume that T represents the total
estimated combinational delay of the chain of N operations – computed by summing the
delays of each operator (with the operators characterized as described in Section 4.1.3). We
can add the following timing constraint to the LP: copN − cop1 ≥ ⌈T/P ⌉− 1. This difference
constraint requires that the cycle assignment for opN be at least ⌈T/P ⌉−1 cycles later than
the cycle in which op1 is scheduled. Such constraints control the extent to which operations
can be chained together in a clock cycle. Chaining is permitted such that the target clock
period P is met. This provides the basic picture of SDC scheduling and the reader is referred
to [Cong and Zhang 2006] for complete details of the formulation and how other types of
constraints can be included.

ACM Transactions on Embedded Computing Systems, Vol. 1, No. 1, Article 1, Publication date: July 2012.



1:22 A. Canis, J. Choi, M. Aldham et al.

Fig. 12. SDC scheduling results for Cyclone II with various clock period constraints (bars represent per-
formance in MHz; the line represents latency in clock cycles.

The LegUp implementation has a scheduler DAG object that, essentially, annotates each
LLVM instruction with data relevant to its scheduling: its combinational delay, as charac-
terized in the target FPGA, and the instructions on which it depends. The scheduler DAG
object can be viewed as an overlay on the dataflow graph with scheduling-specific infor-
mation. The object contains all of the information needed for us to generate the SDC LP
formulation. After solving the LP, we deposit the cycle assignment for each instruction into
another LegUp data structure called the scheduler mapping. For each LLVM instruction, the
mapping holds the scheduled cycle number. Following scheduling, FSM generation accesses
the mapping object to construct the FSM.
Fig. 12 shows SDC scheduling results for Cyclone II, demonstrating the impact of running

SDC with different clock period constraints. The left axis (bar) gives the geometric mean
post-routed clock frequency across the 12 CHStone circuits and dhrystone; the right axis
(line) gives the geometric mean latency (# of clock cycles to execute). The four datapoints
show SDC scheduling results for clock period constraints of 20, 15, 10, and 7.5 ns, respec-
tively. Observe that circuit clock frequency increases as P is decreased, which demonstrates
the effectiveness of SDC, as well as provides confidence in our operator speed characteriza-
tion. Note that P is a minimum clock period constraint – no effort is made to actually slow
circuits down. Hence, for the P = 20 ns datapoint, the circuits run considerably faster than
50 MHz. As P is decreased, the circuits are more heavily pipelined and take larger numbers
of cycles to execute.
SDC scheduling will be made LegUp’s default scheduling algorithm in a subsequent re-

lease.

6.3. Parallel Accelerators

As a last case study, we demonstrate the capability of LegUp to synthesize multi-accelerator
systems. As a proof-of-concept application, we use array addition for four 1000-element
arrays. Three parallelization scenarios were evaluated: 1) pure software with the MIPS
processor performing all of the work, 2) a single accelerator, called by the processor, per-
forming each of the four array additions sequentially, and, 3) four accelerators, operating
in parallel, with each accelerator performing the addition for one of the four arrays. In the
multi-accelerator case, the processor signals each accelerator to start its work and polls until
all four have completed. We found that a single acclerator doing all of the work sequentially
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provides a 5.2× speedup over the pure software case. Using four parallel accelerators yields
a 3.7× speedup vs. using a single accelerator. While this is a simple application, with no po-
tential cache coherency issues, it serves to illustrate that concurrently running accelerators
are feasible with LegUp – a topic we plan to explore further in future work.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced LegUp – a new high-level synthesis tool that compiles a stan-
dard C program to a hybrid processor/accelerator architecture comprising a MIPS processor
and custom accelerators communicating through a standard on-chip interface. Using LegUp,
one can explore the hardware/software design space, where some portions of a program run
on a processor, and others are implemented as custom hardware circuits. As compared with
software running on a MIPS soft processor, pure hardware implementations produced by
LegUp HLS execute 8× faster and use 18× less energy on a Altera Cyclone II FPGA.
LegUp’s hardware implementations are competitive with those produced by a commercial
HLS tool, both in benchmark execution time and in area-delay product. LegUp, along with
its suite of benchmark C programs, is a powerful open source platform for HLS research
that we expect will enable a variety of research advances in hardware synthesis, as well as in
hardware/software co-design. LegUp is available for download at: http://www.legup.org.
We are currently using the LegUp framework to explore several new directions towards

improving computational throughput. First, we are investigating the benefits of using multi-
ple clock domains, where each processor and accelerator can operate at its maximum speed
and communication between modules occurs across clock domains (the Altera Avalon inter-
face can support this). Second, we are implementing loop pipelining within our scheduler,
wherein a loop iteration can commence execution prior to the completion of the previous
iteration (a loop iteration’s instructions can execute as long as their operands have been
computed). Lastly, although we are already seeing significant energy benefits of computing
in hardware vs. software, we believe that much more can be done on this front through the
incorporation of energy-driven scheduling and FSM generation. Lastly, we are exploring the
performance benefits of concurrent processor/accelerator execution for both data parallel
and task parallel applications, as well as for multi-program workloads.
Our long-term vision is to fully automate the flow in Figure 1, thereby creating a self-

accelerating adaptive processor in which profiling, hardware synthesis and acceleration hap-
pen transparently without user awareness.
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