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Abstract 
Effective integration of advanced Systems-on-Chip (SoC) 
requires extensive reuse of IP modules as well as 
automation of the IP integration process, including 
verification. Key enablers for this are standards to describe 
and package IP modules. We focus on the IP-XACT 
standards and demonstrate how these standards are 
deployed in three industrial IP integration flows.  Further, 
we report on two future extensions to IP-XACT that are 
currently being explored in the SPRINT project, i.e. IP-
XACT based verification software generation and IP-XACT 
based configuration of debug environments. We conclude 
that IP-XACT is enabling powerful IP integration 
methodologies and that future extensions can further 
increase the effectiveness of IP-XACT standards. 

1. Introduction 
The integration densities offered by nanoscale process 
technologies enable the development of advanced Systems-
on-Chip (SoC). The complexity of developing SoCs is 
increasing continuously, but the productivity of hardware 
and software developers is not growing at a comparable 
pace. This is typically referred to as the Productivity Gap. 
As a consequence the costs of developing advanced SoCs 
are increasing at a staggering pace and time-to-market is 
negatively affected. The increasing complexity also has a 
negative impact on the quality of SoCs, and system 
verification and debug are becoming formidable tasks.   

Key elements for addressing the SoC design complexity 
problem are IP reuse and extensive automation of design 
and verification activities. Enhanced interoperability and 
reusability of IP modules allows companies to share the 
costs and risks of developing IP modules, thereby avoiding 
duplication of development efforts. Extensive automation 
of the path from a SoC specification via integration of IP 
modules to an implementation improves time-to-market by 
reducing time-consuming and error-prone manual design 
and verification activities. The following aspects need to be 
addressed in order to enable reuse and automation: 
1. Techniques for modeling IP modules.  Specifically 
techniques for abstract modeling to enable fast simulations 
with high-level feedback, architecture exploration, early 
software development, and rapid construction of a reference 
model for verification.  
2. Methodologies and tools to automate the integration of 
IP modules into SoCs, including support for correct 
instantiation and integration of IP.  This should include 
generation of correct instances for configurable IP. 

3. Methodologies, libraries and tools to automate the 
verification and debug of SoCs, including verification IP 
and support for automated generation of SoC verification 
suites. This should include reuse of verification suites and 
test benches over different abstraction levels. 

Industry is already taking action to work on the aspects 
mentioned above. The OSCI consortium is progressing on 
the interoperability and reuse of high-level models via its 
SystemC/TLM working group. The SPIRIT consortium is 
contributing standards and technology to enable automation 
of design activities. It is developing the IP-XACT™ 
standard for IP description as well as for tools that raise 
automation levels. Further, 15 leading European 
Semiconductor companies, IP vendors, EDA companies 
and academic institutions are partnering in the European 
SPRINT project to develop new methodologies and 
standards for efficient reuse and exchange of IP. By 
building on existing initiatives such as OSCI 
SystemC/TLM and IP-XACT™ and feeding its results back 
into these initiatives, the SPRINT project is accelerating the 
evolution of these standards. To this end, representative 
players from the IP reuse value chain are closely 
collaborating, performing concrete design cases to generate 
requirements and evaluate extensions to the standards. 

The paper is organized as follows: Section 2 gives a 
brief introduction to the IP-XACT standard. In Sections 3, 
4, and 5, we present an overview of IP-XACT based 
industrial design and verification flows, as deployed by 
NXP Semiconductors, Infineon, and ST Microelectronics. 
In Sections 6 and 7 we report on two future extensions to 
IP-XACT that are currently being explored in the SPRINT 
project i.e. IP-XACT based verification software generation 
and IP-XACT based configuration of debug environments. 
2. IP-XACT overview 
The SPIRIT Consortium provides a unified set of high 
quality IP-XACT™ specifications for documenting IP 
using meta-data. This meta-data is used to configure, 
integrate, and verify IP in advanced SoC design 
environments. External tools, called generators, interface to 
such design environments using the LGI: Loose Generator 
Interface (database access through file exchange) and/or the 
TGI: Tight Generator Interface (database access through 
software API). 

2.1 Typical IP-XACT based flow 
The IP-XACT standard can be applied in various parts of a 
typical SoC design flow as depicted in Figure 1 
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Figure 1: IP-XACT flow. 
IP Packaging: The goal is to package all the components 
of an IP library into XML files in accordance with the 
IP-XACT schema, which describes the syntax and semantic 
rules. It includes IP attributes such as physical ports, 
interfaces, parameters, generics, register map, etc. An 
important part of the schema is dedicated to referencing the 
various files related to the different views of a component: 
e.g. simulation model in a specific language or 
documentation.  
Platform Assembly: After the packaging step, it is possible 
to import, configure and integrate components into the 
system, assemble the design, resolve connection issues, and 
automate design tasks. An examples of the use of IP-XACT 
at this level is the partial or full automation of design 
assembly and configuration, through TGI-based generators 
that can instantiate, configure and connect components 
according to chosen design parameters (e.g. abstraction 
levels of components).  
Flow Control:  The goal is to link the design activities 
around the centric IP-XACT database by means of a 
dedicated environment that provides access to the IP-XACT 
information. A typical tool suite provides an IP Packager, a 
Platform Assembly tool, as well as a Generator Studio to 
develop and debug additional TGI-based generators.  
3. IP Integration flow of NXP 
We present the IP-XACT-based IP integration flow for 
Electronic System Level (ESL) design and mixed RTL and 
ESL design in use in NXP. For the RTL IC design flow we 
refer to [4]. In [5] we describe SoC sub-system exchange.  
3.1 ESL Rationale and Practices 
The purpose of ESL design is to improve the SoC design 
process in terms of decreasing design and verification 
effort, increase design quality, and reducing time-to-market. 
ESL models contain less information compared to RTL 
models. For this reason these models achieve higher 
simulation speeds and take less design effort. However, 
they are less accurate. Depending on the use case, we use 
different types of models as defined by OSCI (UT, LT, AT, 
and CA). NXP Semiconductors has adopted SystemC as 
language for ESL design already for several years. Our 
major use cases are architecture exploration, followed by 
software development, and validation and verification. ESL 
deployment in NXP so far has focused on virtual prototype 
deployment because integration and configuration of 

SystemC IP is perceived to be difficult. The introduction of 
IP-XACT for ESL enables us to deploy SystemC IP 
throughout the company using NXPs’ IP Yellow Pages and 
automate IP integration and configuration using our IP-
XACT-based Nx-Builder tools in the same way as we do 
for RTL IP. This is essential for the deployment of a mixed 
RTL and ESL design flow. 
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Figure 2: IP integration flow. 
3.2 Nx-Builder @ ESL Challenges 
Our IP integration flow consists of three steps as depicted 
in Figure 2. In Step 1, IP providers package their IP in IP-
XACT, i.e., they describe metadata of their IP in an XML 
document adhering to the IP-XACT XML schema. The IP 
and its metadata are published on the NXP-wide IP Yellow 
Pages. In Step 2, IP integrators select and configure IPs. 
They use an IP-XACT-based Design Environment to 
integrate the IPs using the metadata. In Step 3, tools 
generate outputs such as netlists, makefiles, and software. 
Specific challenges that are addressed by Nx-Builder@ESL 
that are supported by the IP-XACT 1.4 standard are 
packaging of ESL IPs, integration of ESL and RTL IP 
models, and generation of virtual prototypes and mixed 
level designs.  
3.3 IP Packaging 
So far we have been packaging SystemC models of our IPs 
manually. We validated that we can package IP models that 
use our old proprietary modeling library as well as IP 
models that use the SCML modeling library. In the future 
we will adopt a commercial solution to package the 
SystemC models of our IPs automatically. 
3.4 IP Integration and Configuration 
ESL models of IP at high abstraction levels are highly 
configurable because they are used for architecture 
exploration. We support configuration of such IP by IP-
specific component generators. Such a generator takes the 
desired IP configuration as input and modifies the XML 
metadata description of that IP accordingly. We have 
chosen not to modify the XML description directly, but to 
make use of an API that provides access to the database of 
the IP-XACT-based Design Environment. Our experience 
is that this simplifies the writing of such component 
generators. In order to link ESL design to RTL design we 
make sure that the configuration of an ESL model of an IP 
can be transferred to a configuration of an RTL model of 
that IP. The Nx-Builder tool can extract both models in the 
desired configurations from the NXP IP Yellow Pages. 
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3.5 Virtual Prototype Generation 
In order to generate output from Nx-Builder @ ESL we use 
a JAVA API that is generated from the TGI specification in 
the Web Services Description Language (WSDL).  These 
generators can be linked against a Simple Object Access 
protocol (SOAP) implementation of the JAVA API in order 
to create TGI generators. We have developed generators 
that automate the creation and building of virtual 
prototypes. Amongst others they generate hierarchical 
netlists, makefiles for an NXP proprietary build flow, 
simulation scripts, memory map files, and verification 
software. For more information on verification software we 
refer to Section 6 of this paper. 

4. IP Integration flow of Infineon 
Infineon is a strong believer in the increasing demand of 
external IP integration and the leading role of the IP-XACT 
standards as enabler of automated IP-integration. For this 
reason, XML based code generation and IP integration is 
successfully applied in many Infineon projects since years. 
In the SPRINT project, Infineon brings all this experience 
to the project with the goal to accelerate the extension of 
the IP-XACT standard to serve Infineon’s advanced needs. 
4.1 Integration Verification  
One focus of Infineon’s work is the Quality Assurance 
(QA) of the generated code, especially the QA of the 
generated top-level netlists. This focus is motivated by the 
many and different optimizations performed in order to 
meet physical constraints of the silicon and performance 
and accuracy constraints of the models. 

Two verification strategies are involved in Infineon’s IP 
integration process: Direct and indirect verification. Direct 
integration verification verifies the correctness of the 
connectivity. Indirect integration verification verifies the 
correctness of actions executed via connections e.g. using 
read and write actions of registers in the IP devices. Since 
both RTL and TLM connections need to be verified, both 
formal verification (RTL only) and simulation is used. 
4.2 Formal Integration Verification  
Since the formal verification tools make themselves a 
complete search over all possible input patterns and states, 
the generation of the properties is quite straight forward. 
1. Identity properties between two signals are specified for 
direct connectivity verification. These signals represent in 
most cases the valid address and the read/write/enable 
signals. 
2. Register read/write properties assume a bus transaction 
at the bus master’s side and checks versus the value of the 
register some cycles before or after. The assumption also 
includes interdiction of exceptions (e.g. reset) and hardware 
access to the registers during the write/read access. 
4.3 Simulation based Integration Verification  
Simulation based methods for integration verification 
follow the same approach as formal integration methods, 
however stimuli must be generated to drive simulation and 

verification goals must be specified to be able to analyse 
the completeness of the verification runs. Stimulus 
generation primarily includes generation of transactions at 
master side, in a directed (read/write access to existing 
registers only), exhaustive (read/write to a wider address 
range), and constrained random way. Coverage analysis is 
done differently for the two verification strategies. Direct 
integration verification is measured in terms of toggle 
coverage of the involved signals. Indirect integration 
verification is measured in terms of register access 
4.4 Tool flow 
Figure 3 gives an overview on the tool flow. Starting from 
the IP-XACT description of the IPs and the top level, both 
the netlist in SystemC (including callbacks for the 
assertions) and the SystemC assertions are generated. Both 
are compiled together with the stimulus generator and 
executed as SystemC model. This simulation result 
produces coverage data (from execution of the assertions 
and from signal toggle analysis). This coverage data is 
finally compared with coverage goals, in order to validate 
the completeness of the verification. 
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Figure 3: Infineon tool flow 
4.5 Implemented IP-XACT extensions  
Key for verification is the link of the properties to the 
model and the generation of the assumptions required to set 
the multiplexers correctly. For this reason, we defined a set 
of requirements for IP views and usage of IP-XACT 
extension. These are: 
1. A default view associated with bus definitions defines 
the read and write transactions on the bus. At the moment, 
we use different views for each assertion language 
involved, however we intend to have one abstract 
representation only. This view also ensures that exceptions 
are excluded on the bus for verification purposes. 
2. Each IP must provide white box interfaces for the 
registers in the IP, and the wires connected to the registers. 
3. Each register is extended with meta data describing the 
HW side, the actions performed by the HW side, and the 
protocols needed to perform that action 
4. Each IP involved in the bus structure is extended with 
meta-data describing the translations made in the model. 
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5. IP Integration flow of STMicroelectronics 
ST uses the flow shown in Figure 4 for the design and 
verification of its IPs, subsystems and chips. 
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Figure 4 SPIRIT design and verification flow at ST 

This flow uses IP-XACT as a common format from which 
design groups can generate automatically e.g. the RTL 
netlist as described in [1], [2] the SystemC netlist used for the 
flow described in [3] the register test and header files that are 
used in design verification and software development; the 
register documentation for the product datasheets. 
The IP-XACT database is made of IP-XACT compliant IPs 
and sub systems both from ST and from external suppliers. 
IPs built within ST are made IP-XACT compliant through a 
combination of conversion tools extracting the IP-XACT 
information from legacy formats e.g. the HDL files or the 
specifications. IPs from external suppliers are either 
provided in IP-XACT format or made IP-XACT compliant 
within ST. 

Whatever the source of the IP it needs to pass a QA 
(Quality Assurance) step before entering the IP-XACT 
database. This QA step is fundamental to the flow as it 
guarantees the time won through design automation will not 
be lost debugging IP-XACT IP representations. It is also 
very illustrative of the type of flow automation we have 
achieved with IP-XACT as it uses many of the tools we are 
using around IP-XACT. 
5.1 IP Quality Check Flow 
The purpose of the IP QA flow is to verify that the IP-
XACT description of an IP is accurate e.g. registers 
described in IP-XACT are indeed implemented in the RTL 
of the IP, or the bus interface signals can indeed be driven 
by the protocol they claim to support. A secondary purpose 
of the IP-QA flow is to detect unexpected incompatibilities 
with the IP-XACT generators used later in the flow by 
already using these tools in the QA flow. The outline of the 
QA flow is described in Figure 5. 
 Starting from the IP-XACT description of the IP, an IP-
XACT testbench is generated, instantiating the IP and 
connecting it to a high-level processor model, written in 
SystemC, on which the test software is executed.  

If the IP under QA is modeled at the SystemC TLM 
level, it is instantiated as such inside the testbench and 
connected to the processor via a high level TLM bus model. 
If the IP under QA is not modeled at the TLM level, it is 
first wrapped in a co-simulation wrapper made of 
abstractors bringing the IP RTL bus interfaces to TLM 
level. The abstractors are instantiated and connected 

automatically based on the IP-XACT bus interface and 
signal map information of the IP. 
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Figure 5: IP Quality Check Flow  

The SystemC TLM testbench is automatically generated by 
netlisting the IP-XACT test bench with a TLM netlister. 
Another generator is also automatically called to generate 
the register test from the memory map information inside 
the IP-XACT file. The current IP-XACT schema doesn’t 
contain any information regarding side-effects. In order to 
have reliable results, we have our own IP-XACT vendor 
extensions to describe these side-effects. These vendor 
extensions are used by the register test generator to 
propagate the information inside the register test files. 

Finally, the netlist and the register test are combined to 
run a simulation. A successful simulation demonstrates 
firstly that the file set section of the IP-XACT file is correct 
since we couldn’t compile if it was wrong. Secondly that 
the communication between the processor and the IP is 
working properly (it checks that the signal and interface 
description is correct inside the IP-XACT file) and finally 
that the register information and our vendor extensions are 
aligned with the content of the IP. 
6. IP-XACT based vSW code generation 
For IP-based (sub-)system designs it is a tedious job to find 
low level interconnection bugs through functional 
simulation on application level. For that reason NXP first 
applies structural system verification in order to find design 
errors that are not related to an application, but only to the 
platform standard that is being used in the design. 
Examples are bugs in address decoding, DMA channels, 
interrupts, clock programming, and so on. Such 
methodology requires that IPs are supplied with their own 
verification software (vSW) in plain ANSI-C. This software 
can be used by a SoC integrator to verify that the IP was 
successfully integrated in the system design. It checks the 
connections of the IP to surrounding infrastructure IP. 

The interfaces of any IP can be assigned to an interface 
class. Each of these (about 10) classes can be represented 
by a software API, which enables the IP to control or query 
the connected infrastructure IP. Most of the IP verification 
software can be generated automatically from the 
information in the IP-XACT component file of that IP, but 
what is still missing are tags on an IP interface that tell to 
which interface class it belongs. 
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6.1 Context labels Extensions 
Context labels are defined for components and for their 
interfaces (i.e. individual ports and/or buses). For brevity 
we only show the interface labels. These are tags showing 
the intended use (design intent) of a bus interface or port. A 
system designer may have a different use (user intent) for 
an IP interface (e.g. a GPIO port normally used to drive an 
off-chip interface, but now used to control internal system 
signals); this should then be annotated to the IP instance in 
the system design. 

When the hierarchy of an IP-XACT design is traversed, 
the constituting components are inspected for context 
labels. These context labels are attached to the components 
themselves, to bus interfaces or to individual ports. They 
can be overruled by similar context labels in a design file 
where they are attached to component instances, 
interconnections and ad-hoc interconnections, respectively. 
These context labels are formally defined as a SPRINT 
proposal to enhance the SPIRIT IP-XACT 1.4 standard to 
contain behavioral properties of an IP component or 
interface. Examples of context labels are 
<isNetworkComponent> for bridges, busses etc.; 
<isInfrastructureComponent> for Clk and Reset 
generators, Interrupt Controllers etc. 
6.2 Automated integration verification generation 
In the NXP flow the HW platform is built using RDL 
(Register Desciption Language) and HDL resources. To 
generate the integration verification setup a CSV (Comma 
Separated Value) file (excel sheet) is used that describes the 
system connectivity data. This CSV file is input to a script 
that generates the chip context required to manage the 
integration verification. 

Magillem Design Services and NXP have worked on a 
methodology (Figure 6) that adapts the IP-XACT standard 
to automate the creation of this integration verification 
setup using vSW. The HW components are packaged in IP-
XACT, allowing any compliant tool environment to build 
the platform and exploit the database by TGI generators. 
The intermediate CSV format is generated from the 
description of a design in IP-XACT. 

Each component of the library is available through its 
IP-XACT description, which is referring the HDL/RDL 
files and the corresponding vSW view in C. The HW 
platform construction and elaboration for simulation is 
applying a common IP-XACT based setup and a netlister. 
In parallel, the generation of the chip context is done from 
the same IP-XACT design description. The simulation can 
be launched in a press button manner, as all the elements of 
the flow are packaged in SPIRIT generators linked in the 
generator chain. 
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Figure 6 vSW Methodology 
The validation of the presented flow and applied tools has 
been done on a real ARM9 based platform from NXP. The 
bus definitions, components and the design are packaged in 
IP-XACT using the Magillem environment. We have used 
the vendor-extension mechanism to extend the existing 
XML files with the context labels. The XML2CSV 
generator has been linked with the design description such 
that it can be launched through Magillem. 
7. IP-XACT based debug environment config 
The typical use-case described in this section is a debugger 
that is attached to a processor running firmware accessing 
peripheral IPs. Two aspects are studied in the SPRINT 
project. Firstly handling resources outside the processor 
core: This part is focusing on the added value from the 
debugger user point of view. The goal is to provide an 
enhanced view of the registers of peripheral IPs that are 
visible from the processor addressing space (Section 7.1).    
Secondly handling resources inside the processor core: This 
part is focusing on the added value from the debugger 
targeting point of view. The goal is to reduce information 
duplication and to reduce the debugger targeting effort 
(Section 7.2). 

7.1 Memory Mapped Resource Viewer 
Peripheral IP registers are mapped in the processor memory 
space. The number of memory mapped registers may be 
very large. Therefore, having an enhanced view of these 
registers (e.g. both addresses and detailed register field 
descriptions) similarly as described in the specifications is 
helpful for the firmware developer. In ST, we have 
implemented a Memory Mapped Resource Viewer 
(MMRV) as an Eclipse plug-in, interfaced to the debugger 
perspective, and synchronized to the debugger (see Figure 
7) in which registers are displayed in a hierarchical way: 
IP/Register/Field according to their IP-XACT description. 
The MMRV has been submitted to the Eclipse consortium. 
In ST the MMRV is now entering in its deployment phase; 
it is packaged within ST Software Development Toolsets. 
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Figure 7: Memory Mapped Register viewer 

7.2 Debugger retargeting  
Retargeting a debugger is commonly performed by writing 
dedicated code to support the new processor core. This 
includes a “Resource Manager” describing registers and 
memories; an “Architecture Manager” describing the 
general architecture of the core; and a “Type Manager” 
describing the supported data types. A part of the required 
information for the targeting task comes from the 
architecture description. Using a standard way to retrieve 
this information allows retargeting a debugger with less 
effort. Figure 8 illustrates the objective of this task: Left 
side is a classical scheme of the target-dependent part of a 
debugger diagram; Right side explores how IP-XACT can 
be used to put the target description outside of the debugger 
core diagram. 

IP-XACT allows describing registers and memories (i.e. 
address spaces). It supports the following register attributes: 
name, size, address offset, and fields, and address space 
attributes: name, address range, and width. 
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Figure 8: Debugger retargeting 

The debugger manages the correspondence between the 
software and the hardware. Therefore it needs additional 
information. The following ones have been identified: 
1. Defining register and memory identifiers to indicate 
correspondence between software and hardware. 
2. Defining a display name for resources. 
3. Defining pseudo registers, which do not exist in the 
hardware, but that do make sense in software. 
4. Additional attributes to memories, defining whether 
they are data or program memories. 
5. Additional attributes to registers, defining whether they 
are Program Counter, Stack Pointer, Frame Pointer; if they 
are hidden register (not visible to the user);  
6. Defining the type and the format of the data being 
contained in the registers (integer or float). In case of a float 
format (e.g. IEEE 754) the different parameters of the 
format need to be described. 

7. Describing the memory representation of data contained 
in registers. This is useful in case of a register spill (the 
register values are stored in the stack). In this case, 
displaying a variable when the program reaches a break 
point is not performed by reading the register, but by 
reading its value in the stack.  
8. Specifying if a register value dynamically depends on 
the value of another register (e.g. a Status Register “mode” 
field that indicates if the core is running in 16 or 24 bits 
mode, meaning that the data contained in General Purpose 
registers are 16 bits or 24 bits). 
These extensions are currently experimented in ST, using 
<spirit:vendorExtension>. 

7.3 Discussion 
Using IP-XACT description for configuring memory 
mapped resource handling from a debugger offers speed-up 
in the integration of an external IP. The debugger targeting 
cost for displaying the memory mapped registers of the IP 
in a processor address space is null (only need to  load the 
IP-XACT description). From a user point of view, it 
provides both easy to read description of memory mapped 
resource fields, as well as a calculation of register addresses 
and a generation of the debugger commands. This reduces 
risks of human errors and increases the productivity of the 
firmware developer. 
SPRINT proposes IP-XACT extensions for interpreting the 
data contained in the registers from a software point of 
view. The objective is to rely on a single description of the 
target which also allows automating the debugger targeting 
tasks. 
8. Summary 
Existing industrial IP integration flows already benefit from 
applying the IP-XACT standard. These benefits are in 
various areas such as: Automated SystemC IP Packaging, 
Integration and Configuration and Virtual Prototype 
generation (NXP), IP Integration Verification, both formal 
and simulation based (Infineon) and IP Quality Assurance 
(ST). In the future more elements of the SoC design flow 
such as verification SW generation, integration verification 
and debug environment configuration can be automated 
using next versions of IP-XACT. Several of the required 
extensions are currently prototyped in the SPRINT project. 
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