
Industrial IP Integration Flows based on IP-XACT™ Standards
Wido Kruijtzer1, Pieter van der Wolf1, Erwin de Kock1, Jan Stuyt1, Wolfgang Ecker2,

Albrecht Mayer2, Serge Hustin3, Christophe Amerijckx3, Serge de Paoli4, Emmanuel Vaumorin5
1NXP Semiconductors, The Netherlands; 2Infineon Technologies, Germany; 3STMicroelectronics, Belgium

4STMicroelectronics, France; 5Magillem Design Services, France
Wido.Kruijtzer@nxp.com

Abstract
Effective integration of advanced Systems-on-Chip (SoC)
requires extensive reuse of IP modules as well as
automation of the IP integration process, including
verification. Key enablers for this are standards to describe
and package IP modules. We focus on the IP-XACT
standards and demonstrate how these standards are
deployed in three industrial IP integration flows. Further,
we report on two future extensions to IP-XACT that are
currently being explored in the SPRINT project, i.e. IP-
XACT based verification software generation and IP-XACT
based configuration of debug environments. We conclude
that IP-XACT is enabling powerful IP integration
methodologies and that future extensions can further
increase the effectiveness of IP-XACT standards.

1. Introduction
The integration densities offered by nanoscale process
technologies enable the development of advanced Systems-
on-Chip (SoC). The complexity of developing SoCs is
increasing continuously, but the productivity of hardware
and software developers is not growing at a comparable
pace. This is typically referred to as the Productivity Gap.
As a consequence the costs of developing advanced SoCs
are increasing at a staggering pace and time-to-market is
negatively affected. The increasing complexity also has a
negative impact on the quality of SoCs, and system
verification and debug are becoming formidable tasks.

Key elements for addressing the SoC design complexity
problem are IP reuse and extensive automation of design
and verification activities. Enhanced interoperability and
reusability of IP modules allows companies to share the
costs and risks of developing IP modules, thereby avoiding
duplication of development efforts. Extensive automation
of the path from a SoC specification via integration of IP
modules to an implementation improves time-to-market by
reducing time-consuming and error-prone manual design
and verification activities. The following aspects need to be
addressed in order to enable reuse and automation:
1. Techniques for modeling IP modules. Specifically
techniques for abstract modeling to enable fast simulations
with high-level feedback, architecture exploration, early
software development, and rapid construction of a reference
model for verification.
2. Methodologies and tools to automate the integration of
IP modules into SoCs, including support for correct
instantiation and integration of IP. This should include
generation of correct instances for configurable IP.

3. Methodologies, libraries and tools to automate the
verification and debug of SoCs, including verification IP
and support for automated generation of SoC verification
suites. This should include reuse of verification suites and
test benches over different abstraction levels.

Industry is already taking action to work on the aspects
mentioned above. The OSCI consortium is progressing on
the interoperability and reuse of high-level models via its
SystemC/TLM working group. The SPIRIT consortium is
contributing standards and technology to enable automation
of design activities. It is developing the IP-XACT™
standard for IP description as well as for tools that raise
automation levels. Further, 15 leading European
Semiconductor companies, IP vendors, EDA companies
and academic institutions are partnering in the European
SPRINT project to develop new methodologies and
standards for efficient reuse and exchange of IP. By
building on existing initiatives such as OSCI
SystemC/TLM and IP-XACT™ and feeding its results back
into these initiatives, the SPRINT project is accelerating the
evolution of these standards. To this end, representative
players from the IP reuse value chain are closely
collaborating, performing concrete design cases to generate
requirements and evaluate extensions to the standards.

The paper is organized as follows: Section 2 gives a
brief introduction to the IP-XACT standard. In Sections 3,
4, and 5, we present an overview of IP-XACT based
industrial design and verification flows, as deployed by
NXP Semiconductors, Infineon, and ST Microelectronics.
In Sections 6 and 7 we report on two future extensions to
IP-XACT that are currently being explored in the SPRINT
project i.e. IP-XACT based verification software generation
and IP-XACT based configuration of debug environments.
2. IP-XACT overview
The SPIRIT Consortium provides a unified set of high
quality IP-XACT™ specifications for documenting IP
using meta-data. This meta-data is used to configure,
integrate, and verify IP in advanced SoC design
environments. External tools, called generators, interface to
such design environments using the LGI: Loose Generator
Interface (database access through file exchange) and/or the
TGI: Tight Generator Interface (database access through
software API).

2.1 Typical IP-XACT based flow
The IP-XACT standard can be applied in various parts of a
typical SoC design flow as depicted in Figure 1

978-3-9810801-3-1/DATE08 © 2008 EDAA

978-3-9810801-3-1/DATE08 © 2008 EDAA

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

 1 / IP Packager 2 / Platform Assembly 3 / Generators Studio
Component

&
SoC
IP

Component
&

Design
XML

Configured
IP
&

Point Tools

GENERATORS
XML

Generators

IP Import/Export IP-XACT API

DESIGN
CAPTURE

DESIGN
CONFIGURA-
TION

DESIGN
BUILD

IP-XACT enabled
SoC design

IP-XACT enabled
IP

1 / IP Packager 2 / Platform Assembly 3 / Generators Studio
Component

&
SoC
IP

Component
&

Design
XML

Configured
IP
&

Point Tools

GENERATORS
XML

Generators

IP Import/Export IP-XACT API

DESIGN
CAPTURE

DESIGN
CONFIGURA-
TION

DESIGN
BUILD

IP-XACT enabled
SoC design

IP-XACT enabled
IP

Figure 1: IP-XACT flow.
IP Packaging: The goal is to package all the components
of an IP library into XML files in accordance with the
IP-XACT schema, which describes the syntax and semantic
rules. It includes IP attributes such as physical ports,
interfaces, parameters, generics, register map, etc. An
important part of the schema is dedicated to referencing the
various files related to the different views of a component:
e.g. simulation model in a specific language or
documentation.
Platform Assembly: After the packaging step, it is possible
to import, configure and integrate components into the
system, assemble the design, resolve connection issues, and
automate design tasks. An examples of the use of IP-XACT
at this level is the partial or full automation of design
assembly and configuration, through TGI-based generators
that can instantiate, configure and connect components
according to chosen design parameters (e.g. abstraction
levels of components).
Flow Control: The goal is to link the design activities
around the centric IP-XACT database by means of a
dedicated environment that provides access to the IP-XACT
information. A typical tool suite provides an IP Packager, a
Platform Assembly tool, as well as a Generator Studio to
develop and debug additional TGI-based generators.
3. IP Integration flow of NXP
We present the IP-XACT-based IP integration flow for
Electronic System Level (ESL) design and mixed RTL and
ESL design in use in NXP. For the RTL IC design flow we
refer to [4]. In [5] we describe SoC sub-system exchange.
3.1 ESL Rationale and Practices
The purpose of ESL design is to improve the SoC design
process in terms of decreasing design and verification
effort, increase design quality, and reducing time-to-market.
ESL models contain less information compared to RTL
models. For this reason these models achieve higher
simulation speeds and take less design effort. However,
they are less accurate. Depending on the use case, we use
different types of models as defined by OSCI (UT, LT, AT,
and CA). NXP Semiconductors has adopted SystemC as
language for ESL design already for several years. Our
major use cases are architecture exploration, followed by
software development, and validation and verification. ESL
deployment in NXP so far has focused on virtual prototype
deployment because integration and configuration of

SystemC IP is perceived to be difficult. The introduction of
IP-XACT for ESL enables us to deploy SystemC IP
throughout the company using NXPs’ IP Yellow Pages and
automate IP integration and configuration using our IP-
XACT-based Nx-Builder tools in the same way as we do
for RTL IP. This is essential for the deployment of a mixed
RTL and ESL design flow.

SystemC Simulation

1.1. IP provider packages IP provider packages
and publishes IPand publishes IP
based on IPbased on IP--XACTXACT

2.2. System integrator System integrator
selects IP and builds selects IP and builds
designs easilydesigns easily

3.3. NxNx--Builder @ ESL Builder @ ESL
generates output generates output
of designs fastof designs fast

IP
Packager

SystemC Simulation

1.1. IP provider packages IP provider packages
and publishes IPand publishes IP
based on IPbased on IP--XACTXACT

2.2. System integrator System integrator
selects IP and builds selects IP and builds
designs easilydesigns easily

3.3. NxNx--Builder @ ESL Builder @ ESL
generates output generates output
of designs fastof designs fast

IP
Packager

Figure 2: IP integration flow.
3.2 Nx-Builder @ ESL Challenges
Our IP integration flow consists of three steps as depicted
in Figure 2. In Step 1, IP providers package their IP in IP-
XACT, i.e., they describe metadata of their IP in an XML
document adhering to the IP-XACT XML schema. The IP
and its metadata are published on the NXP-wide IP Yellow
Pages. In Step 2, IP integrators select and configure IPs.
They use an IP-XACT-based Design Environment to
integrate the IPs using the metadata. In Step 3, tools
generate outputs such as netlists, makefiles, and software.
Specific challenges that are addressed by Nx-Builder@ESL
that are supported by the IP-XACT 1.4 standard are
packaging of ESL IPs, integration of ESL and RTL IP
models, and generation of virtual prototypes and mixed
level designs.
3.3 IP Packaging
So far we have been packaging SystemC models of our IPs
manually. We validated that we can package IP models that
use our old proprietary modeling library as well as IP
models that use the SCML modeling library. In the future
we will adopt a commercial solution to package the
SystemC models of our IPs automatically.
3.4 IP Integration and Configuration
ESL models of IP at high abstraction levels are highly
configurable because they are used for architecture
exploration. We support configuration of such IP by IP-
specific component generators. Such a generator takes the
desired IP configuration as input and modifies the XML
metadata description of that IP accordingly. We have
chosen not to modify the XML description directly, but to
make use of an API that provides access to the database of
the IP-XACT-based Design Environment. Our experience
is that this simplifies the writing of such component
generators. In order to link ESL design to RTL design we
make sure that the configuration of an ESL model of an IP
can be transferred to a configuration of an RTL model of
that IP. The Nx-Builder tool can extract both models in the
desired configurations from the NXP IP Yellow Pages.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

3.5 Virtual Prototype Generation
In order to generate output from Nx-Builder @ ESL we use
a JAVA API that is generated from the TGI specification in
the Web Services Description Language (WSDL). These
generators can be linked against a Simple Object Access
protocol (SOAP) implementation of the JAVA API in order
to create TGI generators. We have developed generators
that automate the creation and building of virtual
prototypes. Amongst others they generate hierarchical
netlists, makefiles for an NXP proprietary build flow,
simulation scripts, memory map files, and verification
software. For more information on verification software we
refer to Section 6 of this paper.

4. IP Integration flow of Infineon
Infineon is a strong believer in the increasing demand of
external IP integration and the leading role of the IP-XACT
standards as enabler of automated IP-integration. For this
reason, XML based code generation and IP integration is
successfully applied in many Infineon projects since years.
In the SPRINT project, Infineon brings all this experience
to the project with the goal to accelerate the extension of
the IP-XACT standard to serve Infineon’s advanced needs.
4.1 Integration Verification
One focus of Infineon’s work is the Quality Assurance
(QA) of the generated code, especially the QA of the
generated top-level netlists. This focus is motivated by the
many and different optimizations performed in order to
meet physical constraints of the silicon and performance
and accuracy constraints of the models.

Two verification strategies are involved in Infineon’s IP
integration process: Direct and indirect verification. Direct
integration verification verifies the correctness of the
connectivity. Indirect integration verification verifies the
correctness of actions executed via connections e.g. using
read and write actions of registers in the IP devices. Since
both RTL and TLM connections need to be verified, both
formal verification (RTL only) and simulation is used.
4.2 Formal Integration Verification
Since the formal verification tools make themselves a
complete search over all possible input patterns and states,
the generation of the properties is quite straight forward.
1. Identity properties between two signals are specified for
direct connectivity verification. These signals represent in
most cases the valid address and the read/write/enable
signals.
2. Register read/write properties assume a bus transaction
at the bus master’s side and checks versus the value of the
register some cycles before or after. The assumption also
includes interdiction of exceptions (e.g. reset) and hardware
access to the registers during the write/read access.
4.3 Simulation based Integration Verification
Simulation based methods for integration verification
follow the same approach as formal integration methods,
however stimuli must be generated to drive simulation and

verification goals must be specified to be able to analyse
the completeness of the verification runs. Stimulus
generation primarily includes generation of transactions at
master side, in a directed (read/write access to existing
registers only), exhaustive (read/write to a wider address
range), and constrained random way. Coverage analysis is
done differently for the two verification strategies. Direct
integration verification is measured in terms of toggle
coverage of the involved signals. Indirect integration
verification is measured in terms of register access
4.4 Tool flow
Figure 3 gives an overview on the tool flow. Starting from
the IP-XACT description of the IPs and the top level, both
the netlist in SystemC (including callbacks for the
assertions) and the SystemC assertions are generated. Both
are compiled together with the stimulus generator and
executed as SystemC model. This simulation result
produces coverage data (from execution of the assertions
and from signal toggle analysis). This coverage data is
finally compared with coverage goals, in order to validate
the completeness of the verification.

M as te r S lave 1 S lave 2 B us

IP -X A C T D esc rip tion (X M L)

D es ign IP
D atabase

T LM 1 .0
P roxy
D atabase

T op leve l
G enera to r

A ss ert ion
G enera to r

S ystem C
T op leve l
S ou rce

A sse rtion
Im p lem enta tion
S ource

In teg ra tion
G enera to r

System C
M a in F ile

In te rm ed iate
A sse rtion
D esc rip tion
F ile

C ove rage
G oa ls

E xecu te

C overage
E va lua tion

M as te r S lave 1 S lave 2 B us

IP -X A C T D esc rip tion (X M L)

D es ign IP
D atabase
D esign IP
D atabase

T LM 1 .0
P roxy
D atabase

T LM 1 .0
P roxy
D atabase

T op leve l
G enera to r

A ss ert ion
G enera to r

S ystem C
T op leve l
S ou rce

A sse rtion
Im p lem enta tion
S ource

In teg ra tion
G enera to r

System C
M a in F ile

In te rm ed iate
A sse rtion
D esc rip tion
F ile

C ove rage
G oa ls

E xecu te

C overage
E va lua tion

Figure 3: Infineon tool flow
4.5 Implemented IP-XACT extensions
Key for verification is the link of the properties to the
model and the generation of the assumptions required to set
the multiplexers correctly. For this reason, we defined a set
of requirements for IP views and usage of IP-XACT
extension. These are:
1. A default view associated with bus definitions defines
the read and write transactions on the bus. At the moment,
we use different views for each assertion language
involved, however we intend to have one abstract
representation only. This view also ensures that exceptions
are excluded on the bus for verification purposes.
2. Each IP must provide white box interfaces for the
registers in the IP, and the wires connected to the registers.
3. Each register is extended with meta data describing the
HW side, the actions performed by the HW side, and the
protocols needed to perform that action
4. Each IP involved in the bus structure is extended with
meta-data describing the translations made in the model.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

5. IP Integration flow of STMicroelectronics
ST uses the flow shown in Figure 4 for the design and
verification of its IPs, subsystems and chips.

 IP
Specification

IP
Specification… SOC

Specification

Register
Test

Generation

RTL
Flow

TLM
Flow

Register
Mapping

Documentation

IP-XACT
Database

IP
Specification

IP
Specification… SOC

Specification

Register
Test

Generation

RTL
Flow

TLM
Flow

Register
Mapping

Documentation

IP-XACT
Database

Figure 4 SPIRIT design and verification flow at ST

This flow uses IP-XACT as a common format from which
design groups can generate automatically e.g. the RTL
netlist as described in [1], [2] the SystemC netlist used for the
flow described in [3] the register test and header files that are
used in design verification and software development; the
register documentation for the product datasheets.
The IP-XACT database is made of IP-XACT compliant IPs
and sub systems both from ST and from external suppliers.
IPs built within ST are made IP-XACT compliant through a
combination of conversion tools extracting the IP-XACT
information from legacy formats e.g. the HDL files or the
specifications. IPs from external suppliers are either
provided in IP-XACT format or made IP-XACT compliant
within ST.

Whatever the source of the IP it needs to pass a QA
(Quality Assurance) step before entering the IP-XACT
database. This QA step is fundamental to the flow as it
guarantees the time won through design automation will not
be lost debugging IP-XACT IP representations. It is also
very illustrative of the type of flow automation we have
achieved with IP-XACT as it uses many of the tools we are
using around IP-XACT.
5.1 IP Quality Check Flow
The purpose of the IP QA flow is to verify that the IP-
XACT description of an IP is accurate e.g. registers
described in IP-XACT are indeed implemented in the RTL
of the IP, or the bus interface signals can indeed be driven
by the protocol they claim to support. A secondary purpose
of the IP-QA flow is to detect unexpected incompatibilities
with the IP-XACT generators used later in the flow by
already using these tools in the QA flow. The outline of the
QA flow is described in Figure 5.
 Starting from the IP-XACT description of the IP, an IP-
XACT testbench is generated, instantiating the IP and
connecting it to a high-level processor model, written in
SystemC, on which the test software is executed.

If the IP under QA is modeled at the SystemC TLM
level, it is instantiated as such inside the testbench and
connected to the processor via a high level TLM bus model.
If the IP under QA is not modeled at the TLM level, it is
first wrapped in a co-simulation wrapper made of
abstractors bringing the IP RTL bus interfaces to TLM
level. The abstractors are instantiated and connected

automatically based on the IP-XACT bus interface and
signal map information of the IP.

Automatic
Testbench
Generator

Netlister Simulator

R egister
Test

Generator

Results

IP-XACT
XM L

RTL/T LM
files

Processor TLM
Router Abstractor IP

Wrapper

Automatic
Testbench
Generator

Netlister Simulator

R egister
Test

Generator

Results

IP-XACT
XM L

RTL/T LM
files

Processor TLM
Router Abstractor IP

Wrapper

Figure 5: IP Quality Check Flow

The SystemC TLM testbench is automatically generated by
netlisting the IP-XACT test bench with a TLM netlister.
Another generator is also automatically called to generate
the register test from the memory map information inside
the IP-XACT file. The current IP-XACT schema doesn’t
contain any information regarding side-effects. In order to
have reliable results, we have our own IP-XACT vendor
extensions to describe these side-effects. These vendor
extensions are used by the register test generator to
propagate the information inside the register test files.

Finally, the netlist and the register test are combined to
run a simulation. A successful simulation demonstrates
firstly that the file set section of the IP-XACT file is correct
since we couldn’t compile if it was wrong. Secondly that
the communication between the processor and the IP is
working properly (it checks that the signal and interface
description is correct inside the IP-XACT file) and finally
that the register information and our vendor extensions are
aligned with the content of the IP.
6. IP-XACT based vSW code generation
For IP-based (sub-)system designs it is a tedious job to find
low level interconnection bugs through functional
simulation on application level. For that reason NXP first
applies structural system verification in order to find design
errors that are not related to an application, but only to the
platform standard that is being used in the design.
Examples are bugs in address decoding, DMA channels,
interrupts, clock programming, and so on. Such
methodology requires that IPs are supplied with their own
verification software (vSW) in plain ANSI-C. This software
can be used by a SoC integrator to verify that the IP was
successfully integrated in the system design. It checks the
connections of the IP to surrounding infrastructure IP.

The interfaces of any IP can be assigned to an interface
class. Each of these (about 10) classes can be represented
by a software API, which enables the IP to control or query
the connected infrastructure IP. Most of the IP verification
software can be generated automatically from the
information in the IP-XACT component file of that IP, but
what is still missing are tags on an IP interface that tell to
which interface class it belongs.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

6.1 Context labels Extensions
Context labels are defined for components and for their
interfaces (i.e. individual ports and/or buses). For brevity
we only show the interface labels. These are tags showing
the intended use (design intent) of a bus interface or port. A
system designer may have a different use (user intent) for
an IP interface (e.g. a GPIO port normally used to drive an
off-chip interface, but now used to control internal system
signals); this should then be annotated to the IP instance in
the system design.

When the hierarchy of an IP-XACT design is traversed,
the constituting components are inspected for context
labels. These context labels are attached to the components
themselves, to bus interfaces or to individual ports. They
can be overruled by similar context labels in a design file
where they are attached to component instances,
interconnections and ad-hoc interconnections, respectively.
These context labels are formally defined as a SPRINT
proposal to enhance the SPIRIT IP-XACT 1.4 standard to
contain behavioral properties of an IP component or
interface. Examples of context labels are
<isNetworkComponent> for bridges, busses etc.;
<isInfrastructureComponent> for Clk and Reset
generators, Interrupt Controllers etc.
6.2 Automated integration verification generation
In the NXP flow the HW platform is built using RDL
(Register Desciption Language) and HDL resources. To
generate the integration verification setup a CSV (Comma
Separated Value) file (excel sheet) is used that describes the
system connectivity data. This CSV file is input to a script
that generates the chip context required to manage the
integration verification.

Magillem Design Services and NXP have worked on a
methodology (Figure 6) that adapts the IP-XACT standard
to automate the creation of this integration verification
setup using vSW. The HW components are packaged in IP-
XACT, allowing any compliant tool environment to build
the platform and exploit the database by TGI generators.
The intermediate CSV format is generated from the
description of a design in IP-XACT.

Each component of the library is available through its
IP-XACT description, which is referring the HDL/RDL
files and the corresponding vSW view in C. The HW
platform construction and elaboration for simulation is
applying a common IP-XACT based setup and a netlister.
In parallel, the generation of the chip context is done from
the same IP-XACT design description. The simulation can
be launched in a press button manner, as all the elements of
the flow are packaged in SPIRIT generators linked in the
generator chain.

HDL and
RDL files

IP VSW
files in C

IP-XACT
Components

Compilation
Generator

Boot
files

Chip
context

Converter
VChipGen

XML2CSV
TGI Generator

IP-XACT
Design

Connection Table
(system connectivity

data)
Excel CSV

HDL
Netlister

HDL
Netlist

HDL
Platform

Elaboration

Simulation/
Verification

HDL and
RDL files

IP VSW
files in C

IP-XACT
Components

Compilation
Generator

Boot
files

Chip
context

Converter
VChipGen

XML2CSV
TGI Generator

IP-XACT
Design

Connection Table
(system connectivity

data)
Excel CSV

HDL
Netlister

HDL
Netlist

HDL
Platform

Elaboration

Simulation/
Verification

Figure 6 vSW Methodology
The validation of the presented flow and applied tools has
been done on a real ARM9 based platform from NXP. The
bus definitions, components and the design are packaged in
IP-XACT using the Magillem environment. We have used
the vendor-extension mechanism to extend the existing
XML files with the context labels. The XML2CSV
generator has been linked with the design description such
that it can be launched through Magillem.
7. IP-XACT based debug environment config
The typical use-case described in this section is a debugger
that is attached to a processor running firmware accessing
peripheral IPs. Two aspects are studied in the SPRINT
project. Firstly handling resources outside the processor
core: This part is focusing on the added value from the
debugger user point of view. The goal is to provide an
enhanced view of the registers of peripheral IPs that are
visible from the processor addressing space (Section 7.1).
Secondly handling resources inside the processor core: This
part is focusing on the added value from the debugger
targeting point of view. The goal is to reduce information
duplication and to reduce the debugger targeting effort
(Section 7.2).

7.1 Memory Mapped Resource Viewer
Peripheral IP registers are mapped in the processor memory
space. The number of memory mapped registers may be
very large. Therefore, having an enhanced view of these
registers (e.g. both addresses and detailed register field
descriptions) similarly as described in the specifications is
helpful for the firmware developer. In ST, we have
implemented a Memory Mapped Resource Viewer
(MMRV) as an Eclipse plug-in, interfaced to the debugger
perspective, and synchronized to the debugger (see Figure
7) in which registers are displayed in a hierarchical way:
IP/Register/Field according to their IP-XACT description.
The MMRV has been submitted to the Eclipse consortium.
In ST the MMRV is now entering in its deployment phase;
it is packaged within ST Software Development Toolsets.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

G
en

er
at

or

M em ory
M apped

Resources

IP-XA C T
descriptio n

G
en

er
at

or

M em ory
M apped

Resources

IP-XA C T
descriptio n

Figure 7: Memory Mapped Register viewer

7.2 Debugger retargeting
Retargeting a debugger is commonly performed by writing
dedicated code to support the new processor core. This
includes a “Resource Manager” describing registers and
memories; an “Architecture Manager” describing the
general architecture of the core; and a “Type Manager”
describing the supported data types. A part of the required
information for the targeting task comes from the
architecture description. Using a standard way to retrieve
this information allows retargeting a debugger with less
effort. Figure 8 illustrates the objective of this task: Left
side is a classical scheme of the target-dependent part of a
debugger diagram; Right side explores how IP-XACT can
be used to put the target description outside of the debugger
core diagram.

IP-XACT allows describing registers and memories (i.e.
address spaces). It supports the following register attributes:
name, size, address offset, and fields, and address space
attributes: name, address range, and width.

 Debugger Target dependent parts

Architecture
Manager

Target
Version
Manager

Type
Manager

Resource Manager

Resources

Regs Regs

Mems

Mems

Debugger Target Generic part

Generic Resource
Manager

IP-XACT
Resources
Manager

Regs Regs

Mems

Mems

Debugger Target
dependent parts

Architecture
Manager

Target
Version
Manager

Type
Manager

IP-XACT
Description

Debugger Target dependent parts

Architecture
Manager

Target
Version
Manager

Type
Manager

Resource Manager

Resources

Regs Regs

Mems

Mems

Debugger Target Generic part

Generic Resource
Manager

IP-XACT
Resources
Manager

Regs Regs

Mems

Mems

Debugger Target
dependent parts

Architecture
Manager

Target
Version
Manager

Type
Manager

IP-XACT
Description

Figure 8: Debugger retargeting

The debugger manages the correspondence between the
software and the hardware. Therefore it needs additional
information. The following ones have been identified:
1. Defining register and memory identifiers to indicate
correspondence between software and hardware.
2. Defining a display name for resources.
3. Defining pseudo registers, which do not exist in the
hardware, but that do make sense in software.
4. Additional attributes to memories, defining whether
they are data or program memories.
5. Additional attributes to registers, defining whether they
are Program Counter, Stack Pointer, Frame Pointer; if they
are hidden register (not visible to the user);
6. Defining the type and the format of the data being
contained in the registers (integer or float). In case of a float
format (e.g. IEEE 754) the different parameters of the
format need to be described.

7. Describing the memory representation of data contained
in registers. This is useful in case of a register spill (the
register values are stored in the stack). In this case,
displaying a variable when the program reaches a break
point is not performed by reading the register, but by
reading its value in the stack.
8. Specifying if a register value dynamically depends on
the value of another register (e.g. a Status Register “mode”
field that indicates if the core is running in 16 or 24 bits
mode, meaning that the data contained in General Purpose
registers are 16 bits or 24 bits).
These extensions are currently experimented in ST, using
<spirit:vendorExtension>.

7.3 Discussion
Using IP-XACT description for configuring memory
mapped resource handling from a debugger offers speed-up
in the integration of an external IP. The debugger targeting
cost for displaying the memory mapped registers of the IP
in a processor address space is null (only need to load the
IP-XACT description). From a user point of view, it
provides both easy to read description of memory mapped
resource fields, as well as a calculation of register addresses
and a generation of the debugger commands. This reduces
risks of human errors and increases the productivity of the
firmware developer.
SPRINT proposes IP-XACT extensions for interpreting the
data contained in the registers from a software point of
view. The objective is to rely on a single description of the
target which also allows automating the debugger targeting
tasks.
8. Summary
Existing industrial IP integration flows already benefit from
applying the IP-XACT standard. These benefits are in
various areas such as: Automated SystemC IP Packaging,
Integration and Configuration and Virtual Prototype
generation (NXP), IP Integration Verification, both formal
and simulation based (Infineon) and IP Quality Assurance
(ST). In the future more elements of the SoC design flow
such as verification SW generation, integration verification
and debug environment configuration can be automated
using next versions of IP-XACT. Several of the required
extensions are currently prototyped in the SPRINT project.
9. References
[1] O. Florent et al., “Spirit-based IP Assembly and SDC Promotion for

a 65-nm System-on-Chip using coreAssembler”, in Proceedings of
SNUG Europe 2006.

[2] O. Florent and F. Remond, “65nm SOC design based on an emerging
standard: Spirit”, presented at IP-SOC 2005.

[3] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC:TLM
Concepts and Applications for Embedded Systems, Springer, 2005.

[4] Geoff Mole et al, “Philips Semiconductors Next Generation
Architectural IP ReUse Developments for SoC Integration”, IP-SoC
2004.

[5] Strik, Marino et al, ” Subsystem Exchange in a Concurrent Design
Process Environment”, Proceedings DATE 2008.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on February 1, 2010 at 04:04 from IEEE Xplore. Restrictions apply.

