
pn: a Tool for Improved Derivation of Process Networks

Sven Verdoolaege Hristo Nikolov Todor Stefanov

LIACS, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{sverdool,nikolov,stefanov}@liacs.nl

January 23, 2007

Abstract

Current emerging embedded System-on-Chip platforms are increasingly becoming multiprocessor ar-

chitectures. System designers experience significant difficulties in programming these platforms. The

applications are typically specified as sequential programs that do not reveal the available parallelism in

an application, thereby hindering the efficient mapping of an application onto a parallel multiprocessor

platform. In this paper we present our compiler techniques for facilitating the migration from a sequen-

tial application specification to a parallel application specification using the Process Network model of

computation. Our work is inspired by a previous research project called Compaan. With our techniques

we address optimization issues such as the generation of Process Networks with simplified topology and

communication without sacrificing the Process Networks’ performance. Moreover, we describe a technique

for compile-time memory requirement estimation which we consider as an important contribution of this

paper. We demonstrate the usefulness of our techniques on several examples.

1 Introduction and Motivation

The complexity of embedded multimedia and signal
processing applications has reached a point where the
performance requirements of these applications can
no longer be supported by embedded system plat-
forms based on a single processor. Therefore, mod-
ern embedded System-on-Chip platforms have to be
multiprocessor architectures. In recent years a lot of
attention has been paid to building such multipro-
cessor platforms. Fortunately, advances in chip tech-
nology facilitate this activity. However, less attention
has been paid to compiler techniques for efficient pro-
gramming of multiprocessor platforms, i.e., the effi-
cient mapping of applications onto these platforms
is becoming a key issue. Today, system designers ex-
perience significant difficulties in programming multi-
processor platforms because the way an application is
specified by an application developer does not match
the way multiprocessor platforms operate. The ap-

plications are typically specified as sequential pro-
grams using imperative programming languages such
as C/C++ or Matlab. Specifying an application as a
sequential program is relatively easy and convenient
for application developers, but the sequential nature
of such a specification does not reveal the available
parallelism in an application. This fact makes the
efficient mapping of an application onto a parallel
multiprocessor platform very difficult. By contrast,
if an application is specified using a parallel model of
computation (MoC) then the mapping can be done in
a systematic and transparent way using a disciplined
approach [18]. However, specifying an application us-
ing a parallel MoC is difficult, not well understood by
application developers, and a time consuming and er-
ror prone process. That is why application developers
still prefer to specify an application as a sequential
program, which is well understood, even though such
a specification is not suitable for mapping an appli-
cation onto a parallel multiprocessor platform.
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This gap between a sequential program and a par-
allel model of computation motivates us to investi-
gate and develop compiler techniques that facilitate
the migration from a sequential application specifi-
cation to a parallel application specification. These
compiler techniques depend on the parallel model of
computation used for parallel application specifica-
tion. Although many parallel models of computation
exist [15, 16], in this paper we consider the Process
Network model of computation [13] because its oper-
ational semantics are simple, yet general enough, to
conveniently specify stream-oriented data processing
that fits nicely with the application domain we are in-
terested in—multimedia and signal processing appli-
cations. Moreover, for this application domain, many
researchers [6–8,12,17,19–21,23,25] have already in-
dicated that Process Networks are very suitable for
systematic and efficient mapping onto multiprocessor
platforms.

In this paper we present our compiler techniques
for deriving Process Network specifications for ap-
plications specified as static affine nested loop pro-
grams (SANLPs), thereby bridging the gap men-
tioned above in a particular way. SANLPs are im-
portant in Scientific, Matrix Computation and Mul-
timedia and Adaptive Signal Processing applications.
Our work is inspired by previous research on Com-
paan [14, 22, 24]. The techniques presented in this
paper and implemented in the pn tool of our isa tool
set can be seen as a significant improvement of the
techniques developed in the Compaan project in the
following sense. The Compaan project has identified
the fundamental problems that have to be solved in
order to derive Process Networks systematically and
automatically and has proposed and implemented ba-
sic solutions to these problems. However, many op-
timization issues that improve the quality of the de-
rived Process Networks have not been fully addressed
in Compaan. Our techniques try to address optimiza-
tion issues in four main aspects:

Given an application specified as a SANLP,

1. Derive (if possible) Process Networks (PN) with
fewer communication channels between differ-
ent processes compared to Compaan derived PNs
without sacrificing the PN performance.

2. Derive (if possible) Process Networks (PN) with
fewer processes compared to Compaan derived
PNs without sacrificing the PN performance.

3. Replace (if possible) reordering communication
channels with simple FIFO channels without sac-
rificing the PN performance.

4. Determine the size of the communication FIFO
channels at compile time. The problem of deriv-
ing efficient FIFO sizes has not been addressed
by Compaan. Our techniques for computing
FIFO sizes constitute a starting point to over-
come this problem.

2 Related Work

The work in [20] presents a methodology and tech-
niques implemented in a tool called ESPAM for auto-
mated multiprocessor system design, programming,
and implementation. The ESPAM design flow starts
with three input specifications at the system level of
abstraction, namely a platform specification, a map-
ping specification, and an application specification.
ESPAM requires the application specification to be a
process network. Our compiler techniques presented
in this paper are primarily intended to be used as a
font-end tool for ESPAM. (Kahn) Process Networks
are also supported by the Ptolemy II framework [16]
and the YAPI environment [6] for concurrent model-
ing and design of applications and systems. In many
cases, manually specifying an application as a Process
Network is a very time consuming and error prone
process. Using our techniques as a front-end to these
tools can significantly speedup the modeling effort
when Process Networks are used and avoid modeling
errors because our techniques guarantee a correct-by-
construction generation of Process Networks.

Process Networks have been used to model appli-
cations and to explore the mapping of these applica-
tions onto multi-processor architectures [7,17,21,25].
The application modeling is performed manually
starting from sequential C code and a significant
amount of time (a few weeks) is spent by the de-
signers on correctly transforming the sequential C
code into Process Networks. This activity slows down
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the design space exploration process. The work pre-
sented in this paper gives a solution for fast auto-
matic derivation of Process Networks from sequen-
tial C code that will contribute to faster design space
exploration.

The relation of our analysis to Compaan will be
highlighted throughout the text. As to memory size
requirements, much research has been devoted to op-
timal reuse of memory for arrays. For an overview
and a general technique, we refer to [4]. These tech-
niques are complementary to our research on FIFO
sizes and can be used on the reordering channels and
optionally on the data communication inside a node.
Also related is the concept of reuse distances [2]. In
particular, our FIFO sizes are a special case of the
“reuse distance per statement” of [27]. For more ad-
vanced forms of copy propagation, we refer to [26].

The rest of this paper is organized as follows. In
Section 3, we first introduce some concepts that we
will need throughout this paper. We explain how to
derive and optimize Process Networks in Section 4
and how to compute FIFO sizes in Section 5. De-
tailed examples are given in Section 6, with a further
comparison to Compaan-generated networks in Sec-
tion 7. In Section 8 we conclude the paper.

3 Preliminaries

In this section, we introduce the process network
model, discuss static affine nested loop programs
(SANLPs) and our internal representation and intro-
duce our main analysis tools.

3.1 The Process Network Model

As the name suggests, a process network consists of
a set of processes, also called nodes, that communi-
cate with each other through channels. Each process
has a fixed internal schedule, but there is no (a priori)
global schedule that dictates the relative order of exe-
cution of the different processes. Rather, the relative
execution order is solely determined by the channels
through which the processes communicate. In par-
ticular, a process will block if it needs data from a

channel that is not available yet. Similarly, a process
will block if it tries to write to a “full” channel.

In the special case of a Kahn Process Network
(KPN), the communication channels are unbounded
FIFOs that can only block on a read. In the more
general case, data can be written to a channel in
an order that is different from the order in which
the data is read. Such channels are called reorder-
ing channels. Furthermore, the FIFO channels have
additional properties such as their size and the abil-
ity to be implemented as a shift register. Since both
reads and writes may block, it is important to ensure
the FIFOs are large enough to avoid deadlocks. Note
that determining suitable channel sizes may not be
possible in general, but it is possible for process net-
works derived from SANLPs as defined in Section 3.2.
Our networks can be used as input for tools that ex-
pect Kahn process networks by ignoring the addi-
tional properties of FIFO channels and by changing
the order in which a process reads from a reordering
channel to match the order of the writes and storing
the data that is not needed yet in an internal memory
block.

3.2 Limitations on the Input and In-

ternal Representation

The SANLPs are programs or program fragments
that can be represented in the well-known polytope
model [11]. That is, a SANLP consists of a set of
statements, each possibly enclosed in loops and/or
guarded by conditions. The loops need not be per-
fectly nested. All lower and upper bounds of the
loops as well as all expressions in conditions and ar-
ray accesses can contain enclosing loop iterators and
parameters as well as modulo and integer divisions,
but no products of these elements. Such expressions
are called quasi-affine. The parameters are symbolic
constants, i.e., their values may not change during
the execution of the program fragment. These restric-
tions allow a compact representation of the program
through sets and relations of integer vectors defined
by linear (in)equalities, existential quantification and
the union operation. More technically, our (paramet-
ric) “integer sets” and “integer relations” are (dis-
joint) unions of projections of the integer points in

3



for (i = 0; i < N; ++i)
S1: b[i] = f(i > 0 ? a[i -1] : a[i], a[i],

i < N -1 ? a[i+1] : a[i]);
for (i = 0; i < N; ++i) {

if (i > 0)
tmp = b[i -1];

else
tmp = b[i];

S2: c[i] = g(b[i], tmp );
}

Figure 1: Use of temporary variables to express bor-
der behavior.

(parametric) polytopes.
In particular, the set of iterator vectors for which a

statement is executed is an integer set called the iter-
ation domain. The linear inequalities of this set cor-
respond to the lower and upper bounds of the loops
enclosing the statement. For example, the iteration
domain of statement S1 in Figure 1 is {i | 0 ≤ i ≤
N−1}. The elements in these sets are ordered accord-
ing to the order in which the iterations of the loop
nest are executed, assuming the loops are normalized
to have step +1. This order is called the lexicograph-
ical order and will be denoted by ≺. A vector a ∈ Z

n

is said to be lexicographically (strictly) smaller than
b ∈ Z

n if for the first position i in which a and b

differ, we have ai < bi, or, equivalently,

a ≺ b ≡

n
∨

i=1



ai < bi ∧

i−1
∧

j=1

aj = bj



 . (1)

The iteration domains will form the basis of the de-
scription of the nodes in our process network, as each
node will correspond to a particular statement. The
channels are determined by the array (or scalar) ac-
cesses in the corresponding statements. All accesses
that appear on the left hand side of an assignment
or in an address-of (&) expression are considered to
be write accesses. All other accesses are considered
to be read accesses. Each of these accesses is repre-
sented by an access relation, relating each iteration
of the statement to the array element accessed by the
iteration, i.e., { (i,a) ∈ I × A | a = Li + m }, where
I is the iteration domain, A is the array space and
Li + m is the affine access function.

The use of access relations allows us to impose ad-
ditional constraints on the iterations where the access
occurs. This is useful for expressing the effect of the
ternary operator (?:) in C, or, equivalently, the use
of temporary scalar variables. These frequently occur
in multimedia applications where one or more kernels
uniformly manipulate a stream of data such as an im-
age, but behave slightly differently at the borders. An
example of both ways of expressing border behavior
is shown in Figure 1 on a 1D data stream. The sec-
ond read access through b in line 9, after elimination
of the temporary variable tmp, can be represented as

R ={ (i, a) | a = i − 1 ∧ 1 ≤ i ≤ N − 1 } ∪

{ (i, a) | a = i = 0 }.
(2)

To eliminate such temporary variables, we first iden-
tify the statements that simply copy data to a tem-
porary variable, perform a dataflow analysis (as ex-
plained in Section 4.1) on those temporary variables
in a first pass and combine the resulting constraints
with the access relation from the copy statement. A
straightforward transformation of code such as that
of Figure 1 would introduce extra nodes that simply
copy the data from the appropriate channel to the
input channel of the core node. Not only does this
result in a network with more nodes than needed, it
also reduces the opportunity for reducing inter-node
communication.

3.3 Analysis tools: lexicographical

minimization and counting

Our main analysis tool is parametric integer pro-
gramming [9], which computes the lexicographically
smallest (or largest) element of a parametric inte-
ger set. The result is a subdivision of the parame-
ter space with for each cell of this subdivision a de-
scription of the corresponding unique minimal ele-
ment as an affine combination of the parameters and
possibly some additional existentially quantified vari-
ables. This result can be described as a union of
parametric integer sets, where each set in the union
contains a single point, or alternatively as a relation,
or indeed a function, between (some of) the parame-
ters and the corresponding lexicographical minimum.
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The existentially quantified variables that may ap-
pear will always be uniquely quantified, i.e., the ex-
istential quantifier ∃ is actually a uniqueness quan-
tifier ∃!. Parametric integer programming (PIP) can
be used to project out some of the variables in a set.
We simply compute the lexicographical minimum of
these variables, treating all other variables as addi-
tional parameters, and then discard the description
of the minimal element.

The barvinok library [30] efficiently computes the
number of integer points in a parametric polytope.
We can use it to compute the number of points in
a parametric set provided the existentially quantified
variables are uniquely quantified, which can be en-
sured by first using PIP if needed. The result of the
computation is a compact representation of a func-
tion from the parameters to the nonnegative integers,
the number of elements in the set for the correspond-
ing parameter values. In particular, the result is a
piecewise quasi-polynomial in the parameters. The
bernstein library [3] can be used to compute an up-
per bound on a piecewise polynomial over a paramet-
ric polytope.

4 Derivation of Process Net-

works

This section explains the conversion of SANLPs to
Process Networks. We first derive the channels us-
ing a modified dataflow analysis in Section 4.1 and
then we show how to determine channel types in Sec-
tion 4.2 and discuss some optimizations on self-loop
channels in Section 4.3.

4.1 Dataflow Analysis

To compute the channels between the nodes, we ba-
sically need to perform array dataflow analysis [10].
That is, for each execution of a read operation of a
given data element in a statement, we need to find
the source of the data, i.e., the corresponding write
operation that wrote the data element. However, to
reduce communication between different nodes and in
contrast to standard dataflow analysis, we will also

consider all previous read operations from the same
statement as possible sources of the data.

The problem to be solved is then: given a read
from an array element, what was the last write to or
read (from that statement) from that array element?
The last iteration of a statement satisfying some con-
straints can be obtained using PIP, where we com-
pute the lexicographical maximum of the write (or
read) source operations in terms of the iterators of
the “sink” read operation. Since there may be multi-
ple statements that are potential sources of the data
and since we also need to express that the source op-
eration is executed before the read (which is not a
linear constraint, but rather a disjunction of n linear
constraints (1), where n is the shared nesting level),
we actually need to perform a number of PIP invo-
cations. For details, we refer to [10], keeping in mind
that we consider a larger set of possible sources.

For example, the first read access in statement S2
of the code in Figure 1 reads data written by state-
ment S1, which results in a channel from node “S1” to
node “S2”. In particular, data flows from iteration iw
of statement S1 to iteration ir = iw of statement S2.
This information is captured by the integer relation

DS1→S2 = {(iw, ir) | ir = iw ∧ 0 ≤ ir ≤ N − 1}.

For the second read access in statement S2, as de-
scribed by Equation (2), the data has already been
read by the same statement after it was written. This
results in a self-loop from S2 to itself described as

DS2→S2 ={(iw, ir) | iw = ir − 1 ∧ 1 ≤ ir ≤ N − 1} ∪

{(iw, ir) | iw = ir = 0}.

In general, we obtain pairs of write/read and
read operations such that some data flows from the
write/read operation to the (other) read operation.
These pairs correspond to the channels in our process
network. For each of these pairs, we further obtain a
union of integer relations

m
⋃

j=1

Dj(iw, ir) ⊂ Z
n1 × Z

n2 , (3)

with n1 and n2 the number of loops enclosing the
write and read operation respectively, that connect
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the specific iterations of the write/read and read op-
erations such that the first is the source of the second.
As such, each iteration of a given read operation is
uniquely paired off to some write or read operation
iteration. Finally, channels that result from differ-
ent read accesses from the same statement to data
written by the same write access are combined into a
single channel if this combination does not introduce
reordering, a characteristic explained in the next sec-
tion.

4.2 Determining Channel Types

In general, the channels we derived in the previous
section may not be FIFOs. That is, data may be writ-
ten to the channel in an order that is different from
the order in which data is read. We therefore need to
check whether such reordering occurs. This check can
again be formulated as a (set of) PIP problem(s). Re-
ordering occurs iff there exist two pairs of write and
read iterations, (w1, r1), (w2, r2) ∈ Z

n1 × Z
n2 , such

that the order of the write operations is different from
the order of the read operations, i.e., w1 Â w2 and
r1 ≺ r2, or equivalently

w1 − w2 Â 0 and r1 ≺ r2. (4)

Given a union of integer relations describing the chan-
nel (3), then for any pair of relations in this union,
(Dj1 , Dj2), we therefore need to solve n2 PIP prob-
lems

lexmax { (t, (w1, r1), (w2, r2),p) |

(w1, r1) ∈ Dj1 ∧ (w2, r2) ∈ Dj2 ∧

t = w1 − w2 ∧ r1 ≺ r2 },

(5)

where r1 ≺ r2 should be expanded according to
Equation (1) to obtain the n2 problems. If any of
these problems has a solution and if it is lexicographi-
cally positive or unbounded (in the first n1 positions),
then reordering occurs. Note that we do not compute
the maximum of t = w1 −w2 in terms of the param-
eters p, but rather the maximum over all values of
the parameters. If reordering occurs for any value of
the parameters then we simply consider the channel
to be reordering. Equation (5) therefore actually rep-
resents a non-parametric integer programming prob-

for (i = 0; i < N; ++i)
a[i] = A(i);

for (j = 0; j < N; ++j)
b[j] = B(j);

for (i = 0; i < N; ++i)
for (j = 0; j < N; ++j)

c[i][j] = a[i] * b[j];

Figure 2: Outer product source code.
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Figure 3: Outer product dependence graph with mul-
tiplicity.

lem. The large majority of these problems will be
trivially unsatisfiable.

The reordering test of this section is a variation of
the reordering test of [24], where it is formulated as
n1 × n2 PIP problems for a channel described by a
single integer relation. A further difference is that
the authors of [24] perform a more standard dataflow
analysis and therefore also need to consider a second
characteristic called multiplicity. Multiplicity occurs
when the same data is read more than once from
the same channel. Since we also consider previous
reads from the same node as potential sources in our
dataflow analysis, the channels we derive will never
have multiplicity, but rather will be split into two
channels, one corresponding to the first read and one
self-loop channel propagating the value to subsequent
reads.

Removing multiplicity not only reduces the com-
munication between different nodes, it can also re-
move some artificial reorderings. A typical example
of this situation is the outer product of two vectors,
shown in Figure 2. Figure 3 shows the result of stan-
dard dataflow analysis. The left part of the figure
shows the three nodes and two channels; the right
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Figure 4: Outer product dependence graph without
multiplicity.

part shows the data flow between the individual it-
erations of the nodes. The iterations are executed
top-down, left-to-right. The channel between a and
c is described by the relation

Da→c = { (ia, ic, jc) | 0 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧ ia = ic }
(6)

and would be classified as non-reordering, since the
data elements are read (albeit multiple times) in the
order in which they are produced. The channel be-
tween b and c, on the other hand, is described by the
relation

Db→c = { (jb, ic, jc) | 0 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧ jb = jc }
(7)

and would be classified as reordering, with the fur-
ther complication that the same data element needs
to be sent over the channel multiple times. By sim-
ply letting node c only read a data element from
these channels the first time it needs the data and
from a newly introduced self-loop channel all other
times, we obtain the network shown in Figure 4. In
this network, all channels, including the new self-loop
channels, are FIFOs. For example, the channel with
dependence relation Db→c (7) is split into a channel
with relation

D′

b→c = { (jb, ic, jc) | ic = 0∧0 ≤ jc ≤ N−1∧jb = jc }

and a self-loop channel with relation

Dc→c = { (i′c, j
′

c, ic, jc) | 1 ≤ ic ≤ N − 1 ∧

0 ≤ jc ≤ N − 1 ∧

j′c = jc ∧ i′c = ic − 1 }.

(8)

4.3 Self-loops

When removing multiplicity from channels, our
dataflow analysis introduces extra self-loop channels.
Some of these channels can be further optimized. A
simple, but important case is that where the channels
hold at most one data element throughout the execu-
tion of the program. Such channels can be replaced
by a single register. This situation occurs when
for every pair of write and read iterations (w2, r2),
there is no other read iteration r1 reading from the
same channel in between. In other words, the situa-
tion does not occur iff there exist two pairs of write
and read iterations, (w1, r1) and (w2, r2), such that
w2 ≺ r1 ≺ r2, or equivalently r1 − w2 Â 0 and
r1 ≺ r2. Notice the similarity between this condition
and the reordering condition (4). The PIP problems
that need to be solved to determine this condition are
therefore nearly identical to the problems (5), viz.,

lexmax { (t, (w1, r1), (w2, r2),p) |

(w1, r1) ∈ Dj1 ∧ (w2, r2) ∈ Dj2 ∧

t = r1 − w2 ∧ r1 ≺ r2 },

(9)

where again (Dj1 , Dj2) is a pair of relations in the
union describing the channel and where r1 ≺ r2

should be expanded according to Equation (1).
If such a channel has the additional property that

the single value it contains is always propagated to
the next iteration of the node (a condition that can
again be checked using PIP), then we remove the
channel completely and attach the register to the in-
put argument of the function and call the FIFO(s)
that read the value for the first time “sticky FIFOs”.
This is a special case of the optimization applied to
in-order channels with multiplicity of [24] that allows
for slightly more efficient implementations due to the
extra property.

Another special case occurs when the number of
iterations of the node between a write to the self-
loop channel and the corresponding read is a con-
stant, which we can determine by simply counting
the number of intermediate iterations (symbolically)
and checking whether the result is a constant func-
tion. In this case, we can replace the FIFO by a shift
register, which can be implemented more efficiently
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in hardware. Note, however, that there may be a
trade-off since the size of the channel as a shift regis-
ter (i.e., the constant function above) may be larger
than the size of the channel as a FIFO. On the other
hand, the FIFO size may be more difficult to deter-
mine (see Section 5.2).

5 Computing Channel Sizes

In this section, we explain how we compute the buffer
sizes for the FIFOs in our networks at compile-time.
This computation may not be feasible for Process
Networks in general, but we are dealing here with the
easier case of networks generated from static affine
nested loop programs. We first consider self-loops,
with a special case in Section 5.1, and the general
case in Section 5.2. In Section 5.3, we then explain
how to reduce the general case of FIFOs to self-loops
by scheduling the network.

5.1 Uniform Self-Dependences on

Rectangular Domains

An important special case occurs when the chan-
nel is represented by a single integer relation that
in turn represents a uniform dependence over a rect-
angular domain. A dependence is called uniform if
the difference between the read and write iteration
vector is a (possibly parametric) constant over the
whole relation. We call such a dependence a uni-
form dependence over a rectangular domain if the
set of iterations reading from the channel form a
rectangular domain. (Note that due to the depen-
dence being uniform, also the write iterations will
form a rectangular domain in this case.) For ex-
ample, the relation Dc→c (8) from Section 4.2 is a
uniform dependence over a rectangular domain since
the difference between the read and write iteration
vector is (ic, jc) − (i′c, j

′

c) = (1, 0) and since the
projection onto the read iterations is the rectangle
1 ≤ ic ≤ N − 1 ∧ 0 ≤ jc ≤ N − 1.

The required buffer size is easily calculated in these
cases since in each (overlapping) iteration of any of
the loops in the loop nest, the number of data ele-
ments produced is exactly the same as the number of

elements consumed. The channel will therefore never
contain more data elements than right before the first
data element is read, or equivalently, right after the
last data element is written. To compute the buffer
size, we therefore simply need to take the first read
iteration and count the number of write iterations
that are lexicographically smaller than this read iter-
ation using barvinok. In the example, the first read
operation occurs at iteration (1, 0) and so we need to
compute

# (S ∩ { (i′c, j
′

c) | i′c < 1 }) +

# (S ∩ { (i′c, j
′

c) | i′c = 1 ∧ j′c < 0 }) ,
(10)

with S the set of write iterations

S = { (i′c, j
′

c) | 0 ≤ i′c ≤ N − 2 ∧ 0 ≤ j′c ≤ N − 1 }.

The result of this computation is N + 0 = N .

5.2 General Self-loop FIFOs

An easy approximation can be obtained by comput-
ing the number of array elements in the original pro-
gram that are written to the channel. That is, we
can intersect the domain of write iterations with the
access relation and project onto the array space. The
resulting (union of) sets can be enumerated symbol-
ically using barvinok. The result may however be
a large overestimate of the actual buffer size require-
ments.

The actual amount of data in a channel at any
given iteration can be computed fairly easily. We
simply compute the number of read iterations that
are executed before a given read operation and sub-
tract the resulting expression from the number of
write iterations that are executed before the given
read operation. This computation can again be per-
formed entirely symbolically and the result is a piece-
wise (quasi-)polynomial in the read iterators and the
parameters. The required buffer size is the maximum
of this expression over all read iterations.

For sufficiently regular problems, we can com-
pute the above maximum symbolically by perform-
ing some simplifications and identifying some special
cases. In the general case, we can apply Bernstein ex-
pansion [3] to obtain a parametric upper bound on the
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expression. For non-parametric problems, however, it
is usually easier to simulate the communication chan-
nel. That is, we use CLooG [1] to generate code that
increments a counter for each iteration writing to the
channel and decrements the counter for each read it-
eration. The maximum value attained by this counter
is recorded and reflects the channel size.

5.3 Non-self-loop FIFOs

Computing the sizes of self-loop channels is relatively
easy because the order of execution within a node of
the network is fixed. The relative order of iterations
from different nodes is not known a priori, however,
since this order is determined at run-time. Comput-
ing minimal deadlock-free buffer sizes is a non-trivial
global optimization problem. This problem becomes
easier if we first compute a deadlock-free schedule and
then compute the buffer sizes for each channel indi-
vidually. Note that this schedule is only computed
for the purpose of computing the buffer sizes and is
discarded afterward. The schedule we compute may
not be optimal and the resulting buffer sizes may not
be valid for the optimal schedule. Our computations
do ensure, however, that a valid schedule exists for
the computed buffer sizes.

The schedule is computed using a greedy approach.
This approach may not work for process networks in
general, but it does work for any network derived
from a SANLP. The basic idea is to place all itera-
tion domains in a common iteration space at an offset
that is computed by the scheduling algorithm. As in
the individual iteration spaces, the execution order
in this common iteration space is the lexicographical
order. By fixing the offsets of the iteration domain
in the common space, we have therefore fixed the rel-
ative order between any pair of iterations from any
pair of iteration domains. The algorithm starts by
computing for any pair of connected nodes, the min-
imal dependence distance vector, a distance vector
being the difference between a read operation and
the corresponding write operation. Then the nodes
are greedily combined, ensuring that all minimal dis-
tance vectors are (lexicographically) positive. The
end result is a schedule that ensures that every data
element is written before it is read. For more infor-

mation on this algorithm, we refer to [28], where it
is applied to perform loop fusion on SANLPs. Note
that unlike the case of loop fusion, we can ignore anti-
dependences here, unless we want to use the declared
size of an array as an estimate for the buffer size of
the corresponding channels. (Anti-dependences are
ordering constraints between reads and subsequent
writes that ensure an array element is not overwrit-
ten before it is read.)

After the scheduling, we may consider all channels
to be self-loops of the common iteration space and we
can apply the techniques from the previous sections
with the following qualifications. We will not be able
to compute the absolute minimum buffer sizes, but
at best the minimum buffer sizes for the computed
schedule. We cannot use the declared size of an array
as an estimate for the channel size, unless we have
taken into account anti-dependences. An estimate
that remains valid is the number of write iterations.

We have tacitly assumed above that all iteration
domains have the same dimension. If this is not the
case, then we first need to assign a dimension of the
common (bigger) iteration space to each of the di-
mensions of the iteration domains of lower dimension.
For example, the single iterator of the first loop of the
program in Figure 2 would correspond to the outer
loop of the 2D common iteration space, whereas the
single iterator of the second loop would correspond
to the inner loop, as shown in Figure 3. We currently
use a greedy heuristic to match these dimensions,
starting from domains with higher dimensions and
matching dimensions that are related through one or
more dependence relations. During this matching we
also, again greedily, take care of any scaling that may
need to be performed to align the iteration domains.
Although our heuristics seem to perform relatively
well on our examples, it is clear that we need a more
general approach such as the linear transformation
algorithm of [29].

6 Worked-out Examples

In this section, we show the results of applying our
optimization techniques to two image processing al-
gorithms. The generated Process Networks (PN) en-
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joy a reduction in the amount of data transferred
between nodes and reduced memory requirements,
resulting in a better performance, i.e., a reduced ex-
ecution time. The first algorithm is the Sobel op-
erator, which estimates the gradient of a 2D image.
This algorithm is used for edge detection in the pre-
processing stage of computer vision systems. The sec-
ond algorithm is a forward Discrete Wavelet Trans-
form (DWT). The Wavelet transform is a function
for multi-scale analysis and has been used for com-
pact signal and image representations in de-noising,
compression, and feature detection processing prob-
lems for about twenty years.

6.1 Sobel Edge Detection

The Sobel edge detection algorithm is described by
the source code in Figure 5. To estimate the gradi-
ent of an image the algorithm performs a convolution
between the image and a 3x3 convolution mask. The
mask is slid over the image, manipulating a square
of 9 pixels at a time, i.e., each time 9 image pixels
are read and 1 value is produced. The value repre-
sents the approximated gradient in the center of the
processed image area. Applying the regular dataflow
analysis on this example using Compaan results in
the Process Network (PN) depicted in Figure 6. It
contains 2 nodes (representing the ReadImage and
Sobel functions) and 9 channels (representing the
arguments of the Sobel function). Each channel is
marked with a number showing the buffer size it re-
quires. These numbers were obtained by running
a simulation processing an image of 256x256 pixels
(Nrw=Ncl=256). The ReadImage node reads the in-
put image from memory pixel by pixel and sends it
to the Sobel node through the 9 channels. Since the
9 pixel values are read in parallel, the executions of
the Sobel node can start after reading 2 lines and 3
pixels from memory.

After detecting self reuse through read accesses
from the same statement as described in Section 4.1,
we obtain the PN in Figure 7. Again, the numbers
next to each channel specify the buffer sizes of the
channels. We calculated them at compile time using
the techniques described in Section 5. The number
of channels between the nodes is reduced from 9 to 3

ReadImage

Sobel

1 2 3 255 256 257 509 510 511

Figure 6: Compaan generated Process Network for
the Sobel example.

while several self-loops are introduced. Reducing the
communication load between nodes is an important
issue since it influences the overall performance of the
final implementation. Each data element transferred
between two nodes introduces a communication over-
head which depends on the architecture of the system
executing the PN. For example, if a PN is mapped
onto a multiprocessor system with a shared bus ar-
chitecture, then the 9 pixel values are transferred se-
quentially through the shared bus, even though in
the PN model they are specified as 9 (parallel) chan-
nels (Figure 6). In this example it is clear that the
PN in Figure 7 will only suffer a third of the commu-
nication overhead because it contains 3 times fewer
channels between the nodes. The self-loops are im-
plemented using the local processor memory and they
do not use the communication resources of the sys-
tem. Moreover, most of the self loops require only 1
register which makes their implementations simpler
than the implementation of a communication channel
(FIFO). This also holds for PNs implemented as ded-
icated hardware. A single-register self-loop is much
cheaper to implement in terms of HW resources than
a FIFO channel. Another important issue (in both
SW and HW systems) is the memory requirement.
For the PN in Figure 6 the total amount of memory
required is 2304 locations, while the PN in Figure 7
requires only 1033 (for a 256x256 image). This shows
that the detection of self reuse reduces the memory
requirements by a factor of more than 2.

In principle, the three remaining channels between
the two nodes could be combined into a single chan-
nel, but, due to boundary conditions, the order in
which data would be read from this channel is dif-
ferent from the order in which it is written and we
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for (j=0; j < Nrw; j++)
for (i=0; i < Ncl; i++)

a[j][i] = ReadImage ();

for (j=1; j < Nrw -1; j++)
for (i=1; i < Ncl -1; i++)

Sbl[j][i] = Sobel(a[j-1][i-1], a[j][i-1], a[j+1][i-1],
a[j-1][ i], a[j][ i], a[j+1][ i],
a[j-1][i+1], a[j][i+1], a[j+1][i+1]);

Figure 5: Source code of a Sobel edge detection example.

ReadImage

Sobel

7 Ncl-2 Ncl-2

1 1 Ncl-4 1 1 Ncl-4 1 11 1 1 1 1 1 1 1

Figure 7: The generated Process Network for the So-
bel example using the self reuse technique.

would therefore have a reordering channel (see Sec-
tion 4.2). Since the implementation of a reordering
channel is much more expensive than that of a FIFO
channel, we do not want to introduce such reorder-
ing. The reason we still have 9 channels (7 of which
are combined into a single channel) after reuse de-
tection, is that each access reads at least some data
for the first time. We can change this behavior by
extending the loops with a few iterations, while still
only reading the same data as in the original pro-
gram. All data will then be read for the first time by
access a[j+1][i+1] only, resulting in a single FIFO
between the two nodes. To ensure that we only read
the required data, some of the extra iterations of the
accesses do not read any data. We can (manually)
effectuate this change in C by using (implicit) tem-
porary variables and, depending on the index expres-
sions, reading from “noise”, as shown in Figure 8.
By using the simple copy propagation technique of
Section 3.2, these modifications do not increase the
number of nodes in the PN.

The generated optimized PN shown in Figure 9
contains only one (FIFO) channel between the
ReadImage and Sobel nodes. All other communica-

ReadImage

Sobel

1

1 1 1 1 1 1 Ncl Ncl

Figure 9: The generated PN for the modified Sobel
edge detection example.

tions are through self-loops. Thus, the communica-
tion between the nodes is reduced 9 times compared
to the initial PN (Figure 6). The total memory re-
quirements for a 256x256 image have been reduced
by a factor of almost 4.5 to 519 locations. Note that
the results of the extra iterations of the Sobel node,
which partly operate on “noise”, are discarded and
so the final behavior of the algorithm remains unal-
tered. However, with the reduced number of commu-
nication channels and overhead, the final (real) im-
plementation of the optimized PN will have a better
performance.

6.2 Discrete Wavelet Transform

In the Discrete Wavelet Transform (DWT) the in-
put image is decomposed into different decomposition
levels. These decomposition levels contain a number
of sub-bands, which consist of coefficients that de-
scribe the horizontal and vertical spatial frequency
characteristics of the original image. The DWT re-
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#define A(j,i) (j >=0 && i >=0 && i<Ncl ? a[j][i] : noise)
#define S(j,i) (j >=1 && i >=1 && i<Ncl -1 ? Sbl[j][i] : noise)

for (j=0; j < Nrw; j++)
for (i=0; i < Ncl; i++)

a[j][i] = ReadImage ();

for (j=-1; j < Nrw -1; j++)
for (i=-1; i < Ncl +1; i++)

S(j,i) = Sobel(A(j-1, i-1), A(j, i-1), A(j+1, i-1),
A(j-1, i), A(j, i), A(j+1, i),
A(j-1, i+1), A(j, i+1), A(j+1, i+1));

Figure 8: Modified source code of the Sobel edge detection example.

quires the signal to be extended periodically. This
periodic symmetric extension is used to ensure that
for the filtering operations that take place at both
boundaries of the signal, one signal sample exists and
spatially corresponds to each coefficient of the filter
mask. The number of additional samples required at
the boundaries of the signal is therefore filter-length
dependent.

The C program realizing one level of a 2D forward
DWT is presented in Figure 10. In this example we
use a lifting scheme of a reversible transformation
with 5/3 filter [5]. In this case the image has to be
extended with one pixel at the boundaries. All the
boundary conditions are described by the conditions
in code lines 8, 11, 17, 20, 26 and 29.

First, a 1D DWT is applied in the vertical direc-
tion (lines 7 to 13). Two intermediate variables are
produced (low- and high-pass filtered images sub-
sampled by 2—lines 9 and 12). They are further
processed by a 1D DWT applied in the horizontal
direction and thus producing (again sub-sampled by
2) a four sub-bands decomposition: HL (line 18), LL
(line 21), HH (line 27), and LH (line 30). The Pro-
cess Network generated by using the regular dataflow
analysis (and Compaan tool) is depicted in Figure 11.
The PN contains 23 nodes, half of them just copying
pixels at the boundaries of the image. Channel sizes
are estimated by running a simulation again process-
ing an image 256x256 pixels. Although most of the
channels have size 1, they cannot be implemented by
a simple register since they connect nodes and addi-

tional logic (FIFO like) is required for synchroniza-
tion. Obviously, the generated PN has considerable
initial overhead.

The optimization goals for this example are to re-
move the Copy nodes and to reduce the communi-
cation between the nodes as much as possible. We
achieve these goals by applying our techniques. The
optimized Process Network is shown in Figure 12.
The simple copy propagation technique reduces the
number of the nodes from 23 to 11 and the detec-
tion of self reuse technique reduces the communica-
tion between the nodes from 40 to 15 channels intro-
ducing 8 self-loop channels. There is only one chan-
nel connecting two nodes of the PN in Figure 12,
except for the channels between the ReadImage and
high filt vert nodes. In this case we detect that a
combined channel would be reordering. As we men-
tioned in the previous example we prefer not to intro-
duce reordering and therefore generate more (FIFO)
channels. As a result, the number of channels ema-
nating from the ReadImage has been reduced by only
one compared to the initial PN (Figure 11). The
buffer sizes are calculated at compile time using our
techniques described in Section 5 and the correctness
of the process network is tested using the YAPI en-
vironment [6]. Note that in this example applying
the optimization techniques has little effect on the
memory requirements: the number of memory loca-
tions required for an image of 256x256 pixels is 2585
compared to 2603 for the initial DWT PN. However,
the topology of the optimized PN has been simplified
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for (i = 0; i < 2*Nrw; i++)
for (j = 0; j < 2*Ncl; j++)

a[i][j] = ReadImage ();

5 for (i = 0; i < Nrw; i++) {
// 1D DWT in vertical direction with subsampling
for (j = 0; j < 2*Ncl; j++) {

tmpLine = (i==Nrw -1) ? a[2*i][j] : a[2*i+2][j];
Hf[j] = high_flt_vert(a[2*i][j], a[2*i+1][j], tmpLine );

10
tmp = (i==0) ? Hf[j] : oldHf[j];
low_flt_vert(tmp , a[2*i][j], Hf[j], &oldHf[j], &Lf[j]);

}

15 // 1D DWT in horizontal direction with subsampling ---------
for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl -1) ? Lf[2*j] : Lf[2*j+2];
HL[i][j] = high_flt_hor(Lf[2*j], Lf[2*j+1], tmp );

20 tmp = (j==0) ? HL[i][j] : HL[i][j-1];
LL[i][j] = low_flt_hor(tmp , Lf[2*j], HL[i][j]);

}

// 1D DWT in horizontal direction with subsampling ---------
25 for (j = 0; j < Ncl; j++) {

tmp = (j==Ncl -1) ? Hf[2*j] : Hf[2*j+2];
HH[i][j] = high_flt_hor(Hf[2*j], Hf[2*j+1], tmp );

tmp = (j == 0) ? HH[i][j] : HH[i][j-1];
30 LH[i][j] = low_flt_hor(tmp , Hf[2*j], HH[i][j]);

}
}
// The Outputs ------------------------------------------------
for (i = 0; i < Nrw; i++)

35 for (j = 0; j < Ncl; j++) {
Sink(LL[i][j]);
Sink(HL[i][j]);
Sink(LH[i][j]);
Sink(HH[i][j]);

40 }

Figure 10: Source code of a Discrete Wavelet Transform example.
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Figure 11: 2D-DWT Process Network with Copy
nodes.

significantly allowing an efficient HW and/or SW im-
plementation.

7 Comparison to Compaan and

Compaan-like Networks

Table 1 compares the number of channels in
Compaan-like networks to the number of channels in
our networks. The Compaan-like networks were gen-
erated by using standard dataflow analysis instead of
also considering reads as sources and by turning off
the copy propagation of temporary scalars and the
combination of channels reading from the same write
access. The table shows a decomposition of the chan-
nels into different types. In-Order (IO) and Out-of-
Order (OO) refer to FIFOs and reordering channels
respectively and the M-suffix refers to multiplicity,
which does not occur in our networks. Each col-
umn is further split into self-loops+edges, or single-
register+self-loops+edges for our FIFOs.

Note that our numbers on Compaan-like networks

ReadImage

high_flt_vert

image: 2*Ncl image: 2*Ncl image: 1

low_flt_vert

image: 2*Ncl+1image: 2*Ncl

Hf: 1

high_flt_hor

Hf: 3

low_flt_hor

Hf: 2 oldHf: 2*Ncl

high_flt_hor

Lf: 3

low_flt_hor

Lf: 2 Lf: 1 Lf: 1

HL: 1

Sink

HL: 1

HL: 1

Sink

LL: 1

Hf: 1 Hf: 1

HH: 1

Sink

HH: 1

HH: 1

Sink

LH: 1

Figure 12: Optimized 2D-DWT Process Network.

differ from those on Compaan networks reported
in [24]. Due to a difference in internal represen-
tation, some of our channels are split into several
Compaan-channels. In Compaan, these channels are
recombined, with possibly further combinations, at a
later stage. From the table, we can conclude that our
techniques have split all OOM channels in examples
LU-Factor and Gauss-Elim. into pairs of FIFOs. In
general, we also have fewer channels between differ-
ent nodes at the expense of more self-loops, which
are a lot more efficient. For example, for SVD, the
number of edges is reduced from 63 to 50, while for
LU-Factor we have a reduction from 24 to 19 and
for Faddeev from 24 to 20. Finally, we are able to
identify (in examples LU-Factor, QR-Decomp, SVD,
Faddeev and M-JPEG) that many of these self-loops
are “single-register” FIFOs, where “register” should
be interpreted as “token”, which may be a whole ta-
ble in the case of M-JPEG.

As to the time needed to derive the networks, Com-
paan itself takes 2.3 to 28.1 seconds on the examples
in Table 1, while our tool takes 2.5 to 46.4 seconds.
Most of the latter time is spent in the computation of
the FIFO sizes, which Compaan does not compute.
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Algorithm Compaan-like Networks Our Networks
name IO IOM OO OOM IO OO

sl+ed sl+ed sl+ed sl+ed 1r+ sl+ed sl+ed

LU-Factor 3+13 1+7 0+3 0+1 2+ 5 +16 0+3
QR-Decomp 4+8 0+0 0+0 0+0 1+ 3 +8 0+0

SVD 4+41 0+4 0+18 0+0 8+ 0 +34 0+16
Faddeev 3+20 0+3 0+1 0+0 4+ 2 +19 0+1

Gauss-Elim. 2+5 0+0 0+1 1+2 0+ 6 +6 0+1
Motion Est. 27+66 0+0 0+0 0+0 0+54+66 0+0
M-JPEG 9+21 0+17 0+0 0+0 18+ 0 +38 0+0

Table 1: Comparison to channel numbers of Compaan-like networks.

8 Conclusions and Discussion

In this paper we have improved upon the state-of-
the-art conversion of sequential programs to Process
Networks in several ways. We have shown that we can
reduce the number of reordering channels as well as
the total number of channels between different nodes
by extending the standard dataflow analysis to de-
tect reuse within a node. This effect is enhanced by
first removing the (artificial) copy nodes introduced
by Compaan through simple copy propagation. Our
modified dataflow analysis leads to a removal of all
reordering channels with multiplicity that appear in
our examples and a reduction of the communication
volume by up to a factor 9 in the extreme case. We
have further shown how to compute the FIFO sizes
exactly for self-loops in non-parametric programs and
approximately for other channels and self-loops in
parametric programs.
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