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ABSTRACT
SystemC has emerged lately as a de facto, open, industry
standard modeling language, enabling a wide range of mod-
eling levels, from RTL to system level. Its increasing ac-
ceptance is driven by the increasing complexity of designs,
pushing designers to higher and higher levels of abstractions.

While a major goal of SystemC is to enable verification
at higher level of abstraction, enabling early exploration of
system-level designs, the focus so far has been on traditional
dynamic validation techniques. It is fair to see that the
development of formal-verification techniques for SystemC
models is at its infancy. In spite of intensive recent ac-
tivity in the development of formal-verification techniques
for software, extending such techniques to SystemC is a
formidable challenge. The difficulty stems from both the
object-oriented nature of SystemC, which is fundamental to
its modeling philosophy, and its sophisticated event-driven
simulation semantics.

In this position paper we discuss what is needed to develop
formal techniques for SystemC verification, augmenting dy-
namic validation techniques. By formal techniques we re-
fer here to a range of techniques, including assertion-based
dynamic validation, symbolic simulation, formal test gen-
eration, explicit-state model checking, and symbolic model
checking.

Categories and Subject Descriptors
B.5.2 [Hardware]: Register-Level Implementation-Design
Aids; J.6 [Computer-Aided Engineering]: Computer-
Aided Design

General Terms
Verification
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1. MOTIVATION
A micro-architecture is usually specified by a natural-

language document, referred to as the micro-architectural
specification document (MAS). It is typically accompanied
by a micro-architectural simulators for certain parts of the
micro-architecture. Over the years, there have been many
attempts of limited success in the semiconductor industry
to develop high-level models for micro-architectures. For
example, the micro-architectural model of the PowerPC 604
was described as “semi-formal” [28], while the analogous
model for the Power4 was used only for performance eval-
uation, but not for validation. One basic reason for the
failure is the difficulty of establishing formal equivalence be-
tween a micro-architectural model and the RTL, as no tech-
nology available today can formally establish such equiv-
alence. What should be done? Simply, develop a micro-
architectural model without expecting full formal equiva-
lence to be established between that model and the RTL.
Rather, expect “compatibility” (“conformance”, “compli-
ance”) between the micro-architectural model and the RTL,
but not full formal equivalence.

What is the cost of not having a micro-architectural model?
In effect, the RTL serves currently as both a micro-architectural
model and its implementation. Developing the RTL is hard,
since all the RTLers have is the MAS. Validating the RTL is
hard, since both the micro-architectural model and its im-
plementation are validated at the same time. When bugs
are discovered, it is not immediately clear whether they are
micro-architectural bugs or implementation bugs. The lack
of a clear “golden” reference model is a serious obstacle to
RTL verification. Also, developing the test environment is
hard, since it has to test both the micro-architectural model
and its implementation.

The micro-architecture is an extremely sophisticated al-
gorithmic model. Validating it is bound to be hard. Im-
plementing it and validating it directly in RTL is bound
to be exceptionally hard, slow and expensive. The chang-
ing focus in the industry from frequency scaling to func-
tionality enhancements, such as Intel’s Virtualization Tech-
nology, Hyper-Threading Technology, Extended Memory 64
Technology, and LaGrande Technology increase further the
gap between the micro-architecture and the RTL [32]. As
G. Singer pointed recently [17], “RTL was established two
decades ago. Since then, complexity has grown sevenfold.”
The right level to develop a ‘golden specification model’ is at
the algorithmic/functional/transaction level. Today’s RTL-
based validation technology is clearly inadequate to the task
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of validating the industry’s future highly complex platform-
oriented architectures. The motto should change from “de-
sign first, then verify” to “specify first, then design and ver-
ify’.

Developing a micro-architectural model would separate
the micro-architecture from its implementation. The task
of creating a micro-architectural model should be assigned
to a micro-architectural validation group, working together
with the micro-architects. Micro-architectural validators
would develop the model concurrently with the develop-
ment of the MAS, by the micro-architects. Experience has
shown that the process of creating a detailed model leads
to a deeper understanding of the micro-architecture by the
micro-architects and would reveal many bugs. The devel-
opment of the micro-architectural model concurrently with
the MAS may delay somewhat the start of the development
of the RTL, but the benefit would be a more mature and
transparent micro-architecture. Furthermore, it would re-
veal many bugs early on.

Furthermore, once a model for the micro-architecture ex-
ists, it can be validated against the architecture (say, ISA),
using the full range of validation techniques, such as constrained-
random stimulus generation, coverage-driven simulation, for-
mal state-space analysis, assertion-based verification, and
the like. It is to be expected that the main vehicle of valida-
tion at this level at this level would be dynamic techniques,
just as dynamic validation is the main vehicle of validation
of the RTL. (There is no reason at the moment to expect
a ratio between the formal verification and dynamic valida-
tion efforts that is higher than the 10:90 ration for the P4,
where formal verification has been used rather extensively
[4]). Simulation at the micro-architectural level can be 2-3
orders of magnitude faster than RTL simulation. Still, for-
mal methods ought to be an important component in the
verification of micro-architectural models.

This paper calls for the development of formal techniques,
including formal property verification, formal equivalence
verification, automated test generation, and the like to be
applied at the micro-architectural level. The formal-techniques
community has made significant progress over the last few
years in software verification; see [2]. In fact, there are cer-
tain abstraction techniques (e.g., uninterpreted functions)
that are best applied at the micro-architectural level, rather
than the RTL, since that level is too low [6]. The chal-
lenge today is to develop formal tools for micro-architectural
model.

The micro-architectural level is the right level to start
the validation effort. Designers tend to think at the ar-
chitectural or micro-architectural level when debugging the
design, not in terms of lines of RTL. The most obvious
notion in a CPU design is that of an instruction. Which
instructions are in which pipeline stages is critical to un-
derstanding whether the design behaves in a correct man-
ner. More generally, coverage at this level means having a
clear picture of what the processor is doing. This is where
a temporal assertion language becomes handy [13, 14]. The
most promising usage of temporal assertions is at the micro-
architectural level. The micro-architectural validators would
want to define many temporal assertions corresponding to
interesting micro-architecture situations – for example, if
a certain buffer is full, if some state machine is in an in-
teresting state, and so forth. They would then query this
“database” of coverage events with sophisticated requests

[33]. For instance, what was the state machine for the In-
struction Fetch module in state A when an interrupt oc-
curred? Furthermore, under the previous scenario, was the
interrupted instruction aligned on a 32-bit boundary? Did
that happen when some other buffer in the LoadStore unit
was full? Each of these properties can be expressed fairly
simply using a temporal assertion language [13]. The right
level for such an analysis is the micro-architectural level.
On the other hand, an extensive micro-architectural valida-
tion effort would also benefit the RTL validation effort, as
one would expect significant re-use of test vectors and event
coverage.

As noted above, there is no hope today of fully formally
establishing the equivalence of the RTL with the micro-
architectural model. (In contrast, it may be feasible to syn-
thesize parts of the micro-architectural model into RTL.)
The RTLers, however, would benefit tremendously from hav-
ing a micro-architectural model as the starting point of their
implementation effort. They would benefit further from
starting with a micro-architecture that has already under-
gone a significant validation effort and is much cleaner from
bugs. When questions arise about the correct behavior of
RTL, many of them would be resolvable by consulting the
micro-architectural model. The RTL validators would bene-
fit from the earlier development of a test environment for the
micro-architectural model. Many of the assumptions/assertions
written for the micro-architecture validation could be just
translated into RTL checkers, facilitating greatly the devel-
opment of the test environment. (For example, Synopsys
says as follows: “Many designers create reference models in
SystemC prior to coding RTL. Vera enables the use of a
single, golden testbench to drive both SystemC and RTL
representations of a design, ensuring consistency between
the transaction-level model and the detailed implementa-
tion. Vera’s transaction-level interface to SystemC enables
users to quickly and easily connect a Vera testbench to a
SystemC model and then re-use the same testbench when
RTL is available.”)

The RTL implementation effort should be able to focus
on implementing the micro-architecture, assuming that it is
mostly validated. When micro-architectural bugs are discov-
ered by the RTL validators, they should be corrected and the
corrections should be validated at the micro-architectural
level, by the micro-architects and the micro-architectural
validators. Keeping the micro-architectural model and the
RTL synchronized should not be viewed as a burden, but as
the right way to view the design process. “Separation of con-
cerns” is a major principle in design engineering. The micro-
architectural model should be concerned with algorithmics,
while the RTL should be concerned with its implementa-
tion. The micro-architectural model should be kept current
as long as it is valuable to do so. It is possible that this
model would be abandoned at some point, when the focus
shifts fully to the RTL. It is also possible, however, that the
micro-architectural model would be kept current through-
out the design process, as this model itself has significant IP
value. The micro-architectural model, rather than the RTL,
is the model that can be re-used; design reuse can be more
easily realized at that level than at the RTL.

In summary, developing a micro-architectural model can
lead to reduced development costs and increased design qual-
ity even without requiring full formal equivalence between
the micro-architectural model and the RTL. The key is to
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focus a major part of the validation effort at the micro-
architectural level. The tightness of the compatibility be-
tween that level and the RTL can evolve with verification
technology.

2. WHAT LANGUAGE?
When contemplating a shift in methodology as advocated

above, a major issue is the selection of the modeling lan-
guage. What is required is a formalism that is expressive
enough and enables both formal and dynamic verification.
On the research side, various high-level modeling languages
have been developed over the last decade, such as ACL2
[22], PVS [30], TLA [27], and Uclid [26], but none of these
language is ready for serious industrial usage. Thus, it’d
be better to adopt an industry-standard language such as
SystemVerilog or SystemC. Unlike academic languages, in-
dustry standard languages will be more readily accepted by
micro-architects and designers. Furthermore, EDA support
for SystemC and SystemVerilog is increasing daily. In the
long run, the industry benefits by using standardized lan-
guages.

The advantage of using SystemVerilog is the single point
entry to both validation and design, avoiding the pain that
accompanies language fragmentation. SystemVerilog evolved
Verilog into an HDVL–Hardware Design and Verification
Language–supporting a comprehensive verification environ-
ment [35]. Nevertheless, it is not clear that SystemVerilog
is sufficiently high level to be used for micro-architectural
specification. There is a risk that modeling in SystemVer-
ilog would result in a too-low-level model, negating many
of the benefits of micro-architectural modeling. Higher-level
languages are Esterel [5] and BlueSpec [11], but the former
never proved to be highly popular, while the latter is too
new. On the other hand, SystemC has emerged lately as the
leading language for system-level models, specifically tar-
geted at architectural, algorithmic, transaction-level model-
ing [18]. It is by now a de facto, open (www.systemc.org),
industry-standard modeling language, enabling a wide range
of modeling levels, from RTL to system level. Its increasing
acceptance is driven by the increasing complexity of designs,
pushing designers to higher and higher levels of abstrac-
tions. The rest of this paper is focused, therefore, on using
SystemC as a language for micro-architectural specification,
focusing on the issue of formal verification.

3. FORMAL TECHNIQUES FOR SYSTEMC
MODELS

While a major goal of SystemC is to enable modeling and
verification at higher level of abstraction, enabling early ex-
ploration of system-level designs, the focus in the literature
so far has been mainly on traditional dynamic validation
techniques [23, 34]. It is fair to say that the development of
formal-verification techniques for SystemC models is at its
infancy. In spite of intensive recent activity in the develop-
ment of formal-verification techniques for software, extend-
ing such techniques to SystemC is a formidable challenge.
The difficulty stems from both the object-oriented nature of
SystemC, which is fundamental to its modeling philosophy,
and its sophisticated event-driven simulation semantics.

3.1 What is SystemC
SystemC is a system-level modeling language based on

C++. It uses heavily not only the imperative features of
C++, but also its object-oriented features: classes (includ-
ing abstract classes and class templates), objects, methods
(including virtual methods), and inheritance (including mul-
tiple inheritance). SystemC uses the object-oriented ap-
proach to achieve abstraction, modularity, compositionality,
and reuse. The object-oriented paradigm in SystemC is not
incidental, but central. It distinguishes SystemC from other
modeling languages, such as SpecC [16].

The base layer of SystemC provides an event-driven sim-
ulation kernel. This kernel operates at the event level and
switches execution between processes. The basic building
block in SystemC is the module. A module is a container
that contains one or more processes to describe the parallel
behavior of the design. A module can also contain other
modules, representing the hierarchical nature of the design.
Processes execute concurrently; the code within each pro-
cess executes sequentially. (SystemC has three kinds of pro-
cesses: SC METHOD, SC THREAD, and SC CTHREAD
(clocked threads). Roughly speaking, SC METHOD cor-
responds to synthesizable HDL, while SC THREAD and
SC CTHREAD corresponds to behavioral HDL.) The ex-
ecution of the processes is driven by the simulation kernel.
A complete SystemC model includes the design and the test
environment. After compilation the result is an executable
file that simulates the design in the provided test environ-
ment.

Processes inside a module communicates via signals. Mod-
ules communicates via channels. The channels are abstract
and are accessed via their interface methods. Modules have
ports that are bound to interface methods. The simula-
tion kernel, together with modules, ports, processes, events,
channels, and interfaces constitute the core language of C++
This is accompanied by a collection of data types, such as
4-valued logic and vectors, bit and bit vectors, fixed-point
numbers, arbitrary precision numbers, and used-defined types.
Over this core, SystemC provides many library-defined ele-
mentary channels, such as signals, FIFOs, semaphore, Mu-
tex, and the like. On top of this are defined more sophisti-
cated libraries, including master/slave library, process net-
works, and the like. A transaction-level modeling library
(TLM 1.0) was announced in 2005. SystemC has been de-
veloped with heavy intermodule communication in mind.

The semantics of SystemC combined the semantics of C++
with the simulation semantics of the kernel. The latter is
highly nontrivial, as it has to take into account the com-
bination of “microsteps” and “macrosteps” (which combine
evaluation of variables and signals and their update). On
one hand, the simulation semantics is event driven rather
than cycle driven. At the same time, SystemC has a discrete
model of time (the default time resolution is one picosecond),
which means that it also has cycle-level semantics. A formal-
ization of SystemC’s simulation semantic using Distributed
Abstract State Machines is provided in [29]. See also [15]
for work on the relationship between SystemC and Abstract
States Machines. It is fair to say, however, that SystemC
does not have a fully formal semantics, which poses a chal-
lenge to the development of formal techniques for SystemC.

3.2 Verification of SystemC Designs
The “workhorse” of SystemC validation is dynamic valida-

tion. SystemC models are meant to be simulated. The Sys-
temC Verification Standard provides API for transaction-
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based verification, constrained and weighted randomization,
exception handling, and other verification tasks [23, 34].
The standard also includes HDL-connection APIs, to en-
ables SystemC testbenches to be used for Verilog or VHDL
designs. This means that testbenches developed for high-
level models can be reused after the high-level models have
been refined into RTL.

This paper calls for the development of formal techniques
to augment standard SystemC verification. Let us consider
various formal techniques.

• Assertion-based validation: In assertion-based val-
idation [14] one writes properties in a formal language,
e.g., PSL [13] or SVA [36]. The simulation engine then
monitors these properties during the simulation. For
example, Intel reported recently of its Fedex tool [1],
which is used to monitor assertions written in the for-
mal language ForSpec. There are no nontrivial techni-
cal barriers to incorporating assertion-based validation
in SystemC dynamic validation [20]. This requires also
integrating a BDD package into SystemC; see [12] for a
report of such integration. Extending assertion-based
verification to SystemC would mean that the same as-
sertions can be used in a SystemC environment and
in a RTL environment. As argued earlier, such reuse
ought to be an important component of the overall
design-verification effort.

• Explicit-state model checking: The distance be-
tween assertion-based dynamic validation and assertion-
based explicit-state model checking is not very large
conceptually. In dynamic validation we generates a set
of test runs and monitors the assertions along them.
In explicit-state model checking we exercise the design
exhaustively – by keeping track of all nondeterminis-
tic choices (e.g., input values), we ensure that all of
them get exercises. There is also a need to monitor
the program states visited, to ensure termination of
the search process [10]. Model checkers such as the
Java Pathfinder [21], accomplish by rewriting the ex-
ecution engine (JVM). There is no significant techni-
cal barrier to extending explicit-state model checking
to SystemC, but the implementation effort would be
nontrivial, as the simulation kernel would need to be
modified to exercise the design exhaustively.

The real limitation of explicit-state model checking is
the state explosion problem [10]. To deal with large
state spaces we need to introduce abstraction tech-
nique, but automating such techniques generally re-
quires the use of symbolic model checking (BDD or
SAT-based) [9].

• Symbolic Simulation: In symbolic simulation we ex-
ecute the program in an abstract setting, using sym-
bols, rather than concrete values for variable. Each
symbolic simulation path represents a whole class of
possible program executions. By heaving a symbolic
representation of this class of executions, we can rea-
son about it symbolically, generate test cases and more
[25]. Recent progress in symbolic simulation for Java
[31], suggests that this technique might be applica-
ble to SystemC. One had to recall, however, that Sys-
temC is aimed at concurrent systems, while Java is

aimed more an sequential systems. This is a worth-
while direction of research. Perhaps a bit less ambi-
tious is the techniques of statically analyzing dynamic
execution paths in programs [8]. This technique has
recently been quite successful in software development
and might be adaptable to SystemC.

• Symbolic model checking: Symbolic model check-
ing goes a step further in verifying temporal proper-
ties of designs; instead of searching the state space
explicitly, it is represented and searched by means of
symbolic reasoning [10]. Initial progress in applying
symbolic model checking to SystemC models is re-
ported in [19]. The difficulty of extending symbolic
model checking to SystemC is that symbolic model
checking requires that we have formal semantics that
describes the transition relation of the design. This
is quite nontrivial for SystemC due to the heavy use
of object-oriented machinery and the fairly involved
simulation semantics. Extending recent progress on
software model checking [2], which is typically aimed
at C programs, to SystemC is a worthwhile research
project. Recent progress at extending symbolic rea-
soning techniques to object-oriented languages such as
Java [7] and Spec# [3] should be built upon.

• Equivalence verification: A more ambitious goal
is the development of techniques to formal verify the
equivalence of SystemC models and RTL models, anal-
ogously to current technology for formally establish-
ing equivalence of RTL models with Netlist models
[24]. This is a significant research challenge. A more
modest goal would be to establish looser notions of
equivalence–referred to earlier as “compatibility”, “con-
formance”, or“compliance”–between SystemC models
and RTL models. For example, we mentioned earlier
that at the SystemC level it is quite natural to specify
directly interesting micro-architectural events. Com-
patibility between SystemC and RTL models requires
than that such micro-architectural events be also mon-
itored at the RTL.
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