
1

PushPush: Seamless Integration of Hardware and
Software Objects Via Function Calls over AXI
Shane T. Fleming∗, Ivan Beretta∗, David B. Thomas∗, George A. Constantinides∗, and Dan R. Ghica†

∗ Dept. of Electrical and Electronic Engineering, Imperial College London, UK,
{shane.fleming06, i.beretta, d.thomas1, g.constantinides}@imperial.ac.uk

† School of Computer Science, University of Birmingham, UK, d.r.ghica@cs.bham.ac.uk

Abstract—FPGA systems are moving towards a system-on-chip
model, both at the architectural level and in the development
tools. Developers are able to design and implement IP using
a mixture of HLS, RTL, and software, then integrate them
with third-party IP cores and hardened CPUs using one or
more shared memory buses. This allows functionality to be
easily connected together at the bus level, but accessing IP core
functionality requires designers to support each component’s
protocol and co-ordinate hardware from a CPU. This paper
presents a protocol called PushPush, which allows HLS, RTL, and
software components to expose functionality as strongly typed
functions, and allows any component to access functions exposed
by any other component in the system. The protocol is designed
for maximum efficiency in memory buses such as AXI and Avalon,
reducing each function call to two burst writes delivering both
data and control, minimising bus traffic and eliminating the
need for global polling or interrupt delivery. We demonstrate
this approach in a Zynq environment, using components written
in C++ (ARM/Linux), C (Microblaze), Vivado HLS (Logic), and
Verity (Logic). We show that any component can call functions
exposed by any other component, without knowing where or how
that function is located. Performance is at least 1 million function
calls/sec between any pair of components, and rises to 4 million
function calls/sec between pairs of Vivado HLS components.

I . I N T R O D U C T I O N

The steady increase in resources per FPGA allows increas-
ingly complex systems to be developed, but also requires
developers to find new ways of overcoming the design-gap.
Some techniques have been borrowed from ASIC approaches
to the problem, such as the development, sale, and integration
of increasingly complex IP blocks. Other techniques such as
High-Level Synthesis (HLS) tools are arguably driven by FPGA
research, though they are increasingly used in both FPGAs
and ASICs. The general trend has been towards productivity
over performance, using HLS and off-the shelf IP where
possible, and only dropping to low-level tools and languages
in performance critical parts.

This trend is reflected in changing system architectures, both
at the hardware architecture and the design and IP levels. Both
are moving towards a System-on-Chip approach, with hardened
processors connected to accelerators in hardware and off-chip
memory via one or more shared buses, such as AXI or Avalon.
At the bus level the integration works well, making it easy to
connect blocks via point-and-click or scripted interface, with
automation handling conversion between bus-standards, and
inserting or optimising crossbars.

Beyond the bus level the functional integration approach
can be split into tightly integrated automated approaches,
such as Altera’s OpenCL [1] and LegUp [2]; or ad-hoc
loosely-coupled manual approaches such as LEAP [3] and
RIFFA [4], where the designer is responsible for developing
the protocol glue for connecting hardware and software. The
automated approach enforces a software-as-control, hardware-
as-accelerator approach, limiting the types of system that can
be built: why can hardware not be used to schedule software
accelerators? The manual approach offers great flexibility, but
removes many of the benefits of bus-based design and HLS, as
integration and testing is complex. Both approaches also have
significant overhead for each call to an “accelerator”, requiring
work units to be relatively large to amortize call overhead.

This paper presents a protocol for supporting high-level
functions calls between cores within an SoC, whether they
are software or hardware. While the main principles of the
protocol were outlined in our previous work [5], we herein
focus on its implementation aspects, whose key ideas are:

• Addresses as function identifiers: anyone with the bus
endpoint (address) of a function can call it directly.

• Global and Local Endpoints: globally writeable addresses
are used to pass data to call endpoints, while local read-
write addresses are used by the receiver to detect calls.

• Bursts as function calls: both data and control are trans-
ferred in one burst to the target function’s endpoint, and
a single burst can be used to signal function completion.

The system has been implemented in a Zynq device over AXI,
using ARM/Linux, MicroBlaze, Vivado HLS, and Verity HLS.
Each language is able to both call functions exposed by other
components, and expose functions to the rest of the system.
We experimentally demonstrate the following properties:

• Fast: 1 million calls/sec+ between software and hardware,
4 million calls/sec between hardware clients.

• Scalable: minimal global AXI traffic, so as we increase
clients, we are limited only by AXI bandwidth.

• Compatible: everyone can take part without knowing how
other clients are implemented.

I I . M O T I VAT I O N A N D G O A L S

Bus-based SoC design makes it easy to connect components
at the low-level, with component meta-data making it possible
to determine which ports can connect to which buses. Within
the components there is a wide array of languages available

2

to implement functionality, with both hardware and software
providing high-level languages for complex or unimportant
tasks, and low-level languages for performance critical tasks.

However, what is missing is the ability for components
to easily access functionality which is implemented on other
components. The shared bus only supports low-level reads and
writes, so it is often up to the programmer to perform the
sequence of reads, writes, interrupts, and polling that make
a given component do anything. Our goal is to bridge that
gap, and to make it as easy to access a function in a different
component as it is to make a local function call.

Remote Procedure Calls (RPC) are a well-known concept
for allowing software to access software functions across a
network, but incur a large amount of overhead and latency for
each call. Intra-SoC function calls present a different challenge,
as the fundamental performance of the interconnect is closer to
memory than network, and there are different types of actors
within the system. So our design goals for PushPush are:

• Compatibility: allow all components within a system to
directly communicate.

• Flexibility: make it easy to move functionality between
hardware and software domains, or between different
implementations within a domain.

• Efficiency: minimise shared bus traffic and overheads, and
ensure it can scale to multiple participating clients.

• Performance: minimise the latency of individual function
calls, maximise overall function call throughput.

I I I . P U S H P U S H P R O T O C O L

The PushPush protocol is a mechanism for allowing strongly
typed function calls between components connected to a shared
bus. In this paper a component is an IP core or device which
wishes to expose and/or call one or more functions over the
shared bus. A function is an invocable piece of functionality
within a component, with a high-level language-independent
specification of the input and output types. We assume that
race conditions due to multiple calls to the same function are
avoided which can be handled within the type system [7],
allowing the protocol to focus on one call at a time. We will
first describe the general principles of PushPush, and then look
at the requirements of a system for it to support the protocol,
demonstrating that existing buses can support it.

A. Protocol Overview

In PushPush a callable function is represented by its call
endpoint, or cep, which is the address of the function within the
bus. The cep is writeable by any component within the system,
and a function call consists of a write starting at the cep. The
data written consists of the function arguments, followed by
the trigger. The caller writes a return endpoint to the trigger,
and the transition of the cep trigger from zero to non-zero
informs that callee that a function has been called.

The return endpoint, or rep, is the address used to receive
the return value once the function has finished. Because the
rep is used as the trigger value for the function, the callee is
notified both that the function has been called, and where the
caller is located. The rep is globally writeable, so once the

Local Endpoints

u32 f_cep=0x101,my_rep=0x401;

int f(int a, int b)
{
 pGlobal[0x100]=a;
 pGlobal[0x101]=b;
 pGlobal[0x102]=my_rep;

 while(pLocal[0x8]!=DONE)
 yield();

 int res=pLocal[0x4];
 pLocal[0x8]=0;
 return res;
}

...
arg0
arg1

while(1){
 if(0==pLocal[0x3])
 continue;

 int a=pLocal[0x1];
 int b=pLocal[0x2];
 u32 rep=pLocal[0x3];

 int res=f(a,b);

 pLocal[0x3]=0;
 pGlobal[rep/4+0]=res;
 pGlobal[rep/4+1]=DONE;
}

M
as

te
r

p
L
o
c
a
l

trigger
...
...

0x100
0x101
0x102
0x103
0x104
0x105

M
as

te
r

p
G
l
o
b
a
l

M
as

te
r

p
L
o
c
a
l

M
as

te
r

p
G
l
o
b
a
l

0x0
0x1
0x2
0x3
0x4
0x5

Local Endpoints

...
res0

trigger
...
...
...

0x400
0x401
0x402
0x403
0x404
0x405

0x0
0x1
0x2
0x3
0x4
0x5

In
te

rc
o

n
n

ec
t

1

2

4

5

3

6

7

Component A : Server / Callee

Component B : Client / Caller

Fig. 1. Interactions between a function exported by component A being
imported and called by component B.

called function is finished, the callee will write the return value
(if any) to the rep, followed by a trigger value. The transition
of the rep trigger from zero to non-zero indicates to the caller
that the function has completed execution.

Each cep and rep section finishes with a trigger, and it is
up to the component to detect when the trigger transitions
from zero to non-zero to detect an event. A component written
in RTL can natively detect writes to a slave port, but this is
difficult to achieve in most HLS tools without polling, and
in software we are restricted to either polling or interrupts.
Because all clients already have the ability to poll, we choose
to use polling in the default case, but many clients polling a
shared memory could easily saturate the shared bus.

Instead, we use the notion of local endpoints, which are
ranges within the endpoint address space that a component
has direct local access to. Each component has its own local
endpoint space, which it will use to allocate cep s for the
functions it exports, and rep s for the function calls it makes.
Each local endpoint space is still writeable globally, but the
associated component also has a direct view onto the local
memory, which it can use to very efficiently poll for changes.

An example of a PushPush system is shown in Figure 1,
with the upper component exporting a function called f, and
the lower component importing and calling f. Both components
are attached to a local endpoint space via a local connection,
as well as being attached to the global interconnect. When a
function within B calls f, the following steps happen:

1) The two parameters a and b are written to the cep of f
(0x100), followed by a write to the cep trigger of f. The
value written to the trigger is the rep of the call endpoint
of B (0x401).

2) Component A polls the trigger for f at local address 0x3
(global address 0x103) waiting to receive a call.

3) Once the cep trigger has fired, component A unpacks

3

FIR Server

FIR Client

length : int

coeffs : cep

void FIR(

 int L, // FIR length

 float c(int), // Coeff. map

 int n, // Sample count

 int src(), // Get sample

 void sink(int) // Write output

){

 for(int i=0;i<L;i++)

 coeffs[i]=c(i);

 for(int i=0;i<n;i++){

 int in=src();

 int out= ...; // Run FIR

 sink(out);

 }

}

count : int

source : cep

sink : cep

trigger: rep

res : float

trigger: cep

...

...

index : int

trigger: rep

float setup(int i)

{ return sin(i/10)/i; }

int main()

{

 FIR(

 N,

 setup,

 100000,

 getc, // Read from stdin

 putc // Write to stdout

);

}

trigger: rep

sample : int

trigger: rep

trigger: cep

...

...

...

...

...

Fig. 2. Endpoint layout and linking of callback functions in an audio filtering
example.

the arguments for the function, and the rep of the caller.
4) The target function is called, invoking local hardware or

software in the component’s language.
5) Once the target function has finished, the return value is

written to the rep of the caller, then the rep trigger is
written.

6) Component B has been polling the rep trigger, waiting
for completion, using only local bus transactions.

7) Once the rep trigger fires, the result is unpacked, and
returned to the caller within component B.

This protocol offers all the four properties we wish for in
the system, as any language which is able to read and write
the shared address space can take part. Languages which are
able to initiate bursts are particularly fast, but the protocol also
supports languages which can only make individual transfers.
It also offers good bus efficiency, requiring two transactions
per function call in the best (and typical) case, and a number
of transactions linear in the argument count in the worst. The
efficiency and lack of global polling also ensures it can scale
with the number of components, with performance only limited
by the bus interconnect.

B. Parameter marshalling and linking

PushPush relies on the existence of a language-independent
specification for function types, which determines the layouts
of the cep and rep segments. Each language also needs a
mapping from the language-independent function type to its
internal types, with the goal to make this as transparent as
possible in most cases. The type system needs to be as general
and flexible as possible, to enable maximum expressiveness

for designers, while ensuring that all languages can actually
expose and consume the described functions.

We rely on the type system introduced in [5], which is
inspired by the type system of functional languages such as ML
and Haskell. The only types within the systems are functions
and primitive types such as integers, booleans and floats, but
functions can take as arguments any other type. So as well as
taking any number of primitive types, a function can also be
passed other functions as an argument.

A function which receives another function is called higher-
order, and is found in all modern software languages, including
C++11. A key motivation for higher-order programming is to
configure functions with other functions, by passing callbacks
or primitives to other functions. We will demonstrate both the
utility of this approach, and the way that PushPush marshals
types, using an audio processing example.

Figure 2 shows two components: the top component exposes
a function called fir, which performs audio filtering; the bottom
component wishes to use the fir function. When fir is called, it
receives both configuration information and inputs and outputs
in the form of functions: FIR coefficients are passed using a
function which returns the coefficient for each tap index; input
audio samples are retrieved by calling a source function; and
output audio samples are returned by calling a sink function.

In terms of endpoint layout, we simply allocate one word
per parameter (or two in the case of doubles and larger types),
in the order they appear in the function signature. The top right
of the figure shows the cep for fir, which simply reflects the
parameters of the function type. When a function is passed
as an argument, we just write the cep address of the function
being passed, which is the only information needed to call it.

The arcs from the cep parameters to the cep addresses
show the links established during the function call, allowing
the FIR function to access the stdin and stdout of the
calling process, even though the server may be implemented
in HLS. The data sources and sinks can be changed by
the client, without recompiling the server component, simply
by changing the function being passed. A software client
can even pass the cep of sources and sinks implemented in
hardware, allowing software to directly configure and connect
two hardware components at run-time.

C. System Requirements

In order to support the PushPush protocol, we identify five
low-level properties that the bus system and bus components
must support. The first three are standard features which are
supported by all bus systems:

1) Globally routed endpoint address space: The heteroge-
neous system has a shared and globally routed address
space that endpoints exist in. This does not need to
represent the entire address space on a bus, and other
address spaces may exist.

2) Consistent physical endpoint addresses: all components,
including software and hardware, have a consistent view
of physical addresses with the endpoint space, with each
address mapping uniquely to at most one component.
Outside the endpoint space this may not hold, and there

4

might be aliasing of physical addresses due to locally
routed segments. Arbitrary virtual to physical mappings
are still allowed within each component.

3) Reliable ordered interconnect: a write made by one
master to a slave will always eventually arrive, and
consecutive writes will arrive in order. This still allows
write transactions to be delayed due to arbitration,
transactions from different clients may be re-ordered, and
bursts can be fragmented or merged.

We also require two extra features, which are not typically
supported, but can be built or achieved automatically in every
system we are aware of:

4) Bus masters for all: any component is able to initiate
write transactions in the endpoint address space, and so
must be able to bus master. Components not taking part
in function calls do not need to have a bus master.

5) Local endpoint access: each component has a section
of endpoint address space that is globally writeable, but
which the component also has local read-write access to,
without using the global address bus.

Overall these requirements are well within the capability of
both the bus systems currently in use, and the languages which
are attached to the buses. Unlike network based protocols, it
is possible for clients to progressively write arguments, rather
than forcing the use of an entire packet. It uses existing bus
infrastructure for all endpoint identification and routing, and
so can take advantage of existing optimised bus infrastructure.

I V. C O N C R E T E I M P L E M E N TAT I O N

The previous section described the PushPush protocol in
concrete but general terms. We will now consider the design
decisions and details needed to get components written in one
language to directly call functions in components written in
any other language. The target bus infrastructure is AXI within
a Zynq device, and directly support four languages:

• ARM/Linux: C++ code for Linux user-space, with no
additional kernel modules, and no mapped interrupts.

• Verity: A higher-order ML-like imperative HLS language,
which compiles directly to RTL.

• Micro-blaze/Bare-Metal: C/C++ code written for bare-
metal execution, with no extra peripherals or interrupts.

• Vivado-HLS: A first-order C-to-Gates imperative HLS
language, which compiles directly to RTL.

There are a number of common decisions and questions
needed when providing proxies and stubs to allow these
languages to work within the PushPush world:

• Local Endpoints: where are local endpoints placed?
• Notification: how do components detect writes to triggers?
• Client/Server: is the language able to both export and

import functions?
• Higher-order: Can the language support functions being

passed as arguments for other functions?
• Integration: how late in the compilation process can the

existence of PushPush integration be applied?
The overall results are summarised in Table I, and we will now
consider each language in turn.

TABLE I
C H A R A C T E R I S T I C S O F T H E F O U R L A N G U A G E T Y P E S F O R

I N T E G R AT I O N W I T H T H E P U S H P U S H P R O T O C O L .

ARM Verity MBlaze Vivado-HLS
Local Endpoints OCM FFs Block-RAM Block-RAM
Notification Busy-wait Write-event Busy-wait Busy-wait
Client Yes
Server Yes
Higher-order Full Full Partial Partial
Integration Link Link Link Compile

A. ARM/Linux

Zynq devices include a dual-core ARM Cortex-A9 processor,
providing enough resources to host an Ubuntu Linux operat-
ing system, and a fully-featured environment for high-level
software development. The ability to run a full OS is very
attractive, so we wanted the ability to expose functions from
within Linux to software, both user-supplied and OS-supplied.
Another constraint is that proxies and stubs used at run-time
should be user-mode only, with no kernel mode components
or interrupts, as this is the least invasive form of integration.

For local endpoint storage, the on-chip memory (OCM) is
used, as this is local to the ARM Cortex sub-system, and the
ARM cores do not cause global traffic when they read and write
– however, components on programmable logic still have write
access to the OCM. For writes to global endpoints, the global
endpoint physical space must be mapped into virtual space, by
mmaping /dev/mem as root. Notification is implemented by
spinning on endpoint triggers, polling them until they change.
This is a very wasteful approach in terms of power, however, the
busy wait loop executes a sched_yield call after checking
all pending triggers, so will not hamper other active threads.

The integration of first-order functions into C is direct,
allowing any first-order function that does not use pointers to be
directly exposed – for example, functions from libc such as
‘getc’ can be directly exposed to hardware components at link-
time. C++11 has built-in support for higher-order functions,
and software objects using the standard std::function
wrapper can be exposed as PushPush functions with no mod-
ification or re-compilation. Generation of PushPush proxies
and stubs is fully automated, and derived from the C++ type
information, allowing the generation of support functions at
link-time. At run-time these support functions resolve imported
cep s, allocate any rep s, then execute the original code.

B. MicroBlaze

MicroBlaze is a soft processor distributed by Xilinx, and
while it is not as powerful as the ARM, it is ideal for control-
intensive management functions such as coordinating other
compute-intensive hardware components. Local endpoints are
placed in dual-port Block-RAMs; with one port connected to
the Local Memory Bus of the MicroBlaze, providing high-
speed non-arbitrated access; and the other connected to an
AXI slave interface attached to the global bus, enabling writes
from other components. Notification is achieved through busy-
waiting on the local endpoints, with the MicroBlaze polling the
cep s and rep s in turn. This results in a low latency, growing
linearly in proportion to the number of active triggers.

5

While MicroBlaze supports C++11, it is experimental and
relatively high overhead, so restricted higher-order program-
ming is supported, allowing function pointers to be passed
or received as arguments. Threading support is also limited,
so a co-operative round-robin system is used to detect trigger
events. MicroBlaze is well integrated into the Vivado toolchain,
so the generation of the MicroBlaze, local memory, and
external AXI master and slave ports is automated. When a
MicroBlaze component is compiled, the proxy and stub code
is generated, then linked with the user’s code, and injected
into the instruction memory of the IP core. This results in a
black-box IP core exporting one or more functions.

C. Verity

Verity is an imperative HLS, inspired by the ML language
family, that can be compiled to synthesisable VHDL [6]. Unlike
C-based HLS languages, Verity natively supports high-level
language features, such as recursion and higher-order functions.
Verity already supports the notion of independently compiled
and synthesised functions which are linked together at place-
and-route time, but it uses a custom bit-level handshaking
protocol derived from game semantics [7]. Importing and
exporting Verity functions using PushPush becomes a problem
of adapting PushPush to the Verity linker protocol.

Integration is performed by generating a VHDL wrapper for
a compiled Verity component, using exposed type information
to determine the imported and exported wrappers. AXI-Lite
masters and slaves are exposed at the top-level of the wrapper
component; AXI-Lite is used mainly for simplicity, and to
check that full bursting AXI components can be connected to
simpler AXI-Lite components. Local storage is implemented
as registers mapped into the local endpoint space of the Verity
component. On the Verity side, these registers are adapted to
the game semantics protocol spoken by the function.

Because the local endpoints are memory-mapped registers,
notification is achieved using logic, which translates writes
on the trigger addresses to pulses used in the Verity game
semantics protocol. This results in very low latency notification,
with only once clock cycle between the trigger being written
and the Verity function starting execution.

D. Vivado HLS

Vivado HLS (VHLS) is a C-to-Gates HLS tools from Xilinx,
which allows the creation of hardware components specified
in C, C++ and System C. VHLS is well integrated into the
AXI eco-system provided by Xilinx, with native support for
generating AXI masters and slaves for pointers and RAMs that
appear in the code. However, until the recent introduction of
SD-Accel, there was no supported route for accessing VHLS
functions from software – while it is very easy to connect a
VHLS function and the ARM at the bus level, there is a lot
of programmer effort involved in actually calling a function.
VHLS is also an explicitly first-order language, disallowing
function pointers and features such as recursion, so on the face
of it is not a good candidate for integration with PushPush.

VHLS has direct support for exposing variables via an AXI
slave port, which could be used to support local endpoints,

but we have found it more efficient to use the same approach
as MicroBlaze. A dual-port block-RAM is associated with the
component, with one port exposed via a local pointer to VHLS,
and the other connected to an AXI slave adaptor. Global write
accesses can be performed using memcpy within the VHLS
code, which results in high-performance bursts during function
calls. Notification is achieved with busy-waits, which is actually
efficient in VHLS – the state-machine polls the triggers in
local-memory, essentially pausing itself.

System integration with VHLS is a little more complex than
the other languages, as it is difficult to directly link a “plain”
VHLS core, (i.e. one that is not aware of PushPush). For first-
order functions this is possible, as the function type can be
extracted, and proxies or stubs built, but this adds a layer of
indirection. Higher-order cannot be supported in this way, due
to the limitations of the VHLS compiler.

However, it is possible to provide good system integration
if a piece of plain VHLS code is compiled alongside a VHLS
proxy and stub at IP core creation time. The use of C++
templates and functors within VHLS allows almost perfect
proxies and stubs to be created, as long as the C++ front-
end is able to statically resolve and expand each function call
into the underlying pattern of memory reads and writes. The
C++11 standard library object std::function cannot be
used here, as it internally uses type-erasure which cannot be
statically analysed. Hence it is possible to create drop-in re-
placement functors specialised for HLS, which can be statically
analysed. These have the same signature and behaviour as
as std::function, but exist in the pp name-space. This
allows higher-order programming within VHLS, allowing HLS
programs to directly call external functions using the standard
function call signature.

V. E VA L U AT I O N

PushPush proxy/stub generators have been implemented for
all four languages, allowing them to call each other’s func-
tions via the PushPush protocol. For initial experiments and
correctness testing the Zynq zc702 board is used, containing
a xc7z020 clg484 device. Xilinx Vivado 14.3 is used for
MicroBlaze compilation, VHLS compilation, synthesis, and
place-and-route. ARM software compilation uses g++ 4.9.2,
and runs in the Linaro 12.11 distribution using both Zynq
CPUs. Verity was compiled using the Nov 2014 development
release1. The ARM CPUs were clocked at 800MHz for all
experiments, and a standard clock constraint of 100MHz was
used for all programmable logic and buses.

A. Function call performance

The main questions are:
• Can the different languages call each other?
• Can each language act as both client and server?
• How much overhead is there per function call?

We test this by performing a deceptively simple experiment: a
program is written in each language to either act as a client
(importer or caller) of a function of type int f(int), or

1commit:a524fb4d966b89516c5a2047f1af2b263e4e7c4b.

6

TABLE II
M E A S U R E D P E R F O R M A N C E I N M C A L L S / S E C B E T W E E N PA I R S O F
C L I E N T S A N D S E RV E R S R U N N I N G A T I G H T D E P E N D E N C Y L O O P.

Server (callee)
ARM MBlaze VHLS Verity

Client
(caller)

ARM 3.10 2.22 2.48 1.85
MBlaze 1.35 1.14 2.12 2.08
VHLS 1.58 1.76 4.54 3.33
Verity 1.43 2.85 3.84 4.16

to act as a server (exporter or callee). The server performs a
stateful update when f is called, allowing us to check that
the function has actually been called, and the server repeatedly
passes the output of f back as the input. This ensures there is a
dependency chain running through the client and the server via
f, so the call can not be optimised away or otherwise elided
by the compilers in either component.

Table II summarises the results of this experiment using the
metric millions of function calls per second (MCalls/sec). The
first thing to notice is that every entry is positive, meaning
every language is able to act as both function importer and
exporter, and every language can interoperate with every other
language. The second thing to notice is that every entry is
above 1 MCall/sec, so the performance is “good” in all cases
– recall that this is the performance of a single thread of
sequentially dependent function invocations, rather than the
number of function calls across many threads.

We can calibrate the performance a little by recalling that
the hardware components and bus are running at 100MHz. So
for example, a VHLS client can achieve 1.58 MCalls/sec when
talking to an ARM function, meaning it takes 63 cycles per
call. This includes all time needed for: the VHLS component
to initiate the function; the cep global write; the Linux user
process to detect and evaluate the function call; the rep global
write; and the VHLS component to detect completion.

Function calls involving software are naturally slower than
hardware to hardware calls. Exposing functions from an
ARM server to hardware clients is amongst the slowest, as
it takes time for the ARM to detect the function call. However,
the performance is still high, sustaining a transfer rate of
10.8 MB/sec in terms of data-rate. Hardware to hardware
performance is much higher, as HLS languages are quicker at
detecting writes to the trigger. When two VHLS components
communicate, a sustained performance of 4.54 MCalls/sec is
achieved. This means just 22 cycles are used for the entire
end-to-end function call, 14 of which are required to enforce
the PushPush protocol over the AXI bus, while the remaining
8 cycles are required by the caller and the callee.

A key observation is that the grid of performance does not
represent static connections: the system is fully dynamic. From
cycle to cycle any of the calls can swap between servers, with
no recompilation or reconfiguration. The clients need only call
a different cep, and they will be calling a different server.

B. Bus Scaling

PushPush is designed to allow multiple components to co-
operate on a bus, and to provide performance that can scale with
the number of components. FPGAs do not have a hardened bus

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
C

a
ll

s
/s

e
c

Components on bus

Shared / Comp.

Crossbar / Comp.

Shared / System

Crossbar / System

Fig. 3. Change in observed functions calls/sec for Vivado HLS components
communicating across a shared AXI interconnect.

infra-structure, so a “bus” is actually an arbitrated interconnect
or crossbar, and the logic overhead and performance will change
with the number of components. So as we increase the number
of components, three questions are:

• How does the observed performance of any individual
component change?

• How does the total achieved performance across all
components change?

• What is the area overhead?

To investigate these questions we use the same function as
before, but limit ourselves to the VHLS component, as this is
the fastest and will most stress the interconnect.

As the number of VHLS components in the system is scaled,
the number of ports in the AXI interconnect scales at twice
the rate. Recall that each component must have a master for
writing to other endpoints, and a slave for receiving writes
to its local endpoints, so for n components the interconnect
will require n masters and n slaves. The AXI infrastructure
offers two speed/resource tradeoffs: a shared and arbitrated
interconnect, where only one master can be active at any time;
and a crossbar interconnect, allowing all masters to be active
as long as they are accessing different slaves.

Figure 3 shows the observed performance in the Zynq device,
with the upper two lines showing aggregate system perfor-
mance, and the lower two showing performance per component.
Moving from 1 to 2 components shows a slight drop in per
component performance, as the interconnect changes from
point-to-point to a registered switch. The drop is larger for
the crossbar, as it introduces more cycles of latency for each
transaction. From n = 2..6 the performance is consistent for
both shared and crossbar, with linear scaling in total system
performance.

At n = 7 the different components start to interfere with
each other, and arbitration starts to decrease performance and
reduce overhead. Performance still increases overall, but is
no longer linear. The crossbar scales linearly and consistently
up to n = 9, then starts to drop off, as the arbitration logic
to detect whether masters are accessing independent clients
comes into effect.

The crossbar is unable to achieve n > 13, as device resources
are exceeded. Figure 4 measures the PushPush communication

7

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

B
u

s
 o

v
e
rh

e
a
d

 (
L

U
T

s
)

Components on Bus

Crossbar / System

Shared / System

Crossbar / Comp.

Shared / Comp.

luts = 122 n2 + 2271 n + 458

luts = 1776 n + 598

Fig. 4. Resource overhead for AXI communication infrastructure as
component count increases.

overhead, including the per-component logic needed to support
the local endpoints and the AXI interconnect. The resource
costs are linear for the shared interconnect, and quadratic for
the crossbar, both with R2 > 0.99. The large cost of the
crossbar means it is not feasible for highly connected systems,
but the performance results show that the lower resource shared
interconnect achieves higher performance (though it should be
noted that the test-case is somewhat pathological in terms of
communication frequency versus payload size).

C. Argument Size Scaling

PushPush supports any number of primitive or function
arguments, so the function signature determines the size of
the function call burst write. Functions with more arguments
transfer more data per function call, but will have a lower rate,
so we now investigate the questions:

• How does the number of arguments affect call rate
(MCalls/sec)?

• What data bandwidth can be achieved via functions calls?
To investigate this aspect we modify the VHLS component
scaling experiment to functions of type int f(int, int,
...), which accept n integers as parameters. Component
scaling is also investigated, with 1, 3, 6, and 8 components, and
either direct connection (for 1 component), shared interconnect,
or crossbar.

Figure 5 shows the performance in terms of per-component
MCalls/sec as the number of parameters is varied from 0 (i.e., a
function with no arguments, which can be activated by writing
the trigger) to 32. As the argument count increases, the rate
slowly drops off as expected – as the argument count grows
the function call overhead drops, and data transfer comes to
dominate. For small numbers of components the shared inter-
connect is faster due to its lower latency. However, the crossbar
offers much more consistent performance, regardless of the
component count, and still achieves more than 1 MCalls/sec
for 30+ arguments in a system with 8 components.

Decreasing call rate is compensated by the increasing
amount of data transferred per function call. Figure 6 considers
the same experiment in terms of the bandwidth achieved,
considering only the data payload (input arguments and return

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30

M
C

a
ll

s
/s

e
c

Number of Arguments

1 component / Direct
3 components / Shared
3 components / Crossbar
6 components / Shared
6 components / Crossbar
8 Components / Shared
8 Components / Crossbar

Fig. 5. Observed functions calls/sec for Vivado HLS components exposing
functions with different numbers of arguments.

0

50

100

150

200

250

0 5 10 15 20 25 30

B
a
n

d
w

id
th

 M
B

y
te

s
/s

e
c

Number of Arguments

1 component / Direct

3 components / Shared

8 Components / Shared

8 Components / Crossbar

Fig. 6. Achieved data-only bandwidth for Vivado HLS components.

value) of the functions, and ignoring control overhead (the
triggers). The initial bandwidth is very low, as there is almost
no data per function call, but the increasing argument count
outstrips the decreasing call rate, so rises quickly. The shared
interconnect can achieve around 150 MB/sec for small numbers
of components, but arbitration overheads limit it to 50MB/sec
for more components; the crossbar is more effective for large
systems. Note that these bandwidths are not using streaming, or
read-ahead – there is still a dependency chain, so the previous
function must complete before the next starts.

V I . R E L AT E D W O R K

Existing methods for connecting components together at at
a functional level can be broadly classified as:

• Vertical Software to Hardware: provide tight integration
between software and hardware components developed in
a shared eco-system.

• Untyped transports: these systems attempt to solve the
naming and transport problem, making it easier to move
data and notifications between components, but rely on
developers to impose meaning and semantics.

• System-level linking: frameworks for binding together
functions at compile time, by resolving imported and
exported functions and injecting proxies and stubs.

8

Vertical integration currently provides the closest integration
between software and hardware components, as developers can
tightly couple the two parts at compile-time. Transparent migra-
tion of software components to hardware is provided by LegUp,
which creates software proxies and hardware stubs to connect
and maintain source level compatibility [2]. Our approach
extends LegUp by allowing complete connectivity across all
components of the system, while achieving comparable results
in software to hardware communication performance (see
Table III). Altera’s OpenCL compiler is similarly automated,
though the programmer use of hardware functions is explicit
in OpenCL [1].

Untyped data transport layers aim to act as middle layer,
providing a way to move data between components in soft-
ware and hardware, but stopping short of defining types and
interactions. An early example is the Celoxica DataStream
Manager [8], which provided a user-configurable set of bi-
directional channels between software (PowerPC in Virtex-II
Pro or x86 on attached host) and HLS components, abstracting
away the PCIe or CoreConnect details. More recent examples
include XillyBus [9], LEAP [3], and RIFFA [4], all of which
provide some mechanism for reliably moving data between
components in hardware and/or software, but largely rely on
the programmer to perform explicit function linking. Moreover,
it is up to the designer to impose higher level semantics, as none
of these approaches natively supports type checking and higher-
order function calls. Although the aim of these approaches is
different from PushPush as they focus on performance rather
than functional aspects, some of them may be used as bridging
mechanisms for our protocol.

An approach which provides both compatibility and structure
is the notion of a system level linker, which takes independent
components with compatible function types, and links them
together at system integration time or run-time. One approach,
which forms the underlying motivation for this work, is to
define a shared system of function types which both software
and hardware components can support, then map each function
argument to a location in a shared memory [5]. This approach
has good compatibility, but poor performance and scalability, as
components continually poll across a shared bus, increasing the
latency of each function call, and severely limiting scalability
as the number of components grow.

Alternative approaches to system linking include the recent
Connectal system, which supports the linking of software
functions to independently written BlueSpec functions [10].
This provides some of the goals of the PushPush protocol, such
as independent development of clients and servers and hardware
calling software, but remote function calls are not transparent:
the location of functions must be known, proxies must be
manually instantiated, and they cannot easily be changed at run-
time. Our protocol overcomes these limitations, while achieving
higher call rates (see Table III). A distributed systems inspired
approach is taken in [11], which builds a complete brokered
RPC environment within an SoC. This represents a level above
the PushPush layer, with an emphasis on function discovery
and name resolution, and is complementary, as the protocol
proposed here could be used to optimise the function-call part
of their intra-SoC RPC approach.

TABLE III
P E R F O R M A N C E C O M PA R I S O N (M C A L L S / S E C)

LegUp [2] Connectal [10] PushPush
HW → HW - - 4.54
HW → SW - 0.66 1.58
SW → HW 2.25 1.25 2.48

V I I . C O N C L U S I O N

This paper has presented a protocol called PushPush, which
provides an efficient and scalable way of allowing components
attached to a shared bus to call functions in other components.
The protocol is designed around the notion of pushing both
input data and control-flow to the function callee through a
single burst write to a call endpoint (cep), then pushing the
results and control-flow back to the caller via another burst
write to a return endpoint (rep). The rep and cep are globally
writeable, but are also locally accessible to their associated
components, allowing efficient polling to detect function calls.

The protocol is designed to allow any language that can
read and write a RAM to take part, both as an importer and
caller of functions, and as an exporter of functions that can
be called. It also allows native and efficient support of higher-
order functions, allowing functions to be passed as arguments
just like primitive numeric types.

The compatibility, scalability, and performance of PushPush
are proved on a Zynq device, where interoperability between
four different languages is demonstrated. Performance in
excess of 1 million calls/sec is seen between all languages,
whether from software to hardware or hardware to software.
Performance between hardware components is even higher,
exceeding 4 million calls/sec between two Vivado HLS com-
ponents, with a total remote function call time of 22 cycles.

R E F E R E N C E S

[1] D. P. Singh, T. S. Czajkowski, and A. Ling, “Harnessing the power
of FPGAs using Altera’s OpenCL compiler,” in Proc. FPGA, pp. 5–6,
2013.

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “LegUp: An open-source high-level
synthesis tool for FPGA-based processor/accelerator systems,” ACM
Trans. Embed. Comput. Syst., vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013.

[3] M. Adler, K. Fleming, A. Parashar, M. Pellauer, and J. S. Emer,
“LEAP scratchpads: automatic memory and cache management for
reconfigurable logic,” in Proc. FPGA, pp. 25–28, 2011.

[4] M. Jacobsen and R. Kastner, “RIFFA 2.0: A reusable integration
framework for FPGA accelerators,” in Proc. FPL, pp. 1–8, 2013.

[5] D. B. Thomas, S. T. Fleming, G. A. Constantinides, and D. R. Ghica,
“Transparent linking of compiled software and synthesized hardware,” in
Proc. DATE, pp. 1084–1089, 2015.

[6] E. Aguilar-Pelaez, S. Bayliss, A. Smith, F. Winterstein, D. R. Ghica,
D. Thomas, and G. A. Constantinides, “Compiling higher order functional
programs to composable digital hardware,” in Proc. FCCM, p. 234, 2014.

[7] D. Ghica, “Applications of game semantics: From program analysis to
hardware synthesis,” in Proc. LICS, pp. 17–26, 2009.

[8] J. Jussel, “Software-compiled system design: A methodology for field-
programmable design,” in Workshop on Electronic Design Processes,
2003.

[9] X. Ltd., “An FPGA IP core for easy DMA over PCIe with windows and
linux,” http://xillybus.com/, 2015.

[10] M. King, J. Hicks, and J. Ankcorn, “Software-driven hardware develop-
ment,” in Proc. FPGA, pp. 13–22, 2015.

[11] J. Barba, F. Rincón, F. Moya, J. D. Dondo, and J. C. López, “A
comprehensive integration infrastructure for embedded system design,”
Microprocessors and Microsystems, vol. 36, no. 5, pp. 383 – 392, 2012.

