
now you can 

White Paper 
Inexact Search 
Acceleration on FPGAs 
Using the Burrows-
Wheeler Transform 
Greg Edvenson, Corey Olson, Paul Draghicescu 

Pico Computing, Inc. 
www.picocomputing.com • 206-283-2178 • 506 2nd Ave, Suite 1300, Seattle, WA 98104 

http://www.picocomputing.com/


Inexact Search Acceleration on FPGAs Using the
Burrows-Wheeler Transform

Paul Draghicescu, Greg Edvenson, and Corey Olson
Pico Computing, Inc.

Seattle, Washington 98109
{pauld,greg,corey}@picocomputing.com

Abstract—Inexact search is a difficult and time-consuming
task with widespread application. Acceleration of inexact search
could have tremendous impact upon fields such as chemistry,
meteorology, and even bioinformatics. Field-programmable gate
arrays provide a means by which to accelerate this process. We
demonstrate the acceleration of inexact search using the Burrows-
Wheeler transform on FPGAs using the short read mapping
problem in bioinformatics as an example application. Using 12
FPGAs, we are able to accelerate the search of 100-base short
reads against the human genome by 48X.

I. INTRODUCTION

Search is a widespread area, with many more applications
than simply Bing or Google. Not only has Google built an
empire searching the internet based upon user input, but me-
teorologists have been searching for weather patterns, chemists
have been searching for the weights and types of atoms
contained in an unknown substance, and biologists have been
searching for patterns in our genetic code.

This application space involves searching through a very
large data set, such as the set of webpages on the internet,
which we call a reference. The item that is being searched for,
called the query, may or may not match the reference exactly
at some point. In fact the most interesting cases tend to be
when the query is close to the reference but does not match
exactly (e.g. a search on Google for Super Computer returns
links to pages containing the word Supercomputer). Therefore,
it is important to support inexact matching of the query to
the reference. Inexact matching tends to require a brute-force
approach, resulting in much longer search times. In many
cases, researchers are searching a very large reference database
(or many databases) millions or even billions of times; speed
is of the utmost importance.

II. METHODS

A. Burrows-Wheeler Transform

There are many ways to do inexact searching, but one such
way makes use of an algorithm called the Burrows-Wheeler
Transform (BWT) [3]. The BWT is classically used in data
compression, such as bzip2 [7]. The BWT is used for inexact
searching because it has a very low memory footprint, and all
locations where the query matches the reference can be found
in time proportional to the length of the query.

Before we can search for a query within a reference using
the BWT, we must first construct a BWT index of the

reference. For the purposes of this paper, we assume the
reference is a single string of characters. In practice, many
types of databases can be converted to this representation for
processing.

To begin the construction of the index, we first append
a terminating character to the tail of the reference string,
creating a reference string with length N. This terminating
character (denoted as $) should not appear anywhere else in
the reference string, and it is lexicographically less than all
other characters in the reference string. We then form a square
2D matrix, where each dimension is equal to the length of the
reference string (N). We place the reference string in the first
row of the matrix. We then fill in every row of the matrix with
every possible rotation of the reference. After the matrix has
been completely filled, we lexicographically sort the rows of
the matrix such that after the sort the row that begins with $
should be in the first row of the matrix. Note that once the
matrix is sorted, the ith lexicographically smallest suffix of the
reference string is in the ith row of the matrix. After the sort,
the last column of the matrix is referred to as the BWT string.
Figure 1 shows an example of the BWT matrix and BWT
string construction for the reference string MISSISSIPPI.

Fig. 1: Construction of the BWT matrix (left). Matrix is sorted
(right) and the last column is the BWT string.

Once we have the BWT string, we must construct 2 arrays.
The first array, C(a), holds the number of characters in the
original reference string that are lexicographically smaller than
a. The second array, O(a,i), stores a count of the the number
of occurrences of a in the first i characters of the BWT string.
Figure 2 shows an example of the C() and O(,) arrays for the
reference string MISSISSIPPI.

After the construction of the matrix, we can use it to search
in linear time for substrings of the original reference string.

Copyright © Pico Computing, Inc., 2012



Fig. 2: Example of the count array (left) and the occurrence
array (right) for the reference string MISSISSIPPI.

To begin, we must realize some properties of the constructed
BWT matrix. First, assuming that S is a substring of the
reference string R, then all occurrences of S in R will appear
in sequential rows in the BWT matrix (because the matrix is
sorted lexicographically). We can therefore put a lower and
upper bound on the interval of the BWT matrix where the
substring S occurs, which is called the SA interval. The lower
bound of the SA interval is denoted as k and the upper bound
is denoted as l.

Burrows and Wheeler described a way to compute this
interval in linear time with respect to the length of the
substring. For example, suppose we start with the empty
substring, S = {}. That substring can be found anywhere
in the BWT matrix, so the lower bound is the first valid row
of the matrix (k = 1) and the upper bound is the last valid
row of the matrix (l = N − 1). If we now prepend a single
base (a) from the tail of the query to the current substring (S),
we can compute the new lower and upper bounds of the BWT
matrix, as described by Burrows and Wheeler:

k = C(a) +O(a, k − 1) + 1 (1)
l = C(a) +O(a, l). (2)

Using this mechanism, we can iteratively prepend a single
character from the query to the current substring. As long
as the computed lower and upper bounds do not cross, i.e.
k < l, then the newly formed substring is contained within
the original reference string. If we have prepended all bases
of the query to the substring and the SA interval is larger than
1, i.e. l− k > 1, then the query is found within the reference
string.

At this point, we can use another construct, which is
not described in this paper, to convert the SA interval to
locations in the reference string. For details on the conversion
of the SA interval to reference locations, please refer to the
original Burrows-Wheeler paper [3]. Figures 3a and 3b show

(a) BWT Search Range

(b) BWT Search Steps

Fig. 3: Example searching for query SIS in the reference
MISSISSIPPI. Note that the size of the SA interval is non-
increasing with each step in 3a.

an example of searching the reference MISSISSIPPI for the
query SIS.

Please note that some details on the construction and use of
the BWT have been omitted for simplicity. Full details of the
construction of the BWT string and search of a substring in
the reference can be found in the original Burrows-Wheeler
paper [3].

B. FPGAs

Field-Programmable Gate Arrays (FPGAs) have been used
for decades as accelerators for various data-intensive applica-
tions including network routing, signal processing, and even
cryptography. They provide a platform for creating parallel
hardware without the large cost assocatiated with building
an Application Specific Integrated Circuit (ASIC). An FPGA
comprises a sea of programmable Lookup Tables (LUTs),
registers, programmable interconnect, and distributed Random
Access Memories (RAMs).

Unlike other accelerators, the logic within the FPGA can be
re-programmed to mirror a parallel hardware circuit. Instead of
executing software, as in a Graphics Processing Unit (GPU),
the lookup tables are programmed to compute any 6-input
function, and the interconnect serves to connect resources
together. FPGAs are programmed on a bit-level granularity,
so they can be much more efficient than traditional compute
resources when operating on data widths not equal to that of a
CPU. The combination of massively parallel execution and bit-
level granularity gives FPGAs a large performance and power
advantage as compared to CPUs or GPUs.

Pico Computing produces a series of FPGA boards, called

Copyright © Pico Computing, Inc., 2012 2



the M-Series Modules, which can be plugged into a backplane,
which is a PCI-Express card with the same form-factor as a
GPU [2]. This backplane plugs into the PCI-Express (PCIe)
slot in a motherboard. Multiple modules can be plugged into a
single backplane. This system enables a host CPU to execute
an application, but to offload the compute-intensive portion of
the application to the FPGA. All communication to the FPGA
modules from the host is via x8 Gen2 PCIe, and each module
has some local DDR3 memory.

C. BWT on FPGAs

The compute-intensive portion of the BWT search applica-
tion to offload to the FPGA is the traversal of the BWT index
for each query. For performance reasons, assume the FPGA
can store the entire index in its local DDR3 memory, which
is initialized once at the beginning of the search program. For
the case of Pico Computing’s M505 module, the index must
be 8 GB or less.

The CPU sends a query to the FPGA to be processed. The
FPGA acts as a depth-first search engine for the BWT index.
The FPGA will iteratively prepend a single character from the
query to the current search string and compute a new index
range, as shown in Section II-A. In this manner, the FPGA
performs an exact search of the query. If the query is found
within index, the final index range is reported back to the CPU,
which converts that index range to a set of locations within the
target. If the query is not found within the index, the FPGA
reports that back to the host. To perform an inexact search,
the host will then modify one or more characters of the query
string before sending it back to the FPGA for processing.
Types of modifications include substituting one character for a
different one, inserting a character into the query, or deleting
a character from the query. The host maintains a stack of the
different variations of the query that have been sent to the
FPGA.

Offloading the index searching to the FPGA enables mul-
tiple levels of parallel computation, which in turn improves
the performance. First, multiple queries (or variations of the
same query) can be sent to an FPGA for processing at a
time. In doing so, the time to compute the upper and lower
index bounds is overlapped with the time to access the index.
Therefore, it is more efficient to have a single FPGA operating
upon many queries at a time. The host system simply must
maintain a stack (or set of stacks) for each query that is
being processed by the FPGA. Second, multiple FPGAs can
be added to the system to improve performance by operating
upon different queries in parallel. Since the entire index is
contained within the DDR3 memory of an FPGA module, all
accesses to the index for a query result in local communication.
This allows many FPGAs to be added to the system with a
linear performance improvement.

III. EXAMPLE APPLICATION

The invention of Next-Generation Sequencing (NGS) ma-
chines in 2007 created a form of this search problem. In
conjunction with software, NGS machines can determine an

individual’s DNA sequence of nucleotide bases much faster
and for a much lower cost than previous methods. The process
involves taking a DNA sample, replicating the sample many
times, chopping the DNA randomly into short fragments
(about 100 bases in length), and feeding those fragments
into the NGS machines. The machine then determines the
nucleotide sequence of each fragment, producing a string of
characters called a short read.

Software is then used to determine the source location of
each short read in the original DNA sample. This is done
by comparing each short read to a known reference genome,
which is approximately 3 billion nucleotide bases and was
compiled as part of the Human Genome Project. Note that
since the DNA sequence varies from one individual to the next
and the reference genome was compiled as an average of a few
individuals, the short reads will not necessarily exactly match
the reference genome. This inexact search phase is known as
the short read mapping problem [6].

To put this problem into scale, Illumina, which is a man-
ufacturer of one type of NGS machine, projects to sequence
1.2 billion short reads in approximately 27 hours [1]. Software
solutions, such as the Burrows-Wheeler Aligner (BWA) [4] are
traditionally run on CPU clusters to map these reads to the
reference genome. Mapping these 1.2 billion short reads using
this software solution would take approximately 24 hours to
complete on a 16-core CPU cluster [5].

A. BWA Software

Our approach is to tie into the existing BWA software,
allowing the CPU to perform tasks it is optimized for, such as
file handling and memory management. We use the method
described in Section II-C to offload the compute-intensive
portion of the algorithm to the FPGA. BWA software will
find all alignment locations for a given short read, assuming
the short read differs from the reference by no more than d
characters.

The standard BWA software first constructs an index for
a given reference genome, as demonstrated in Section II-A.
Recall that C(a) is the total number of bases in the reference
genome lexicographically smaller than a. Also recall that an
occurrence array (O(a,i)) stores the number of occurrences of
a in the BWT string, between base 0 and i. Short reads are then
batch read into memory from a file. For each short read, the
CPU first computes a lower limit for the number of differences
between the short read and the target reference genome. This
lower limit is computed for every substring in the short read
containing the final base; this set of lower limits is placed into
an array called the D() array. For each short read, the CPU
maintains a heap, which is implemented as a set of stacks
to hold all the current queries, which are variations of the
original short read. Stacks are sorted by score, where queries
with equivalent scores are pushed onto the same stack, and
the stack with the best score is at the top of the heap.

The CPU begins the alignment of a short read by pushing
the original short read onto the heap. The software then
iteratively pops a single query from the top of the heap. If

Copyright © Pico Computing, Inc., 2012 3



the current query already has d variations from the short read,
then BWA attempts to exactly match the remaining bases of
the short read (those not already searched in the current query)
using a method named bwt match exact alt. If the current
query has less than d differences, the software prepends a
single base from the short read to the current query and
computes the new BWT index upper and lower bounds, as
shown in Section II-A. If these newly computed bounds are
legal, the software pushes this new query onto the heap. It also
pushes all possible variations of the current query onto the
heap (4 insertions, 1 deletion, 3 substitutions). The software
continues processing queries until either the maximum number
of alignments for a short read has been exceeded or the heap
is empty. In this manner, the software finds all alignments for
a short read having less than d differences from the reference
genome.

B. FPGA Design

The logic within the M-505 FPGA is built upon Pico Com-
puting’s framework. Pico Computing provides a streaming
communication system, which enables efficient PCIe commu-
nication between the CPU and the FPGA module. Pico also
provides access to an 8 GB DDR3 SODIMM for storage of
the BWT index.

On top of that framework, we have implemented a system
to replace the bwt match exact alt method from the BWA
software, as described in Section III-A. The system accepts
a query, the current query base index, and the current lower
bound (k) and upper bound (l) of the BWT index on an input
stream. The FPGA stores the query in on-chip memory while
it is being processed for rapid base retrieval. The current base
of the query is used to compute the next memory address to
read from the DDR3 memory. The BWT index is stored in
a compressed form (only 1 out of every 64 occurrence array
counts is stored in the index), such that it fits in approximately
3 GB of DRAM. Two random access reads are required to
compute the next BWT index bounds, one for the upper bound
(k = C(a) + O(a, k − 1) + 1) and one for the lower bound
(l = C(a) +O(a, l)).

After k and l are computed, the FPGA verifies that the
bounds are valid, i.e. k < l. If not, the query is not found
within the reference, and the query is ejected from the on-chip
query memory. If the bounds are valid and all bases within the
query have been processed, the query, the current base index,
k, and l are reported back to the host on an output stream.
If all bases of the query have not been processed, then the
current query base index is decremented, and the next base of
the query is processed in a similar fashion.

The FPGA has plenty of on-chip memory to support many
queries at a given time. Currently, 128 queries are maintained
and operated upon at a time within the user logic. Also,
read requests for consecutive queries are pipelined to the
DDR3 memory to enable out-of-order execution and improve
random access performance. A diagram of the logic required to
implement this BWA system in the FPGA is shown in figure 4.

Fig. 4: The FPGA logic required to match queries to the
reference. Note that the reference BWT index is stored in off-
chip DRAM.

C. Software Modifications

To make the best use of the FPGA, instead of searching each
short read one at a time, we allocate an array to keep track of
multiple software heaps to search in parallel. We initialize the
first heap in our array with a short read and begin our search
in software as described in Section III-A. During our search,
when no more differences are allowed for the current query,
instead of calling bwt match exact alt, we add the current
query to a queue for the FPGA. Two threads are dedicated
for streaming communication with the FPGA: 1 thread sends
blocks of queries from the queue to the FPGA for processing
and 1 thread receives blocks of results from the FPGA and
places them in a queue.

The software continues filling the array of heaps with new
short reads until all heaps are occupied. When the array is
full, we dequeue a result from the FPGA, and restore the
heap belonging to that short read. The search then continues in
software with the new read until we have found an alignment,
the heap is empty, or until we queue the read to the FPGA
again. Figure 5 shows the interaction of the BWA software
with the FPGAs.

Fig. 5: Interaction of the BWA software with the FPGAs.

D. Results

The described system comprises a host chassis with 2
Intel Xeon CPUs and 12 M-505 FPGAs residing on 3 EX-

Copyright © Pico Computing, Inc., 2012 4



500 backplanes. This system is capable at aligning reads 48
times faster than the software version alone. This speedup
enables researchers to receive their results much faster, thereby
becoming much more efficient. Moreover, the FPGA design
comes with tremendous power and area benefits. The FPGAs
in the BWA system consume a mere 120 Watts total (10 Watts
each) and the entire system fits inside a single 4U chassis.
The power savings of an FPGA system drastically reduces
energy consumption costs over the lifetime of a traditional
CPU cluster.

ABOUT PICO COMPUTING

Based in Seattle, Washington, Pico Computing specializes
in highly integrated development and deployment platforms
based on Field Programmable Gate Array (FPGA) technolo-
gies. Applications for Pico Computing technologies include
cryptography, networking, signal processing, bioinformatics,
and scientific computing. Pico Computing products are used
in embedded systems as well as in military, national se-
curity, and high performance computing applications. For
more information about Pico products and services, visit
www.picocomputing.com.

REFERENCES

[1] Hiseq systems comparison. [Online]. Available: http://www.illumina.com/
systems/hiseq comparison.ilmn, 2012.

[2] M-501. [Online]. Available: http://picocomputing.com/m-series/m-501/,
2012.

[3] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression
algorithm. 1994.

[4] Heng Li. Ngs mapper roc curves. [Online]. Available:
http://lh3lh3.users.sourceforge.net/alnROC.shtml, November 2009.

[5] Heng Li and Richard Durbin. Fast and accurate short read alignment with
burrowswheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

[6] Heng Li and Nils Homer. A survey of sequence alignment algorithms
for next-generation sequencing. Briefings in Bioinformatics, 2010.

[7] Julian Seward. bzip2 : Home. [Online]. Available: http://www.bzip.org/,
1996.

Copyright © Pico Computing, Inc., 2012 5


