
High Level Synthesis Using Operation Properties

Jan Langer, Ulrich Heinkel
Chemnitz University of Technology

Chemnitz, Germany
{laja,heinkel}@infotech.tu-chemnitz.de

Abstract—We propose a high level synthesis approach to
generate RT level hardware from a specification of operation
properties. The property language is called InTerval Language
(ITL) and we assume the set of properties is complete, such
that the properties alone are strong enough to map every
possible sequence of input data to exactly one sequence of
output data. A major advantage of using operation properties
as a design method is the existence of commercial tools
to check the completeness and consistency of the property
set. Furthermore, operation properties are well suited for
specifications of consecutive operations of finite length. We
show the practicality of our method by implementing a particle
filter for a localization application.

I. INTRODUCTION

Over the last years, formal verification has become pow-
erful enough to be applicable to large designs. Writing
temporal properties to capture the behavior of a system is
now common knowledge for both designers and verification
engineers. Usually, properties are used as assertions in a
traditional simulation-based verification strategy or they are
formally proven by a model checker. Recently, they are also
used to generate models that can monitor the correctness of
a design during simulation or emulation. Alternatively, such
models can represent an abstraction of specific aspects of the
design to speed up simulation or to enable the simulation of
components before they are actually implemented. A new
idea is to derive the complete implementation of the design
from a specification consisting of properties.

A Gap Free Verification methodology based on operation
properties has been introduced by the commercial tool
360MVTMby OneSpin Solutions [1]. It provides a special
property syntax known as InTerval Language (ITL). A
set of additional rules helps to write a complete set of
properties, that explicitly covers the design intent for every
valid sequence of input values. The tool employs a powerful
engine to prove the completeness of the property set as well
as the correctness of each individual property with respect
to the design. A property set is said to be complete if the
conjunction of the properties alone is able to map every
valid sequence of input data to exactly one corresponding
sequence of output data [2], [3]. The completeness of a

This research work was supported in part by the German Federal Ministry
of Education and Research (BMBF) in the project HERKULES under the
contract number 01 M 3082.

property set can be proven without the need of an actual
design. It is possible to use PSL or SVA properties in a
similar methodology. However, we concentrate on ITL, be-
cause, in contrast to PSL or SVA, it is specifically designed
for specifying complete sets of properties.

In this work, we argue that using operation properties is
a very good description method to design certain types of
hardware components. The description of operation proper-
ties resembles timing diagrams in traditional specifications.
Furthermore, we developed a synthesis tool that can generate
very large circuits and is not prone to the state space
explosion problem. We achieve this by avoiding the need to
handle the circuit at the boolean level. We derive the control
graph only from the structure of the properties and the data
flow is directly mapped to hardware on RT level. Using
the existing methodology and tools during the specification
phase to prove consistency and completeness of the property
set is a major advantage of using operation properties.

Writing a complete ITL specification based on operation
properties is often a grey boxing approach, i.e. a certain
level of insight into the inner workings of the desired design
is required. This makes the specification less abstract than
traditional Linear Time Logic (LTL) formulas. However, for
the same reason it appears more appropriate to derive an
actual implementation from ITL.

This paper is structured as follows: in Section II we intro-
duce some of the previous work on synthesizing hardware
from properties. In Section III we briefly show the structure
and verification methodology behind operation properties.
Section IV describes the basic algorithm we use for our
synthesis approach and in Section V we show two examples
we have implemented. Section VI summarizes this paper and
gives a short outlook of future work.

II. PREVIOUS WORK

Much effort has been put into the efficient generation
of models of single properties used as monitors, or sets of
properties describing the complete behavior of a component.
Most of this work has been focused on a specification
consisting of properties in LTL, mainly a subset of PSL [4]–
[10]. All methods to synthesize LTL formulas are restricted
in either the subset of supported constructs or the complexity
they can handle. Another problem is the ambiguity of the
specification. In most cases, a property or a set of properties



is satisfied by more than one exact behavior. Thus, the
synthesis method can either create a general solution that
contains all consistent behavior or an arbitrarily chosen
specific solution.

In [11] a specification consisting of properties in the form
A → P are normalized and transformed into an executable
design description.

III. OPERATION PROPERTIES

In order to understand our synthesis approach, it is neces-
sary to understand the underlying verification methodology
[12]. It uses a set of properties P , called operation properties.
Each property p ∈ P is a tuple (A, C, tLeft, tRight) of
assumptions A, commitments C and the two time points
tLeft and tRight, that indicate the start and end time of the
property. An assumption is a function of all input values,
output values and internal state variables of the component.
It can use those values at every time point relative to the
respective property and must evaluate to true or false. An
assumption could be the function

gin(t) + hin(t + 3) < 10,

that delays input g at time t, adds input h at time t + 3
and checks if the result is less than 10. The time points
are not absolute values. They always represent an offset to
an arbitrarily chosen time t. The time point ta at which an
assumption a is completely evaluated is the maximum time
point of all variable accesses in a, t+3 in the above example.

A commitment c ∈ C is a function similar to an assump-
tion, that evaluates not to a boolean value, but to a value
that is assigned to an internal or output variable at a specific
time point. An exemplary function that assigns the sum of
two input variables to output oout at time point t+4 is given
by

oout(t + 4) ← gin(t) + hin(t + 3).

Properties that are not intended to synthesize a design can
use commitments of arbitrary form. However, our synthesis
approach requires the above restrictions to generate valid
design descriptions.

The time point tLast of a property is the maximum time
at which either an assumption is completely evaluated or a
signal is assigned via a commitment. Furthermore, it must
be greater or equal to tRight.

A complete property describing the SY NC operation of a
frame synchronization component (BITFRAMER) is listed
in Alg. 1. It detects a synchronization word ”1010” in a
serial stream of input data and generates the correct output
signals. This property will contain four assumptions at time
points t to t + 3 and twelve commitments (at time points
t+5 to t+16) for each of the three output signals. The time
points tLeft and tRight are t + 3 and t + 15 respectively.
tLast will be t + 16.

The described component has one input signal din repre-
senting the serial input data stream. Additionally there are

Algorithm 1 SY NC property
property sync is
assume:

at t : din = "1";
at t+1 : din = "0";
at t+2 : din = "1";
at t+3 : din = "0";

prove:
during [t+5,t+16] : inframe = ’1’;
during [t+5,t+16] : dout = prev(din);
during [t+5,t+16] : frmpulse = ’0’;

left_hook: t+3;
right_hook: t+15;

end property;

three output signals. dout is the serial output data stream,
whereas frmpulse signals the start of each completely
synchronized frame. The inframe signal is valid as long
as the output stream is synchronized.

There may exist an operation prev(d, n) representing the
value of the variable d exactly n time steps before the
time step specified with at or during. In contrast to the
original verification methodology, we do not need to handle
the internal state of the design in the properties. In case we
need to prove the correctness of those properties against
an implementation, we would have to add the necessary
statements to our property before using the 360MV tool.

Additionally, a property graph is required that defines the
successors of each property. For two consecutive properties,
the time point tRight of the predecessor is equivalent to
the time point tLeft of the successor property. In case a
property has more than one successor, the assumptions of the
successor properties decide which property will define the
design’s behavior. A property graph for our BITFRAMER
example is shown in Fig. 1.

After reset, the design always starts at the first time point
of the reset property. Every possible sequence of input data
must lead to one or more sequence of properties. However, in
case there is more than one matching sequence, all sequences
must result in the same sequence of output values. The
difference to a traditional FSM is the fact that an operation
property is usually active for more than one time point, and
its duration differs from property to property.

IV. SYNTHESIS ALGORITHM

In this section we first propose an algorithm to synthesize
the control flow of the design. After that we describe how
assumptions and commitments form the corresponding data
flow. During construction of the control graph, the commit-
ments are not considered and the assumptions are simplified
to boolean predicates. Furthermore, commitments are only
allowed to assign variables at least one time point after



Figure 1. Property graph of the BITFRAMER component.

the last variable access, in order to guarantee synchronous
behavior, i.e. a commitment

zout(t + 2) ← xin(t) + yin(t + 3) (invalid)

is prohibited because driving the output value of z at time
point t + 2 requires the value of y at time t + 3.

The property graph of our BITFRAMER example is
shown in a different representation in Fig. 2. Now, the
time points of each property are unrolled. The question
marks indicate the time points of the four assumptions
employed in this example. For each property, the light grey
and dark grey time points are tLeft and tRight, respectively.
The transitions between properties do not consume time
and can be compared to ε transitions in conventional non-
deterministic finite automata. However, there is a difference.
The time steps after tRight are executed, no matter which
property follows. In our example the overlapping between
properties is relatively small. In case of a deep pipeline
behavior of the design and short properties in relation to the
pipeline depth, the overlapping can be significant and more
than two properties can overlap. Thus, the property graph in
Fig. 2 is not yet ready for synthesis. The following algorithm
transforms it to a non-deterministic finite state machine that
does not exhibit overlapping behavior. For the rest of the
paper, a time point t of a property p is referred to as property
position p: t.

The graph that is generated by this algorithm is defined
as

H(S, E, A′, C ′)

where S is the set of states of the new control flow graph

Figure 2. Unrolled property graph of the BITFRAMER component.

and E is the set of transistions of this graph. All transitions
are non-deterministic but no ε transitions are allowed. The
relation A′ : S $→ 2A annotates every state with a set of
assumptions from the corresponding properties. The relation
C ′ : S $→ 2C is similar for the commitments.

Algorithm 2 Function create
s0 ← {reset: 0}
S ← {s0}
Q ← {s0}
while Q %= ∅ do

s ← choose from Q
Q ← Q \ {s}
for all s′ ∈ successor(s) do

if s′ /∈ S then
Q ← Q ∪ s′

S ← S ∪ s′

end if
E ← E ∪ {s, s′}

end for
end while

A state s ∈ S is an ordered non-empty set of property
positions. Every element p: t ∈ s of this set defines that the
state s has to exhibit the behavior described in property p at



time point t. Especially all corresponding assumptions and
commitments must be fulfilled. The order of the elements
depends on the number of time steps since tLeft of the
property. The minimum element of the state is defined as
the property position with the shortest time passed since
tLeft. The construction algorithm guarantees that exactly
one property position is active, meaning that its time point is
less than tRight. Naturally, this element is also the minimum
element in s.

Algorithm 2 starts constructing the graph H by adding the
initial state {reset: 0} to a temporary set Q and iteratively
searching for states following the already visited ones and
adding the required transitions to E accordingly. New states
that are found are stored in Q until they are visited. The
algorithm terminates when no new states need to be added
to S, i.e. the set Q runs empty.

Algorithm 3 Function successor(s)
s′ ← ∅
for all p: tp ∈ s do

if tp + 1 ≤ tLast(p) then
s′ ← s′ ∪ p: (tp + 1)

end if
end for
p: tp ← minimum element from s′

if tRight(p) = tp then
succ ← ∅
for all q ∈ P | {p, q} ∈ U do

s′′ ← s′ ∪ {q: tLeft(q)}
succ ← succ ∪ s′′

end for
return succ

else
return {s′}

end if

In order to find the states following a given state s, Alg.
3 is used. Basically, it increments the time points of every
property position in s and drops the ones that exceed the
corresponding tLast. Afterwards, the minimum element is
selected and in case it is the tRight of its property, the state
is split into different states for each successor of the property.
The position tLeft of the corresponding property is added
to each state.

In a next step the assumptions and commitments are
annotated on the control graph. Fig. 3 shows the result of
our algorithm for the BITFRAMER example. All transitions
are non-deterministic and in general without conditions.
The question marks on certain states indicate that the state
has annotated assumptions. Commitments are not shown.
Usually, non-deterministic state machines are first trans-
formed to deterministic ones and then mapped to hardware.
However, to avoid the state space explosion problem of this
transformation, we directly implement the non-deterministic

Figure 3. Generated control graph H of the BITFRAMER component.



graph in RT level hardware by means of the algorithm
presented in [13] and [14]. It encodes each state as a single
bit variable. The variable is set to ′1′ if any of its predecessor
states is active and all of its annotated assumptions are
fulfilled. The result is very efficiently generated but does
not scale well in terms of flip-flop usage in case very long
properties are needed.

The correctness of the result of the algorithm depends
on the completeness checks by 360MV to guarantee a
correct synthesis. This is because we implicitly assume those
restrictions. As an example, the synthesized design will be
wrong in case the assumptions of the IDLE and SY NC
properties are not mutually exclusive.

The data flow components (assumptions and commit-
ments) are mapped directly to RT hardware. ITL expressions
and calls to macros are unrolled and flattened resulting
in a plain netlist of ITL operators. We use a library of
synthetic operators implemented in VHDL for all possible
ITL constructs.

V. RESULTS

In order to demonstrate the conciseness of the proposed
design method, we specified and synthesized one of our
current design projects using operation properties. The com-
ponent implements a particle filter used for localization
purposes [15]. A particle filter is an estimation technique
for Bayesian models. Each of the 8192 single particles of
the filter represents a point in the state space that carries a
weight. The weight is a simple estimate of the probability
density function at that state point.

We split the specification into two partitions and connect
them by FIFOs. The first step sequentially updates each par-
ticle and computes its weight. When all particles are updated
and the sum of the weights is determined, a resampling step
drops particles with low weight and clones particles with
high weight. Fig. 4 shows the general structure and the data
flow of the particles.

Figure 4. Structure of the particle filter.

The Updater component requires four properties to describe
its behavior, whereas the Resampler block needs five. All
properties have been written in just under three days and the
synthesis to VHDL takes 1 second. The filter sequentially
processes all 8192 particles, a number that is appropriate
for our 3D localization application. We have been able to
implement the complete particle filter in a Xilinx Virtex-
II Pro FPGA and it uses roughly half the available slices.
Table I shows detailed information of the synthesis results.
The maximum frequency is 4.3 MHz, which is quite low but
still meets our design goals by a wide margin. One major
problem of the generation has been the design of the weight
computation. We had to carefully revise our initial properties
to use efficient data path algorithms. The initial square root
algorithm consumed about four times the available FPGA
resources, but after identifying the problem, it was possible
to dramatically reduce the resources. Once algorithms like
square root or division are implemented as ITL macros, it
will be easy to reuse them in other applications.

Resource Used Utilization
Flip-Flops 2835 9.76%
CLB Slices 7741 56.52%
Block RAMs 83 61.03%
Block Multipliers 113 83.09%

Table I
RESULTS OF THE SYNTHESIS ALGORITHM FOR THE PARTICLE DESIGN

USING OPERATION PROPERTIES ON A XILINX 2VP30FF896 DEVICE.

The BITFRAMER component is a very simple abstrac-
tion of another motivating example for the property based
design. The full framer component uses 16 Bit wide inputs
and outputs and the frame length is about 20 cycles. The
specification consists of five parameterized properties and
the generation runs about half a second.

VI. CONCLUSION

In general, the proposed method offers a very comfortable
way to specify complicated timing diagrams for output
signals. Often, the specification engineer thinks in operations
and its very straightforward to implement those ideas in
operation properties. Usually, it is simpler and less error
prone to change the time points of signal assignments using
properties than changing it in manually coded VHDL.

Future work will concentrate on finding and implementing
a control flow synthesis algorithm that constructs a deter-
ministic state machine instead of a non-deterministic one.
This will open opportunities to implement an important
ITL construct known as freeze variables more efficiently.
This improvement will also enable our synthesis algorithm
to handle very long properties, such as a synchronization
framer of full functionality that motivated our initial effort
for this tool.

The other weakness of our current tool is the method of
generating VHDL. Some basic optimizations like sharing



common logic or inserting RAM instances when necessary
are not performed. For this step, we rely on the RTL
synthesis tool, resulting in a high run time and memory
usage.

The maximum frequency of circuits generated by our
approach is often not yet satifactory. The implementation of
the control flow in a deterministic state machine will enable
further circuit optimization techniques that could increase
performance.

REFERENCES

[1] Onespin solutions. [Online]. Available: http://www.onespin-
solutions.com

[2] J. Bormann and H. Busch, “Verfahren zur Bestimmung der
Güte einer Menge von Eigenschaften, verwendbar zur Veri-
fikation and zur Spezifikation von Schaltungen (Method for
determining the quality of a set of properties, applicable
for the verification and specification of circuits),” Euro-
pean Patent Application issued 2005. Publication number
EP1764715.

[3] W. Buettner and M. Siegel. Achieving com-
pleteness in IP functional verification. [Online].
Available: http://www.eetimes.com/showArticle.jhtml?ar-
ticleID=197005268

[4] S. Ruah, D. Fisman, and S. Ben-David, “Automata construc-
tion for on-the-fly model checking PSL safety simple subset,”
IBM, Tech. Rep. H-0234, 2005.

[5] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2006, pp. 364–380.

[6] M. Boule and Z. Zilic, “Efficient automata-based assertion-
checker synthesis of SEREs for hardware emulation,” in Asia
South Pacific Design Automation Conference (ASP-DAC).
IEEE, 2007, pp. 324–329.

[7] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolf-
sthal, FoCs - Automatic Generation of Simulation Checkers
from Formal Specifications. Springer, 2000, pp. 538–542.

[8] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli,
and M. Weiglhofer, “Specify, compile, run: Hardware from
PSL,” Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 190, no. 4, pp. 3–16, November 2007.

[9] ——, “Automatic hardware synthesis from specifications:
A case study,” in Design, Automation and Test in Europe
(DATE), 2007.

[10] K. Morin-Allory and D. Borrione, “Proven correct monitors
from PSL specifications,” in Design, Automation, and Test in
Europe (DATE), 2006, pp. 1246–1251.

[11] M. Schickel, V. Nimbler, M. Braun, and H. Eveking, An
Efficient Synthesis Method for Property-Based Design in
Formal Verification: On Consistency and Completeness of
Property-Sets. Springer, 2007, ch. 11, pp. 179–196.

[12] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann,
D. Stoffel, and W. Kunz, “Unbounded protocol compliance
verification using interval property checking with invariants,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 11, pp. 2068–2082, Novem-
ber 2008.

[13] R. Sidhu and V. K. Prasanna, “Fast regular expression
matching using FPGAs,” in IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), April
2001.

[14] R. Siegmund, “Ein Verfahren zur Spezifikation von Pro-
tokollen für die Verifikation und Synthese protokollorien-
tierter digitaler Systeme,” Ph.D. dissertation, Technische Uni-
versität Chemnitz, July 2005.

[15] S. Thrun, W. Burgard, and D. Fox, The Particle Filter. MIT
Press, 2005, ch. 4.3, pp. 96–113.


