
Simulation-Based Verification of the MOST
NetInterface Specification Revision 3.0
Andreas Braun, Oliver Bringmann

FZI Forschungszentrum Informatik
Systementwurf in der Mikroelektronik

Haid-und-Neu-Str. 10-14
D-76131 Karlsruhe

Andreas.Braun@fzi.de

Djones Lettnin, Wolfgang Rosenstiel
Universität Tübingen

Wilhelm Schickard-Institut für Informatik
Sand 13

D-72076 Tübingen

Abstract—Design and specification errors are hard to find
in the traditional automotive system design flow. Consequently,
these errors may be detected very late e.g. in a hardware
prototype or even worse in the final product. In order to
allow the verification of distributed embedded systems in early
design phases, this work proposes a flexible and efficient virtual
prototyping approach in order to check the consistency of system
specifications. Our virtual prototyping approach has been applied
to the Media Oriented Systems Transport (MOST) specification
revision 3.0 and verifies the influence of two newly specified
algorithms, namely Ring Break Diagnosis and Sudden Signal
Off detection, with respect to numerous network configurations.
In total we have verified the specification using more than
105 automatically generated network configurations. The overall
costs for network modelling and verification compared to cost-
expensive error detection and correction at later design phases
have been significantly reduced.

I. INTRODUCTION

Over the last years, the requirements of modern infotain-
ment systems used in the automotive industry have increased
rapidly. Many vehicles are now equipped with radio, cell
phone, CD changer, navigation systems and other comfort
functions. These devices must interact with each other to
provide controllability via a central human machine interface
without disturbing the driver. However, the bandwidth of the
controller area network (CAN) is not sufficient for audio and
video signals. The answer of the automotive industry to this
gap is the standardization of the Media Oriented Systems
Transport (MOST) [13].

The MOST-Bus system provides high bandwidth up to
150 MBit/sec., and it is developed for transferring streaming
and controlling data especially for infotainment systems. Like
other modern communication systems (e.g., FlexRay [14]), it
has a high complexity to provide different needs of the con-
nected devices. This leads to enormous design and verification
costs in the well known V-model. Multiple iterations during
the development process are required resulting in an increasing
time-to-market. By the fact that statistically more than forty
percent of the errors in the overall development process are
located in the specification [1], the cost and time-to-market can
be reduced significantly by using early verification techniques.

1This work was supported in part by the ARTEMIS project CHESS under
grant 01IS09003A.

In order to verify the functional correctness, fault and
timing behaviour of a system, formal and simulation-based
verification can be applied. The basic advantage of formal
verification using model checking is that it provides com-
pleteness. For instance, model checking tools such as Uppaal
[3] and SPIN [2] are able to verify real time properties and
system protocols, respectively. However, the main limitation of
model checking approaches is the state space explosion (i.e.,
memory problems) due to the design complexity. Therefore,
the classical formal techniques are still too labour-intensive to
be widely applicable for the verification at system level. On
the other hand, the simulation-based approach can handle large
systems. Functional behaviour (e.g., time constraints) can be
checked using defined assertions. It is also possible to assess
dependability by the use of fault injection in early phases.

In this paper we present a new simulation-based verification
approach linking the MOST system requirements and virtual
prototyping. Our new approach is suitable for automated ver-
ification of system configurations as well as system function-
alities. This novel verification technique is evaluated on two
newly specified algorithms taken from the MOST Specification
Revision 3.0, namely Ring Break Diagnosis (RBD) and Sud-
den Signal Off (SSO) detection. The virtual prototype is based
on SystemC [15], which provides an accurate simulation of the
timing and functional behaviour at system level. Additionally,
distributed embedded systems and systems-on-chips (SOC)
can be modelled and simulated in order to test concurrency
and timing aspects.

The remainder of this paper is organized as follows: Sec-
tion II discusses the related work. Section III describes our
proposed verification approach. In Section IV, we introduce
the modelling of the automotive MOST applications. Section
V presents our experimental results. Finally, Section VI con-
cludes the paper and describes a brief outlook on future work.

II. RELATED WORK

There are several works in the verification of system level
designs. By Kim [9] a simulation-based verification approach
of the FlexRay communication controller is proposed. The
communication data is transmitted bit per bit over the virtual
bus. This leads to insufficient simulation performance for an
adequate coverage of the design space and a high modelling

978-3-9810801-6-2/DATE10 © 2010 EDAA

effort. [7] gives an overview on simulation performance and
modelling effort referred to the level of abstraction. Verifi-
cation coverage and test automation is not considered in the
approach proposed by Kim. [8] describes a network on chip
simulation and verification platform. In this approach, the
abstraction level is raised to increase simulation performance.
Automated verification is supported by network traffic genera-
tion but it suffers in case of automatic platform configuration.
In order to test a new configuration, the design has to be
manually modified. Assessment of the verification quality by
coverage is not considered. Habibi [6] describes a verification
approach for transaction level models (TLM) on a PCI bus ex-
ample. The verification process is supported by automated test
case generation. The platform can be automatically configured
with a various number of masters and slaves. He considers
coverage and also includes assertion-based verification by
using the property specification language (PSL) [20].

Our work is very similar to the approach proposed by
Habibi. We improved the assertion-based verification by using
finite linear time temporal logic (FLTL) [21], an extension
on LTL with time bounds to consider timing constraints. Our
simulation model uses an abstract level of TLM for accelerat-
ing the simulation. The platform can be configured by various
parameters e.g. the number of network devices and device con-
figuration. The test cases are also generated automatically and
the code coverage is assessed during our proposed simulation-
based verification approach for distributed embedded systems.

III. MOST VERIFICATION BY VIRTUAL PROTOTYPING

MOST is a computer networking standard and it is devel-
oped by the MOST Cooperation. It was specially developed
to interconnect multimedia components in automobiles. The
MOST specification defines all seven layers of the ISO/OSI
Reference Model. Normally the devices are connected to each
other by a ring topology, but star configurations and double
rings for critical applications are also possible. A MOST
network consists of exactly one TimingMaster (TM) and 1
up to 63 TimingSlaves (TS). The TM is responsible for the
generation and transport of the system clock. Every device
itself consists of an intelligent network interface controller
(INIC) and an external host-controller (EHC). The INIC is
responsible for the data link layer of the ISO/OSI Reference
Model, the EHC covers the higher layers of the reference
model.

By the specification revision 3.0 [13] a new MOST gen-
eration is introduced. The bandwidth is increased up to 150
MBit/sec., data transport is exclusively done via a fiber optic
transmission medium. New functionality such as the ring break
diagnosis and the sudden signal off detection is provided.
These new functionalities are integrated to the NetInterface
as embedded software. The expression NetInterface stands for
the entire communication section of a device, the physical
interface, the INIC and the network services. The algorithms of
the NetInterface are specified by state diagrams and additional
textual explanation of the behaviour and functionality. Our
main goal for the verification process is to simulate the

Test Scenarios

1. …

2. …

Configuration
Nodes:

64
Masterpos.:

2
…

Configuration

…
DUV

MOST

DUV

MOST
ATPG

Verification-Flow

Debugging-Flow

Rhapsody UML
Wave Viewer

Visualization

Cross-Checking

Error Cases

Fig. 1. Verification Flow

specified algorithms and to check the properties and require-
ments taken from the specification document by using virtual
prototyping in early development phases.

Our verification flow for verifying the NetInterface is shown
in Fig. 1. The first step is to define several test scenarios such
as error free or ring break scenario. Out of these scenarios
an optional number of test cases are generated automatically
by using an automatic test pattern generation (ATPG). These
test cases are executed and checked automatically by the
test bench to guarantee automated and fast verification. If
an error occurs during automated testing, the identification
(ID) of the failing test case is stored for later analysis. In
order to simplify analysis, the test bench provides analysis
functions such as tracing and co-simulation for visualization.
During the verification runs these functions (e.g., tracing) are
disabled in order to accelerate the verification process. In
the analysis mode every test case is considered exclusive.
The tracing produces files in a text and a value change
dump (VCD) format. Additionally, a co-simulation shows the
dynamic behaviour through visualization and highlighting of
abstract unified modelling language (UML) models of the
system. This analysis phase allows determining whether the
failure is an error in the specification or in the test bench. By
using this approach, erroneous behaviour, live- and deadlocks,
timing errors, worst cases and other unwanted behaviour can
be detected in different network configurations.

The test bench itself consists of different elements. The main
component is the design under verification (DUV), which in-
cludes the basic MOST model and the specified algorithms of
the NetInterface. For checking specified properties a SystemC
temporal checker monitors the DUV. For determining the code
coverage of the specified algorithms the profiling options of
the compiler are used (refer to Section III-D).

The following section describes in detail the integrated
components for the verification. The scenarios, the input
parameters for the test bench and the verified algorithms of
the NetInterface are described in Section IV.

A. MOST NetInterface Model
The NetInterface (see Fig. 2) is modelled in the system

description language SystemC. The SystemC modelling lan-
guage is a set of library routines and macros implemented in

Power Off

Ring Break
Diagnosis

Init Normal
Operation

RBD algorithm

SSO algorithm

Diagnosis
Result

Fig. 2. Top Level Statechart of the NetInterface

C++. It is known as a system description language especially
for TLM. TLM is a high-level approach for abstract modelling
of communication among modules. SystemC provides accurate
simulation of the timing and functional behaviour. This allows
a fast and abstract modelling at system level, so that it
is possible to implement new systems directly from their
specification without any knowledge of the chip architecture.
Additionally, distributed embedded software in the form of
state machines or even C code could be integrated very fast.
SystemC together with C/C++ provides full functionality for
software integration in contrast to using VHDL and Verilog.
The connection between the devices of a network is modelled
by TLM techniques. This increases simulation speed and
ensures faster verification of the model.

The MOST system model itself implements two main device
forms, the TM and TS device. These devices are modelled
as SystemC modules. Each of the modules consists of an
abstract INIC. The EHC is replaced by a small environment
simulation (see Fig. 3). The specified NetInterface algorithms
are encapsulated in these modules so that it is possible to
instantiate an configurable amount of TM and TS devices. The
NetInterface algorithm in a device is triggered by using a given
time parameter. The NetInterface trigger and other timers used
by the algorithm are calculated in a timer function which can
start, stop and indicate a timer overrun.

Every device is connected via SystemC channels in a
ring topology. A device or a channel delay is optional. The
data transfer and synchronization to a TM within devices is
managed by several functions. If a device is locked to a signal
transported via the fiber optic medium, it can read and write to
the bus. If a device is unlocked, it can neither read nor write
data exchanged via the bus. By using fault injection techniques
it is possible to simulate device breakdowns, ring breaks and
excessive attenuation on the transmitting medium. Therefore,
a so-called saboteur is integrated to the channel [19].

The configuration of the simulation platform is done by
reading XML files. By reading this file the network simula-
tion is instantiated, configured, started and the channels are
interconnected automatically. To prevent an unlimited runtime
in the case of deadlocks and livelocks, the simulation time is
bounded by an additional value. The XML file itself depends
on the test case and defines several configuration parameters
that are listed below:

• Number and position of TM and TS
• NetInterface trigger time for each device
• Sample rate for frame generation

EHC

INIC

Physical
Interface

Virtual MOST
Network

Simulated
ring break

Electronic Host Controller (EHC) is
replaced by an environment simulation
NetInterface

Fig. 3. Simulated MOST Ring

• Fault injection locations, times and events
• Timer values of the integrated timers for each device
• Several events for the environment simulation
• Maximum simulation time
The simulation performance of the NetInterface model

depends on the number of instantiated virtual devices and
the level of abstraction used for modelling. Usually a higher
level of abstraction accelerates the simulation, but this also
limits the number of detectable errors. So it is important to
find a good trade-off between simulation performance and the
level of abstraction. The NetInterface algorithm is directly
implemented as a function of the device model. The function
itself is triggered in realistic time steps but the execution time
of the software is set to zero. Commands by the NetInterface
are executed immediately and no latency is modelled for
them. The data transfer is done via TLM interfaces which
directly transmit uncoded parts of the specified frames. This
accelerates the simulation speed significantly in comparison to
bit per bit transmission e.g. as realized in register transfer level
(RTL), but it leads to a limited timing accuracy. The locking
process of the MOST phase-locked loop (PLL) is reduced to
a simple frame counter in the model. If a device receives
three stable frames its status is changed to lock. Another
decisive abstraction is the neglecting of higher layers of the
communication model. Events normally generated by higher
layers are simulated using a small environment model included
in the devices.

B. Automatic Test Pattern Generation

Test case generation can be subdivided into two main
techniques: random and partition testing. By using random
testing the input space is searched randomly. The constrained
and weighted randomization improves the probability for
generating corner cases. However, there is no assurance that
these cases are sufficient. The only way to assess the generated
cases is to cover the input space. In this sense double test cases
can be avoided and the number of test cases can be limited
by a coverage requirement. Partition testing searches the input
space deterministically. This assures that the created test cases
have a higher quality referred to redundancy, failure sensitivity,
representativeness and efficiency. But partition testing is more
expensive than simple random testing because of the automa-

tion difficulty. The aspects of random vs. partition testing are
discussed in [23] and [24] in more detail.

In our verification approach we used a simple ATPG based
on random testing. The generator is based on the SystemC
verification library (SCV). The SCV provides a pseudo random
generator with data introspection, constraint and weighted
randomization. The inputs of the ATPG is the defined test sce-
narios, for randomization of the timer parameters two different
distributions can be chosen, equal and Gaussian distribution.
Furthermore several key parameters can be chosen to generate
a demanded number of test cases. E.g., the parameter varia-
tions are used as a multiplicator for the defined possibilities,
the parameter ring break event determines whether the injected
ring breaks are static or dynamic. Static means that the ring
break is injected before the simulation starts without calling
it off during simulation. An example for a scenario definition
is given in Table I.

The generated case data is stored in XML files and could
be loaded as configuration data. The failure injection events
are also stored by these files and no randomization during
runtime is used. One disadvantage of this realization is that
the size of the XML file increases. The main advantages are
that the automated verification is accelerated and it is possible
to assess the test case before simulation.

C. Verification of Temporal Properties at System Level
The temporal properties are formalized based on the state

charts from the NetInterface specification. In order to verify
temporal properties, the C/C++ language does not support any
mechanisms for temporal properties or assertions in software
modules. Therefore we integrate an existing SystemC temporal
checker (SCTC). The SCTC supports checking of temporal
properties either in PSL [20] or FLTL [21]. An example for the
property definition in FLTL is shown in Equation 1. Thereby a
requirement referred to the time difference between two events
is described, one thrown by a TM and the other by TS.

F (TM.timer == active)− >

F [Timeout](TS.timer == active)
(1)

D. Coverage Analysis
Coverage analysis can be subdivided into three main cover-

age forms [18], functional coverage, parameter coverage and
code coverage. The Functional coverage is done by the use
of the SCTC together with the distinction of the different
scenarios, because every scenario is referred to only one
defined functionality (e.g. a ring break scenario results in a
specified behaviour). Parameter coverage would be useful to
assess the generated test cases and to reduce the verification
time, but no suitable tool was available. The code coverage is
assessed by using the GNU profiling options and additional
open source tools, this results in a branch coverage test which
is accepted as the minimum criteria [17]. Unused transitions
of the NetInterface state chart specification can be detected.

E. Tracing Approach
To analyze and assess simulation runs tracing is essential.

Therefore a central record class was developed which is

interfaced to all relevant data of the DUV by using a generic
notification approach. This class is responsible for monitoring
and storing all variable and state changes of every instantiated
device together with timestamps. At the end of the simulation
all the information is written to files. Two different formats
are provided, one is a VCD format which can be visualized
by a wave viewer e.g. GTKWave and the other format stores
data in plain text. During automated verification the tracing
can be disabled to accelerate simulation.

F. Co-Simulation

Co-simulation is provided for better analysis of single test
cases. It shows the dynamic behaviour by visualization and
highlighting the abstract UML models of the NetInterface.
Beside the visualization it provides read access to the same
variables and states monitored by the tracing class. The co-
simulation depends on the UML tool Rhapsody. It provides
break points and a step by step mode. The data transfer
between the test bench and Rhapsody is event triggered by
state or variable changes, this ensures sufficient simulation
speed.

IV. MOST DESIGN APPLICATION

In the following two verification examples RBD and SSO
are described in detail. Both algorithms are a part of the whole
NetInterface algorithm (see Fig. 2). During simulation phase
each possible number of devices from 2 up to 64 was tested.
The sample rate was set to 44.1 or 48 kHz. Faults are either
injected at the beginning or during the simulation. The timers
are set to a value of their specified range.

Depending on the tested scenario the diagnosis info, status
in result state and the time difference for entering the result
states are checked by the SCTC for all instantiated devices.
Additionally, the relative ring position referred to the TM
which is determined by the algorithm and used for error
location or as an address is checked. The verification results
are explained in Section V.

A. Ring Break Diagnosis Application

The RBD algorithm was introduced to detect different kinds
of errors (shown in Table II) and their location before system
start up. In case of errors the system is lead to the NetInterface
state Diagnosis Result to analyze the detected error. If no
error is detected the system would change its state to Normal
Operation.

The main goal of this verification is to check the textual
function description against the state chart description of
the specified algorithms. Therefore six scenarios have been
defined, error free, ring break, excessive attenuation, multi
master, all slave and combination. In the case of the first
five scenarios the expected results are well defined. The
combination case is not exactly defined in the specification, but
with the proposed verification flow it was possible to determine
the behaviour of the algorithms in the case of multiple errors.
For test case generation each scenario was treated equal,
approximately 25,000 cases have been generated for each
scenario. That makes up to 150,000 different configurations for

TABLE I
EXAMPLE OF A DEFINED RBD SCENARIO

Number Number Number of Number of Exc. Sample Distribution Ring Break Exc. Attenu- Variations Total
of Devices of TM Ring Breaks Attenuation Time [kHz] Event ation Event Cases
2, 3, 63, 64 1 1 0 44.1, 48 gaussian static static 250 2000

4 – 62 1 1 0 – 1 44.1, 48 equal static st., dyn. 10 2360
2, 64 1 1, 2 0 44.1, 48 gaussian dynamic static 250 2000

60 – 64 1 2 – 4 0 44.1, 48 gaussian st., dyn. static 50 1500

TABLE II
RING BREAK DIAGNOSIS RESULTS

Diagnosis Result Diagnosis Info Description
No error - No error detected. Transition to

Normal Operation.
Position detected Relativ Position Ring break or excessive

attenuation detected. The result
indicates the rel. position.

Diagnosis failed - Number of TimingMaster is not
equal to one or no valid rel.

ring position is available.

the whole RBD verification. The maximum system simulation
time was set to 3500 msec. and 8 timers are configured for
each device.

B. Sudden Signal Off Detection Application

The SSO algorithm was introduced to guarantee a suitable
shutdown sequence either by a normal shutdown caused by the
PowerMaster (PM) or in the case of errors. These errors can
be: an emergency shutdown caused by low voltage or a ring
break or excessive attenuation. In all cases the cause of the
shutdown is saved for determining the reason and the location.
Afterwards the state of the NetInterface is changed to Power
Off.

Normally, shutdown by the PowerMaster is initiated by a
request and answer process of all network devices. This de-
pends on functionality integrated to higher layers of MOST. By
the fact that these layers are neglected to improve simulation
performance, initiation is done by the simulation environment.

Five scenarios have been defined and tested: shutdown
by PM, sudden signal off, excessive attenuation, emergency
shutdown and combination. The combination scenario is not
specified by the SSO description as well, but it could also
help to increase the knowledge about the algorithms behaviour.
For each scenario 30,000 test cases have been generated this
makes a total sum of up to 150,000 test cases. The maximum
system simulation time was set to 800 msec., so that the SSO
verification was less time consuming compared to the RBD
verification. For the SSO detection 8 timers are configured for
each device. To accelerate the simulation the devices start the
simulation directly in NetInterface state Normal Operation.

V. EXPERIMENTAL RESULTS

For verification of the RBD and SSO algorithms, approxi-
mately 150,000 test cases where generated and executed for
each algorithm. As execution platform two DELL PE2950
III Quad-Core Xeon E5320 boards with 1.86 GHz clock

frequency have been used. Altogether eight cores were avail-
able for parallelization of the virtual prototyping approach.
This was sufficient to test the whole cases for the RBD
verification within 5 days. The SSO algorithm was verified
faster, because the algorithm is less complex and the worst
case execution time of the algorithm is shorter referred to the
RBD algorithm. The verification results of the SSO algorithm
were performed in 3 days. In comparison to the simulation
time the most time was spent for error analysis, explanation
and description during the verification process. Therefore the
developed analysis functions of the model have become very
useful. The analyzed errors which have been found relating to
the verification of the specification are listed and described in
the following. Table III and IV give a short overview of the
used scenarios referred to the analyzed and listed errors.

1) (RBD) Wrong error location: Referred to the specifica-
tion the RBD algorithm should detect the position of a
ring break if one exists. In some cases the algorithm was
not able to locate the correct position.

2) (RBD) Wrong relative ring position: During RBD the
algorithm is also used for determining the relative ring
position referred to the TM. In NetInterface state Normal
Operation the position can be used as an address. In case
of an error the relative position is used for error location.

3) (RBD) Multiple TM after diagnosis: In NetInterface
state Normal Operation a functional ring can only have
one TM. That is also expected for NetInterface state
Diagnosis Result.

4) (RBD) Bad calibration of timer DiagSignal: The overrun
of the timer DiagSignal indicates that no signal at the
devices input is available (ring break). This leads the
algorithm to states for ring break analysis. The problem
here is that other timers did not correlate to DiagSignal.
The result is an unexpected behaviour.

5) (SSO) Wrong error location: The SSO algorithm also
has the ability to locate different errors. At a certain
number of devices, dependent on the timer configuration,
the algorithm was not able to locate the error position
right.

6) (SSO) Wrong error reasons: Under certain circumstances
the SSO algorithm stores two error reasons at different
locations. This effect is caused by the locking behaviour
of the MOST devices.

7) (SSO) Unpermitted self restart: The unpermitted self
restart was a really unexpected error. It means that
the simulation presented the possibility that the MOST
network was able to restart the ring during shutdown,

TABLE III
SIMULATION RESULTS (RBD)

Scenario Test Cases Error Cases Error
Error Free 26240 - -

St. Ring Break 17480 134 1)
48 4)

Dyn. Ring Break 8040 1543 1)
23 4)

St. Exc. Attenuation 17480 - -
Dyn. Exc. Attenuation 8040 - -

Multi Master 26200 685 2)
913 3)

All Slave 24240 314 2)
479 3)

Combination 26480 - -

TABLE IV
SIMULATION RESULTS (SSO)

Scenario Test Cases Error Cases Error
Shutdown by PM 31480 - -
Sudden Signal Off 29120 14 7)

St. Exc. Attenuation 22000 78 5)
240 6)

2 7)
Dyn. Exc. Attenuation 8440 212 5)

756 6)
Emergency Shutdown 29120 34 7)

Combination 32400 8 7)

which leads the devices to NetInterface state Init.
In addition to the located errors the simulation has helped

finding and understanding unknown effects and worst cases.
One important effect to know is that the nodes react on
each other in the communication direction of the ring. Under
consideration that there is a worst case reaction time of each
device depending on the NetInterface algorithm trigger, this
reaction time can sum up to a significant time effecting the
whole timer calculation.

VI. CONCLUSION AND FUTURE WORK

The growing complexity of modern automotive networks
leads to an increasing number of potential error cases which
can firstly be detected at a real hardware prototype or even
worse in the final product. This results in time consuming
redesigns or changes in the initial specification. In this work,
we have presented a verification approach for the upcoming
MOST specification revision 3.0 by virtual prototyping. By
automatization of the test bench various characteristics of the
network can be analyzed and verified with minimal modelling
and verification effort. We have verified the functional and
timing behaviour of the MOST network under consideration
of test scenarios with and without failure injection. As a result,
several specification errors of the newly specified algorithms
Ring Break Diagnosis and Sudden Signal Off were discovered
and reported to the MOST cooperation. The MOST coopera-
tion has already taken the reported errors into account in the
final revision 3.0 of the specification. The proposed verification
approach can also be applied to other network technologies
and is easy to insert in the automotive design flow. This can

help to reduce verification costs and error detection in early
development phases. Future work will focus on improving our
coverage analysis for better assessment of the verification.
One approach is to develop a coverage driven test pattern
generation to find a sufficient number of different test cases.

ACKNOWLEDGMENT

The authors would like to thank the MOST Cooperation for
supporting the described work.

REFERENCES

[1] M. Kieviet. IEC 61508 Umfassende Sicherheit für Maschinen und
Anlagen. http://www.innotecsafety.de.

[2] Bell Labs. http://spinroot.com/spin/whatispin.html.
[3] K. G. Larsen. Formal Methods for Real Time Systems: Automatic Verifi-

cation & Validation. ARTES ’98.
[4] D. Grosse and R. Drechsler. Formal verification of LTL formulas for Sys-

temC designs. ISCAS ’03: In Proceedings of the International Symposium
on Circuit and Systems.

[5] J. Jimenez, E. Fernandez, J. L. Martin, U. Bidarte and A. Zuloaga. Sim-
ulation environment to verify industrial communication circuits. IECON
’02: IEEE 28th Annual Conference of the Industrial Electronics Society.

[6] A. Habibi and S. Tahar. Design and Verification of SystemC Transaction-
Level Models. TVLSI ’05: Transaction on Very Large Scale Integration
Systems.

[7] S. Pasricha, N. Dutt and M. Romdhane. Using TLM for Exploring
Bus-based SoC Communication Architectures. ASAP ’05: 16th IEEE
International Conference on Application-Specific System, Architecture
Processors.

[8] S. Chai, C. Wu, Y. Y. Li and Z. Yang. A NoC Simulation and Verification
Platform Based on SystemC. CSSE ’08: International Conference on
Computer Science and Software Engineering.

[9] W. S. Kim, H. A. Kim, J. H. Ahn and B. Moon. System-Level Develop-
ment and Verification of the FlexRay Communication Controller Model
Based on SystemC FGCN ’08: Second International Conference on Future
Generation Communication and Networking.

[10] D. Lettnin, P. K. Nalla, J. Ruf, T. Kropf and W. Rosenstiel. Verification
of Temporal Properties in Automotive Embedded Software. DATE ’08:
Design, Automation and Test in Europe.

[11] A. Habibi, A. Gawanmeh and Sofiene Tahar. Assertion Based Verifica-
tion of PSL for SystemC Designs. SOC ’04: International Symposium on
System-on-Chip.

[12] D. Lettnin, M. Winterholer, A. Braun, J. Gerlach, J. Ruf, T. Kropf
and W. Rosenstiel. Coverage Driven Verification applied to Embedded
Software. VLSI ’07: IEEE Computer Society Annual Symposium on
ISVLSI.

[13] MOST Cooperation. http://www.mostcooperation.com.
[14] FlexRay Consortium. http://www.flexray.com.
[15] Open SystemC Initiative. http://www.systemc.org.
[16] T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag

’98.
[17] P. Liggesmeyer. Software Qualität: Testen, Analysieren und Verifizieren

von Software. Spektrum Akademischer Verlag ’09.
[18] W. K. Lam. Hardware Design Verification:Simulation and Formal

Method-Based Approaches. Prentice Hall Computer ’08.
[19] S. Misera, H. Vierhaus and A. Sieber. Fault Injection Techniques and

their Accelerated Simulation in SystemC. DSD ’07: 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools.

[20] Accelera. Property Specification Language (PSL) Version 1.1 ’04.
[21] J. Ruf, D. W. Hoffmann, T. Kropf, and W. Rosenstiel. Simulation-

guided property checking based on multi-valued AR-automata. DATE ’01:
Design, Automation and Test in Europe.

[22] H. Moinudeen, A. Habibi and S. Tahar. Model Based Verification
of SystemC Designs. IEEE ’06: North-East Workshop on Circuits and
Systems.

[23] J. W. Duran and S. C. Ntafos. An Evaluation On Random Testing. IEEE
’84: Transactions on Software Engineering.

[24] E. J. Weyuker and B. Jeng. Analyzing Partition Testing Strategies. IEEE
’91: Transactions on Software Engineering.

[25] S. Srinivasan and N. Vijaykrishnan. Transaction level error susceptibility
model for bus based SoC architectures. ISQED ’06: 7th Internation
Symposium on Quality Electronic Design.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

