
Straightforward IP Integration
with IP-XACT RTL-TLM Switching
Marcin Zyś – EVATRONIX - Marcin.Zys@evatronix.pl

Emmanuel Vaumorin – MAGILLEM – vaumorin@magillem.com
Ireneusz Sobański – EVATRONIX - Ireneusz.Sobanski@evatronix.pl

Abstract

This paper gives the results of experimentations done for the
packaging of a USB OTG controller respecting the IP-XACT
schema provided by The SPIRIT Consortium. It presents the
advantages and the technical facts for an IP provider to deliver
standardized files package, bringing great advantages for
documentation, integration and verification purposes. In particular it
is shown how to handle interfaces, registers and multi abstraction
level descriptions of the component. This paper also presents the
exploitation of the IP_XACT files for the IP testbench and the
simulation. The presented work has been realized in the frame of the
SPRINT project, funded by the EC.

1. Introduction

1.1. IP-XACT from the SPIRIT consortium

IP-XACT is an XML based open standard defined by the SPIRIT
consortium. This non-profit organization provides a unified set of
high quality IP-XACT™ specifications for documenting IP using
meta-data. This meta-data will be used for configuring, integrating,
and verifying IP in advanced SoC design tool sets and interfacing
tools using APIs: the LGI1 and TGI2 APIs can be used to access
design meta-data descriptions of complete system designs. The
specification for the schema is tailored to the requirements of the
industry, and focused on enabling technologies for the efficient
design of electronic systems from concept to production.

1.2. MAGILLEM environment

The Eclipse™ based MAGILLEM Core is at the heart of a fully
featured flow optimization suite comprised of an IP-XACT
packager, a platform assembly tool, a complete development
environment, a flow control tool and a register view kit. The
Magillem suite is a one-of-a-kind innovative software tree, enabling
flawless and homogeneous design flow integration for various
targets such as ASICs, FPGAs, electronic boards, AMS domain and
complex systems. Adaptation kits have been developed for each
target (Figure 1).

Figure 1 : The MAGILLEM structure dedicated to flow control

1 LGI: Loose Generator Interface allows SPIRIT database access by file
exchanges

2 TGI : Tight Generator Interface allows SPIRIT database access through a
software API

In order to optimize the exploitation of IP-XACT, MAGILLEM 4.1
offers an innovative tooling for IPs import and packaging, design
assembly and flow control. It also provides an implementation of
the IP-XACT APIs (TGI and LGI), which is required to support
point tools encapsulation within a controlled design flow, and
complex configurable IPs (most re-usable IPs are configurable).
MAGILLEM 4.1 is an environment that enables interoperability and
federates existing point tools, languages, methods and models into a
seamless, automated flow.

1.3. Evatronix USB On-The-Go IP Core

The Evatronix USB OTG Controller is a fully USB 2.0 specification
compliant IP Core that supports On-The-Go supplement. 480 Mbps
data transfer is reached in both Device and Host modes, while
overall system performance is improved by hardware aid for Session
Request and Host Negotiation Protocols. For seamless
implementation in majority of SoCs various communication
interfaces are available, namely UTMI+, ULPI, PVCI and AMBA™
AHB. With a high level of the controller’s configurability users can
apply only those features that are essential for the application, thus
saving much of the silicon space. Both number, size and buffering
of endpoints together with dynamic on-chip memory allocation may
help reaching the size target. Store-and-forward or latency buffers
architectures and a protocol-aware DMA controller significantly
enhance USB data transfer management. The built-in Host
Transaction Scheduler enables the CPU to concentrate on writing
data and arming buffers. An efficient power management
mechanism uses VBUS only during session.

1.4. SPRINT project

The SPRINT project is funded by the European Commission's 6th
Framework Program under the IST (Information Science
Technology) priority. The project started at the 1st of February 2006
and ends in January 2009. The consortium of the SPRINT project
consists of industrial and research partners. Three major European
companies are part of the consortium: NXP semiconductor
(Netherlands), ST microelectronics (France, Belgium), Infineon
(Germany). The global objectives of the SPRINT project is
enabling Europe to be the leader in design productivity and quality
in Systems-on-Chip (SoC) design, by mastering the SoC design
complexity with effective standards and design technology for reuse
and integration of IP. The approach is to develop a standards-based
open design platform that supports the development of interoperable
and reusable IPs and their efficient integration into high quality
SoCs. The goal is to stimulate a SoC design ecosystem to the benefit
of SoC integrators and (emerging) IP providers and EDA companies
and get early availability of advanced SoCs for system integrators to
excel in their markets.

Figure 2: The SoC design flow proposed in SPRINT

The SPRINT project provides a broad and integrated research
initiative addressing the complete SoC design flow from initial
specification to a verified synthesizable RT-level description of the

SoC. SPRINT advances over a traditional SoC design flow by
providing enhanced IP reuse, consistent design across abstraction
levels, and enhanced automation of IP integration, verification and
debug. As a consequence it supports early verification and debug as
well as early software development. This breaks the sequentiality of
traditional design flows.

For more information about SPRINT, visit http://www.ecsi-
association.org

2. IP-XACT for automating ESL activities

2.1. Overview

IP-XACT from the SPIRIT consortium is nowadays recognized by
the electronics community as an apposite choice for managing
properly and efficiently the new ESL design flows [1]. Nevertheless,
the migration from a legacy design flow to another, taking full
benefits of IP-XACT, requires some heavy and complex operations.
Figure 3 presents the four steps which have to be completed. They
are detailed in the following subsections.

Figure 3: A 4-step methodology to build ESL flows

2.2. IP description

The goal of this first step is to package all the components of a
legacy IP library into XML files in accordance with the IP-XACT
schema, which describes the syntax and semantic rules for the
description of three kinds of elements: the bus/abstraction
definitions, the components and the designs (in which components
are instantiated). Thus the purpose of the IP packaging is to fill in
for each component the XML fields that describe its attributes:
physical ports, interfaces, parameters, generics, register map,
physical attributes, etc. An important part of the schema is dedicated
to referencing the files related to the different views of a component:
a view may be for instance a simulable model in a specific language
(VHDL, Verilog, SystemC, etc.) or documentation files (e.g. PDF,
HTML, Framemaker). This work facilitates future reuse of existing
components, because all of their features are easily accessible for its
integration and configuration in a bigger system, as it will be
explained in the next step. The work that is the topic of this paper
takes place in this category: managing the description of the
attributes and abstraction levels of a complex and configurable IP
using the IP-XACT schema.

2.3. System description

After this step, is it possible to import, configure and integrate
components into the system, assemble the design, resolve
connections issues, and automate design tasks, thus lightening the
verification steps. Some examples of the use of IP XACT at this
level are: partial or full automation of design assembly and
configuration, detection of communication protocols mismatch,

toplevel netlisting, or automatic customization of compilation and
simulation of designs. The IP-XACT files describing the hardware
platform structure may also be used to perform integration
verification based on software, or facilitate the co-design of
middleware or software parts of the system.

2.4. Design Automation and Flow control

The third step of the methodology, depicted in Figure 4, aims at
linking the design activities around the centric IP-XACT database
by means of a dedicated environment which provides access to the
IP-XACT information. The tool suite chosen for this study
(Magillem environment) provides an IP Packager, a Platform
Assembly tool, as well as a Generator Studio to develop and debug
additional TGI-based generators. These may be encapsulated within
the IP-XACT representation of an IP and may for example simply
launch the execution of a script, getting arguments values from the
design description in IP-XACT, or be on the contrary a more
complex engine, the role of which would be to modify the design
itself (e.g. add connections, insert adapters, or configure
components).

Figure 4: principle schema for an IP-XACT flow

Checkers can also be developed and used to verify design rules at
some point, before going further in the design flow. Besides,
IP-XACT provides mechanisms to describe the sequences of
chained generators and checkers.

2.5. Advanced design flow architecture

This last step in the methodology has a high potential because it
exploits all features described previously and allows the actual
implementation of advanced ESL activities, such as architecture
exploration or software application automated mapping on a
hardware platform. These examples show the complexity that has to
be managed by the three first steps: all components must be
packaged and their configurability must be taken into account; the
design assembly automation should be maximized, while any
architecture choice should be handled. At last, the generator chains,
as defined previously, can be configured and controlled by
supervisor engines: for instance a validation sequence will configure
and execute several times the generators dedicated to testbench
configuration, compilation and simulation.

3. Packaging of the USB core in IP-XACT

3.1. Benefits of the IP-XACT packaging

IP-XACT enables a standard way of IP component packaging and a
description of designs at various levels of abstraction. For an IP
developer, IP-XACT meta-data is used as a reference and a common
base for different design and verification activities. It provides a
standard form of component specification and most important
enables automation of IP processing. For an IP integrator, on the
other hand, IP-XACT standard enables seamless integration of the
unknown IPs. The XML file describing the IP contains all the
information required for automatic assembly of a SoC. Therefore
manual work can be reduced to minimum and the error prone IP

integration task can be significantly simplified. The list of IP-XACT
applications is growing, starting from IP verification through
refinement and SoC assembly to synthesis.

3.2. Packaging details

The USB-OTG IP is an excellent example of a complex,
configurable component packaging according to IP-XACT 1.4
standard. The USB-OTG packaging utilizes various interesting
features of IP-XACT 1.4 and shows benefits of IP-XACT usage.
Let’s depict assets of the most valuable features of IP-XACT 1.4.

Thanks to spirit:busDefinitions and spirit:abstractionDefinition, it is
possible to create standard definition of bus interfaces at different
abstraction levels. Such definition eliminates ambiguity of different
non-standard descriptions, therefore it facilitates interface
connection. For the USB-OTG packaging, pre-defined description
of AHB and UTMI+1 bus definitions have been used. For the
remaining ports, bus definitions have been created by grouping
USB-OTG ports into functional blocks.

Spirit:busInterface specifies the way of mapping the component’s
ports to the bus. Thanks to that, the IP user does not have to
investigate into the functionality of particular component’s ports.
The bus interface clearly specifies which port corresponds to which
bus signal. Taking advantage of the standard and Evatronix-
specified bus definitions, the USB-OTG IP-XACT description
specifies connection of the IP to these buses. In case of AHB and
UTMI+, it can assure automatic connection of the IP in the
integrator’s system. For the remaining bus interfaces, Evatronix
facilitates the connection by providing custom bus definitions. To
fully utilize the advantages of bus definitions and interfaces, it is
essential for IP-XACT bus definition library to be extended by
definitions of all commonly used interfaces. Cooperation between
different bus-defining bodies and SPIRIT consortium is essential to
prevent users from writing non standard bus definitions.

Spirit:memoryMap provides a consistent way of describing the
register set with all the details necessary for software development
and basic verification of the component. For each USB-OTG
register, its name, address, width, access type, reset value, fields
and a short description of usage is provided.

Concept of the spirit:componentGenerators allows to bind the IP-
XACT description with external point tools to enable automatic IP
configuration, simulation or other IP processing. The RTL view of
the USB-OTG is attached with the TGI generator used for IP
configuration while making instance of the component.

Spirit:views allows to specify different representation of a
component. Exemplary model views are specification
documentation, HDL source files and hierarchical design. The
concept of a model view is used for automatic RTL/TLM view
switching of the USB-OTG.

Spirit:modelParameters and spirit:parameters allow to describe
configurability of the component. They can be defined by using
such attributes like data format, acceptable values (e.g. a range of
values or a list of choices), type of resolution (e.g. a fixed value, a
value specified by the user or dependent on another parameter) and
a string used to prompt the user. The USB-OTG IP takes advantage
of the spirit:parameters and can be fully configured by IP-XACT
generators.

Spirit:fileSet is used to reference all files related to the IP: model
files in any language, documentation files, or any other file
dedicated to a tool and which may be used for the IP. This
information is very important because it gives the possibility to
actually control the flow by exploiting the files of the IP library.

1 USB Transceiver Macrocell Interface

Spirit:vendorExtension is a feature available in IP-XACT allowing
to extend the initial schema for any specific additional attribute,
being still compatible with the standard. In the case of the USB-
OTG, an Evatronix extension has been used inside the spirit:register
to specify that register presence depends on the selected
configuration (e.g. the number of USB endpoints). This extension is
used only by the USB-OTG generator while generating IP-XACT
description of the selected USB-OTG configuration.

3.3. RTL/TLM switching

There is no doubt that TLM emerges as a real standard in ESL
modeling. During SoC assembly a common approach is to use
transactional models, which are further replaced by corresponding
RTL models. To facilitate that process there is a demand for an
effortless switching mechanism. This can be achieved by taking
advantage of the IP-XACT views, design configurations and
abstractors.

In the discussed use case, two views of the USB-OTG transactional
model have been defined. One corresponds to the TLM source files
(systemCView) and the other is a reference to a design (rtlView),
which actually is a hierarchical design containing RTL IP wrapped
with interface abstractors.

Both views are identical at the external interfaces. Using
spirit:designConfiguration for the design where the USB-OTG is
instantiated, it’s easy to select the desired view of the USB-OTG.
Depending on the selected configuration, either RTL or TLM
component is compiled and simulated. This is done by using the
same top level environment for both RTL and TLM.

Insertion of abstractors is facilitated by a concept of
spirit:abstractionDefinition that defines bus at various abstraction
levels. In the design configuration it is possible to insert abstractors
at interfaces to adopt bus interface to various abstraction levels.

3.4. Verification Software

An essential task during SoC assembly is the verification of the IP
integration. It can be particularly difficult for the third-party or
‘unknown’ IPs. To verify IP integration it is necessary to at least
check the accessibility of the IP registers in the SoC system. It can
be done easily by the C integration tests generation from the IP-
XACT description of the IP register set. Important requirements for
such integration tests are portability (independency of the used
platform) and the possibility to use the tests with the transactional
model.

To be able to check connection of the interfaces other than system
interface, which are not directly accessible by the software, it is
often needed additional verification component that can be
connected to the integrated IP. For the USB-OTG IP there is
UTMI+ VIP2 that can be connected to the IP UTMI+ interface. The
VIP is constructed that way that it is controlled by a set of registers
accessible through the system bus. Thanks to the UTMI+ VIP it is
possible to perform much more complex tests than just register
access check.

To simplify handling of the VIP, a set of predefined functions can
be used. These functions operating like simple software stack allows
for convenient transmission or reception of USB packets.

4. Experimentations

4.1. Packaging of the USB-OTG IP

The XML description itself can be done in any text editor. However,
to both avoid errors and minimize the effort of IP packaging, XML
editor aware of IP-XACT schema is highly required, the most

2 Verification IP

convenient way being to use the IP-XACT tool dedicated for
automation of IP packaging and SoC assembly. In the case of
Evatronix USB-OTG IP, Magillem tool supporting the recent IP-
XACT 1.4 standard has been used for IP packaging. The Magillem
environment was also used for the test bench assembly, the view
switching experiments and the verification flow control.

4.2. Instantiation of the USB-OTG component

The XML file provided with USB-OTG RTL IP (i.e.
usbhs_otg_rtl_template.xml) is a template of IP-XACT description
of the USB-OTG component. Template means here that the
description is created for the default value of the component
parameters and the register map is described as if the maximum
number of endpoint were used. To generate IP-XACT description
corresponding to the selected configuration of the IP, an IP-XACT
generator is automatically invoked while making instance of the IP
selected. The generator is a TGI generator implemented as a java
script that retrieves value of the component parameters selected in
the IP-XACT tool, and calls the actual configurator implemented as
a Perl script. Its goal is to configure the USB-OTG component
according to the selected parameters:

- Generation of new ‘include file’ (i.e.
usbhs_otg_mpd_defines.v) with proper value of parameters

- Generation of usbhs_otg_rtl.xml IP-XACT description from
the usbhs_otg_rtl_template.xml template description with
updated ‘memoryMap’ and parameter values (e.g. size of AHB
address and data buses)

- Referencing the created USB-OTG component, with fixed
configuration, to the IP library and creating its instance in the
current design

4.3. Simulation environment

TLM hierarchical design was built as a test environment used for
RTL/TLM switching and integration verification. The design is very
generic and its components are commonly met in SoCs, i.e. CPU
model (CPU_BFM), external DMA buffer (MEMORY) and system
bus (AHB_BUS). In such environment the USB-OTG component is
integrated connecting its AHB master and slave interfaces to the
system bus, and interrupt interface to CPU model. Additionally,
dedicated verification IP - UTMI_BFM is connected to the USB-
OTG UTMI+ interface and to the system bus.

Figure 5: Design using SystemC or RTL view of USB-OTG

For the TLM design there are two configurations prepared. One
using USB-OTG TLM and the other using USB-OTG RTL model
(see 3.3). For each configuration a generator chain is attached and is
used to compile the source files and to run simulation. For the
simulation, integration tests are used.

The verification software is implemented as implementation of one
of the CPU_BFM processes, which is done in a separate file -
cpu_bfm_main_th.cpp.

Figure 6: Implementation of verification software in the USB-
OTG test environment

IP-XACT description (in particular the component memory map) is
used to generate following files:

- usbhs_otg_mpd_sfr.h – definition of the component registers
(names) and information related with them (address, reset
value, access type)

- usbhs_otg_mpd_init_values.h – test dedicated to check the
value of the component registers after reset

- usbhs_otg_mpd_write_values.h – test dedicated to check the
value of the component registers after write access

Additionally, to enable more complex tests, high-level functions are
defined:

- usbhs_otg_mpd_config.h – functions facilitating configuration
of the USB-OTG

- utmi_bfm_access.h/utmi_bfm_access.cpp – functions
facilitating usage of the UTMI_BFM

The verification software defined in the cpu_bfm_main_th.cpp takes
advantage of all definitions, functions and generated tests. And it is
a file that can be further extended by the IP user.

To allow usage of the verification software in various applications
(TLM environment, ISS1, in real hardware as software compiled on
a selected processor), functions operating at the lowest level are
defined in a separate file - basics.h. Inside that file there are defined
macros for basic operations used in the verification software. The
selected definition of the macros depends on application.

For instance:

/* macro definition for write IO in real system*/

#define WRITE32(addr,data) *((volatile U32*)(addr)) = (data)

/* macro definition for write IO for TLM_VERIF */

1 Instruction Set Simulator

extern cpu_bfm * p_cpu_bfm;

#define WRITE32(addr,data) p_cpu_bfm->WriteLong(addr,data)

An implementation of the interrupt service routines is done in a
similar way and is placed a separate SC_THREAD process. Both
processes, the main one and the interrupt routine, access the same
system bus port of the CPU_BFM. However, access to the port is
controlled using sc_mutex.

4.4. Assembly of the RTL/TLM design

A RTL/TLM design has been created in order to wrap USB-OTG
RTL IP into transactional interfaces. Simple insertion of abstractors
in the design configuration of the test environment was not enough
because the current version of IP-XACT design configuration does
not allow an interface that exists only at one abstraction level of the
component. To work-around this, a separate design is created with
two components – USB-OTG RTL IP and the ‘dummy’ component.
Interfaces existing at transaction level are connected to the design
interfaces, remaining are connected to the ‘dummy’ block. And in
the design configurations abstractors are put between RTL and TLM
interfaces.

Figure 7: Wrapped RTL IP used as a RTL view of USB-OTG

Thus the created design, which at the external interfaces is
equivalent to the USB-OTG TLM IP, is used as an RTL view of the
USB-OTG component in the test environment.

4.5. IP package deliverables

A proposed IP package deliverable of the USB-OTG that benefits
from IP-XACT usage would consist of:

- RTL IP packaged with IP-XACT 1.4
- TLM IP packaged with IP-XACT 1.4
- Exemplary test environment including UTMI+ Verification IP,

all packaged with IP-XACT 1.4
- interface abstractors packaged with IP-XACT 1.4
- RTL IP wrapped with interface abstractors and packaged as

RTL view of the USB-OTG IP
- Verification software:

- definitions and tests generated from IP-XACT description
- convenience functions for USB-OTG IP and UTMI VIP
- exemplary verification tests

Such deliverables can reduce to minimum the IP integration effort,
enable seamless TLM/RTL view switching and significantly reduce
time and cost of verification process.

Figure 8: IP-XACT based design in Magillem

5. Conclusion

In this paper we have presented the overall principles allowed by the
IP-XACT standard, specified by the SPIRIT consortium, which
groups almost hundred major actors of the electronic design
industry. By presenting the results of experimentations done around
the packaging of a USB OTG core at multi level of abstraction, it
has been shown that IP-XACT is a good candidate for IP package
deliverable and exploitation. The effort spent on this work
represents a few weeks in an experimental frame, which can be
seriously reduced to a few days for industrial purpose. The ROI of
such effort is important if one considers the time saved for IP
integration, system assembly/configuration and
validation/verification.

Glossary

EDA: Electronic Design Automation is the category of tools for
designing and producing electronic systems ranging from printed
circuit boards (PCBs) to integrated circuits. This is sometimes
referred to as ECAD (electronic computer-aided design) or just
CAD. (Printed circuit boards and wire wrap both contain specialized
discussions of the EDA used for those.) The term EDA is also used
as an umbrella term for computer-aided engineering, computer-
aided design and computer-aided manufacturing of electronics in the
discipline of electrical engineering.

ESL: Electronic System Level is an emerging electronic design
methodology that focuses on the higher abstraction level concerns
first and foremost. It is defined in the book "ESL Design and
Verification: A Prescription for Electronic System Level
Methodology" by Brian Bailey, Grant Martin and Andrew Piziali
and published by Morgan Kaufmann/Elsevier 2007 as: "the
utilization of appropriate abstractions in order to increase
comprehension about a system, and to enhance the probability of a
successful implementation of functionality in a cost-effective
manner.

IP: Intellectual Properties are hardware or software modules used to
build a system on chip.

IP-XACT: the new name of the SPIRIT schema, which will be
standardized as IEEE 1685. Its purpose is to provide a well-defined
XML Schema for meta-data that documents the characteristics of
Intellectual Property (IP) required for the automation of the
configuration and integration of IP blocks; and to define an
Application Programming Interface (API) to make this meta-data
directly accessible to automation tools.

SoC: A System-on-Chip is an electronic device integrated on a
single die.

SPIRIT: initially this acronym (Structure for Packaging, Integrating
and Re-using IP within Tool-flows) was used to identify the meta-
model schema in XML used to describe RTL and TLM IPs and
systems’ attributes. This schema is now about to be IEEE
standardized and is called IP-XACT. The SPIRIT consortium is the
owner of this schema.

TLM: Transactional level Modeling is a high-level approach to
modeling digital systems where details of communication among
modules are separated from the details of the implementation of
functional units or of the communication architecture.
Communication mechanisms such as busses or FIFOs are modeled
as channels, and are presented to modules using SystemC interface
classes. Transaction requests take place by calling interface
functions of these channel models, which encapsulate low-level
details of the information exchange. At the transaction level, the
emphasis is more on the functionality of the data transfers and less
on their actual implementation that is, on the actual protocol used
for data transfer.

XML: this name stands for eXtensible Markup Language. XML is a
markup language much like HTML; it is a file format which was
designed to describe data, where tags are not predefined and where
you must define your own, through a schema that will be used to set
the syntaxic and semantic rules for the files.

Partners presentation

Evatronix

Evatronix SA, headquartered in Bielsko-Biala, Poland, founded in
1991 develops electronic virtual components (IP cores) along with
complementary software and development environments that
support them. The company also provides electronic design
services. Its main design office location, Gliwice (Poland),
guarantees easy access to the pool of talented graduates from the
Silesian University of Technology. Evatronix IP cores are available
worldwide through the sales channels of its strategic distribution
partner CAST, Inc. (New Jersey, USA). In the EU countries
(excluding UK) and in Switzerland Evatronix operates a direct sales
channel. Design services are offered directly by Evatronix
worldwide.

Evatronix, as a SPIRIT member, plays its active role by introducing
the latest IP-XACT standards in the IP industry. The company aims
in implementing the IP-XACT packaging in the IP design and
verification processes.

More information on http://www.evatronix.pl

Magillem Design Services has been established by a team of
seasoned engineers and a group of business angels in the fall of
2006. The company has inherited “Magillem”, a robust and
innovative technology worth 120 man years. The headquarters are in
Paris, France with a subsidiary in the USA and sales office in Asia.
Our team has been a major contributor to the IP-XACT specification
since 2003 and we are the only vendor providing a tool
implementing all the versions including the latest one of the
specification. We audit the existing industrial flows and propose a
work plan to adapt them to IPXACT. We validate and verify the full
compatibility of tools interfaces into a flow testbench. We test the IP
deliverables against a benchmark for compliance using our SPIRIT
PACK and check IP integration properties onto a test system. Using
our own versatile Magillem toolbox, we are well equipped to offer a
wide range of services (Analysing customer’s database specifics and
customizing SPIRIT Packager accordingly, Implementing new
features to meet customer‘s requirements, Designing complex IP
specific configuration nutshells, Designing and implementing

system configuration dashboard and custom checkers) to
streamlining flow process, developing and integrating specific point
tools, developing and integrating tools for the global architecture of
a start-to-end ESL flow.

More information on http://www.magillem.com

References

Bailey, B., Martin, G. and Piziali, A. 2007. ESL Design Verification.
Morgan Kaufmann Publishers, 2007

Open SystemC Initiative (OSCI) homepage. http://www.systemc.org

SPIRIT Consortium homepage. http://www.spiritconsortium.org

SPRINT Deliverable D5.2c

