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Nested Loop Pipelining for High-Level Synthesis
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Abstract—High-Level Synthesis (HLS) allows hardware to be
directly produced from behavioral description in C/C++, thus
accelerating the design process. Loop pipelining is a key transfor-
mation of HLS, as it improves the throughput of the design at the
price of a small hardware overhead. However, for small loops, its
use often results in a poor hardware utilization due to the pipeline
latency overhead. Overlapping the iterations of the whole loop
nest instead of the innermost loop only is a way to overcome
this difficulty, but current available techniques are restricted to
perfectly nested loops with constant bounds, involving uniform
dependencies only. Using the polyhedral model, we extend the
applicability of the nested loop pipelining transformation by
proposing a new legality check and a new loop correction
technique, called polyhedral bubble insertion. This method was
implemented in a source-to-source compiler targeting High-
Level Synthesis, and results on benchmark kernels shows that
polyhedral bubble insertion is effective in practice on a much
larger class of loop nests.

Index Terms—High-Level Synthesis, Source-To-Source Trans-
formations, Nested Loop Pipelining, Polyhedral Model, Loop
Coalescing

I. INTRODUCTION

REDUCING hardware design time is more than ever a
priority for chip vendors. To this end, designers are shift-

ing away from register transfer level descriptions in favor of
design flows that operate at higher levels of abstractions. High-
Level Synthesis (HLS) addresses this need by enabling the
hardware components to be directly designed from behavioral
specifications in C or C++. There now exist several mature and
robust commercial tools [1], [2] that are used for production
by major chip makers.

However, designs generated by HLS are far from delivering
performance comparable to those produced by experts. This is
mainly due to the difficulty for HLS to extract from the source
code the information needed to enable some loop transforma-
tions. This lack of performance can be overcome by letting
the designer either manually drive the HLS tool, or manually
expose appropriate structures (data and/or algorithms) directly
in the source code. It is our belief that such processes can be
automated within a source-to-source optimizing compiler.

The goal of the work reported here is to improve the
applicability and the efficiency of nested loop pipelining –
also known as nested software pipelining, – in C-to-hardware
translation tools. The contributions of this research are as
follows:
• A fast approximation along with an accurate legality

check is described. Given a pipeline latency, it in-
dicates whether pipelining a loop nest enforces the data-
dependencies of a program.

• When the legality check fails, a loop correction algorithm
is proposed. It consists in adding, at compile time, so-
called wait-states instructions, also known as pipeline
bubbles, to make sure that the aforementioned pipelining
becomes legal.

• In order to make the loop nest amenable to pipelining,
the loop nest is flattened at the source level using an
automatic loop coalescing transformation.

These techniques leverage on the well-known polyhedral
model [3], [4], [5]. Using the high-level representation of loops
of this model, these methods are applicable to a much wider
class of programs – namely imperfectly nested loops with
affine bounds and index functions – than previously published
works [6], [7], [8], [9].

Thanks to tools available in the polyhedral model commu-
nity, these new methods were implemented within a source-
to-source compiler. Their applicability was validated on a
set of representative kernels, and the trade-offs between the
performance improvements provided by the full nested loop
pipelining transformation on the one hand, and the area
overhead induced by guards that are added to the control code
on the other hand are discussed.

This article is organized as follows. Section II provides an
in-depth description of the problem addressed by this research,
and mentions existing approaches. Section III summarizes
the principles of program analysis and transformations in the
polyhedral framework that are needed to understand this work.
The new pipeline legality analysis and the loop correction
technique are presented in sections IV and V. Section VI
describes their implementation and provides a quantitative
and qualitative analysis of their performance. In section VII,
relevant related work is presented, and the novelty of this
contribution is highlighted. Conclusion and future work are
described in section VIII.

II. MOTIVATIONS

The goal of this section is to present and motivate the prob-
lem addressed in this research, that is nested loop pipelining.
To help the reader understand the contributions of this work,
a running toy loop-nest example shown in Figure 1 is used
throughout the remaining of this article. This example is a
simplified excerpt from the QR decomposition algorithm. It
consists in a double nested loop operating on a triangular
iteration domain – the iteration domain of a loop is the set of
values taken by its loop indices.

A. Loop pipelining in HLS
Loop pipelining consists in executing the body of a loop

using several pipeline stages. The effectiveness of this trans-
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/* original source code */

for(int i=0;i<N;i++) {

  for(int j=0;j<N-i;j++){

S0: Y[j] = func(Y[j]);

  }

}
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Fig. 2: Representation of the pipelined execution of the simplified QR decomposition loop of Fig. 1, for size parameter N = 5,
initiation interval Φ = 1 and pipeline latency ∆ = 4. Arrows represent dependencies between operations.

/* original source code */
for(int i=0;i<N;i++) {
  for(int j=0;j<N-i;j++){
S0: Y[j] = func(Y[j]);
  }
}

(a) Simplified QR loop

i

j

(b) Graphical representation of (a)

Fig. 1: A simplified QR decomposition loop (a) and the repre-
sentation of its iteration domain and of the data-dependencies
of the Y array (solid arrows) for N = 5 (b). The red dashed
arrow shows the execution order of the loop.

formation comes from the fact that several loop iterations
can be executed simultaneously by the different stages. To
produce an equivalent loop, one must however make sure that
the executions of successive iterations are independent. Loop
pipelining is characterized by two important parameters:
• The initiation interval (denoted by Φ in the following) is

the number of clock cycles separating the execution of
two successive loop iterations.

• The pipeline latency (denoted by ∆) gives the number of
clock cycles required to completely execute one iteration
of the loop. The latency usually corresponds to the
number of stages of the pipeline.

In the example of Figure 1, the reader can observe that the
inner loop (along the j index) exhibits no data-dependencies
between calculations done at different iterations (also called
loop carried dependencies). As a consequence, one can
pipeline the execution of this loop by overlapping the exe-
cution of several iterations of its inner loop.

As an illustration, Figure 2 depicts the pipelined execution
of the example of Figure 1 with an initiation interval Φ = 1
and a latency ∆ = 4. In practice the value of the initiation
interval Φ is constrained by two factors:
• the presence of loop carried dependencies, which prevents

loop iterations to be completely overlapped;
• resource constraints on the available hardware since for a

complete pipelined execution, each operation executed in
the loop has to be mapped on its own hardware functional
unit.

In this example, notice that between two iterations of the
external i loop, there is a flush phase which is needed to
prevent dependencies between these iterations to be violated.
We shall see in this paper how this flush phase can be avoided,
leading to more efficient pipelined implementations.

Because it helps maximize the computation throughput
and because it improves hardware utilization, loop pipelining
is a key transformation of high-level synthesis. Besides, as
designers generally seek to get the best performance from their
implementation, fully pipelining the loop, that is initiating a
new inner loop iteration every cycle by choosing Φ = 1, is a
very common practice.

However, the performance improvements obtained through
pipelining are often hindered by the fact that these tools rely
on very imprecise data-dependency analysis algorithms and
hence they may fail to detect when a pipelined execution
is possible, especially when the inner loop involves complex
memory access patterns. To help designers cope with these
limitations, most tools offer the ability to bypass part of the
dependency analysis using compiler directives (generally in
the form of #pragma). These directives force the tool to
ignore user-specified memory references in its dependency
analysis. Of course, this possibility comes at the risk of
generating an illegal pipeline and then an incorrect circuit, and
hence it puts on the designer the burden to decide whether the
transformation is legal or not.

B. The Pipeline Latency Overhead
For loops with large iteration counts – loop iteration count

is the number of iterations executed by a loop –, the impact of
the pipeline latency on performance can be neglected, and the
hardware is then almost 100% utilized. However, whenever the
iteration count of the loop becomes comparable to its latency
∆, one may observe very significant performance degradation,
as the pipeline flush phases dominate the execution time. This
is the case in the example of Figure 2. For values N = 5 and
∆ = 4, the hardware utilization rate is only 50%.

On this example, experienced designers would have cer-
tainly reached a hardware utilization close to 100% using
a handcrafted schedule in which the execution of successive
iterations of the i loop would have been overlapped.

C. Nested loop pipelining
Initially proposed by Doshi et al. [6], nested loop pipelining

is a means of improving the pipelined execution of a loop. It
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i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

S0: Y[j] = func(Y[j]);   

    if(j < N – i - 1) 

      j++; 

    else 

      j=0,i++;

}
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Fig. 3: Illustration of an illegal nested loop pipelining. The example shown is a coalesced version of the simplified QR
decomposition loop, for N = 5, Φ = 1 and ∆ = 4. Thick red arrows show violated dependencies.

is the method considered in this article, and as done in other
works [10], it was chosen here to apply it in two steps:

• first rewrite the loop nest to be pipelined so that it be-
comes a single level loop. This is called loop coalescing;

• then pipeline the coalesced loop.

The goal of loop coalescing (also known as loop flattening)
is to transform the control of the loop so that a single loop
scans the original loop nest domain. Different versions of this
transformation are discussed in section V-C. Loop coalescing
can be done independently of the pipeline transformation.

It is worth noticing that until now, nested loop pipelining
was only studied for perfectly nested loop with constant
bounds and uniform dependencies – a very restrictive subset
of loop nests –, or with relatively imprecise dependency infor-
mation, and this significantly restricts its applicability and its
efficiency. While these restrictions may seem over-precautious,
it happens that implementing nested loop pipelining (and more
particularly enforcing its correctness) is far from trivial and
requires a lot of attention.

As an example, Figure 3 shows a coalesced version of
the loop nest of Figure 1. Here, because the array accesses
in the coalesced version are difficult to analyze (they do
not depend on loop indices as in Figure 1), one would be
tempted to bypass some of the dependency analysis through a
compiler directive (#pragma ignore_mem_depcy Y) to
force loop pipelining, as explained in subsection II-A. Without
such a directive, the conservative dependence analysis would
forbid pipelining.

While at first glance this scheduling seems correct, it
appears that some Read after Write dependencies are violated
when i ≥ 3, as shown in Figure 3. Indeed, the dependency
between two successive i iterations prevents the end of the
inner loop pipeline to be overlapped with the beginning of
the next one. For example, the memory read operation on
Y[0] of (i = 3, j = 0) scheduled at t = 12 happens before
Y[0] is updated by the write operation of (i = 2, j = 0) also
scheduled at t = 12 on the last stage.

As an illustration of this difficulty, among the numerous
commercial and academic C-to-hardware tools that the authors
have evaluated, only one of them actually provides the ability
to perform automatic nested loop pipelining. (This tool is
called the reference HLS tool in the following, RHLS for
short.) However, its implementation suffers from severe flaws
and generates illegal schedules whenever the domain has non-

constant loop bounds. From what the authors understand, even
without directives to ignore data dependencies, RHLS fails
for the very same reasons as depicted in Figure 3, that is its
analysis assumes that the dependencies carried by the outer
loop over the Y array are never violated.

D. Contributions of this work

In the following sections, a formalization of the conditions
under which nested loop pipelining is legal w.r.t data depen-
dencies is provided, in the case of imperfectly nested loops
with affine dependencies (so called SCoPs [3]), where exact
(i.e. iteration-wise) data-dependency information is available.

In addition to this legality check, a technique to correct an a
priori illegal nested pipeline schedule by inserting wait states
in the coalesced loop is proposed, in order to derive the most
efficient legal pipelined schedule. These wait states correspond
to properly inserted bubbles in the pipeline, hence the name
polyhedral bubble insertion of this new method.

Finally, to enable experimentation and to remain as vendor
independent as possible, an implementation of the polyhedral
bubble insertion in the context of a source-to-source compiler
is described. This implementation can be incorporated as a
preprocessing tool to be used ahead of third party HLS tools.

III. BACKGROUND

In order to perform a precise dependence analysis and if
needed, to realize a cycle-accurate schedule correction, an
accurate representation of loops is necessary. In this respect,
the polyhedral model is a robust mathematical framework. It
also comes with a set of techniques to analyze and transform
loops and to regenerate source code.

Figure 4 illustrates a standard source-to-source flow within
the polyhedral model. This section details each one of these
steps.

A. Static Control Parts Detection and Extraction

The polyhedral model is a representation of a subset of
programs called Static Control Parts (SCoPs), or alternatively
Affine Control Loops (ACLs). Such programs are composed
only of loops and conditional control structures, and the
only allowed statements are array assignments of arbitrary
expressions with array reads. (Scalar variables are viewed
as zero-dimensional arrays.) The loop bounds, the conditions
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Fig. 4: Overview of a classical source-to-source flow within the
polyhedral model. After extracting static control parts (SCoPs)
from the source code, the array data-flow analysis (ADA)
produces the polyhedral representation of the SCoP. Then
scheduling transforms the domain and the execution order of
the loop. Finally, code generation produces a loop nest that
scans the new domain according to the new execution order.

and array subscripts have to be affine expressions of loop
indexes and parameters. Extracting SCoPs is the first step in
an automatic polyhedral flow, as depicted in Figure 4.

Each statement S in a SCoP, surrounded by n loops, has
an associated domain which represents the set of values the
indices of these loops can take. Let Zn denote the set of
integral coordinate vectors of dimension n. Loop indices are
represented by iteration vectors of Zn. The domain of a
statement S is called its iteration domain, and is denoted
by DS ⊆ Zn. In SCoPs, DS is defined by a set of affine
constraints, i.e. the set of loop bounds and conditionals on its
indexes, and it is therefore a parameterized polyhedron.

In what follows, we call operation a particular iteration of
a statement, i.e., a statement with a given iteration vector.
Figure 1 shows the graphical representation of such a domain,
where each full circle represents an operation. The domain
constraints for the only statement S0 of the loop of Figure 1
are defined by:

DS0
= {i, j|0 ≤ i < N ∧ 0 ≤ j < N − i} .

We shall denote by S(~v) the operation that corresponds to
statement S and iteration vector ~v.

The polyhedral model is limited to the aforementioned class
of programs. This class can be however extended to while
loops and data-dependent bounds and indexes, at the price of
a loss of accuracy in the dependence analysis [11], [12].

The detection of SCoPs is done by a mere syntactic analysis
of the compiler front-end.

B. Array Data-flow Analysis (ADA)

The strength of the polyhedral model is its capacity to
allow an iteration-wise dependency analysis on arrays [13]
to be performed. The goal of dependency analysis is to
answer questions such as “Q: what operation produced the
value being read by the currently executing operation?” For
example, in the program of Figure 1, what operation wrote the
last value of the right-hand side reference Y[j]? Answering

such a question is the second part of the first step in the
polyhedral flow presented in Figure 4.

Iterations of one statement in a loop nest can be ordered
by the lexicographic order of their iteration vectors. Consider
two iteration vectors ~a ∈ Zm and ~b ∈ Zn. Denote by ~a[q] the
q-th component of ~a, and by ~a[0..q] the left-most sub-vector
(a0, . . . , aq) of ~a. Then ~a is said to be lexicographically greater
than ~b, noted ~a � ~b, iff either (~a[0] > ~b[0]) or there exists a
value q ∈ [1..min(m,n)] such that (~a[0..q−1] = ~b[0..q−1] ∧
~a[q] >~b[q]).

Notice that iterations of several statements in a loop nest
can be ordered by combining the lexicographic order of their
iteration with their textual order in the loop. This combination
defines the precedence order, noted �. When considering
sequential loop nests, the precedence order is a total order.
To simplify matter, iteration vectors can be extended using
the textual rank of the statements in the loop body (see
Bastoul [3]), so that the precedence order reduces to the
lexicographic order of the iteration vectors, and consequently,
this will be assumed in the remaining of this paper. Also in
order to simplify our presentation, it will be assumed, without
loss of generality, that a statement in a SCoP has at most one
array write reference and one array read reference. With this
assumption, read array or write array references are uniquely
identified by the iteration vector of their operations.

The precedence order allows an exact answer to be given
to question Q: “The operation that last modified an array
reference in the currently executing operation is just the latest
write in the same array reference according to the precedence
order.” In the example of Figure 1, the operation that modified
the right-hand side reference Y[j] in operation S0(i, j) is the
same statement of the loop, when it was executed at previous
iteration S0(i− 1, j).

A dependency is represented by a function d that associates
to each read the operation that produced the value being
read. In our example, d(S0(i, j)) = S0(i − 1, j). Another
way of representing this is to use a relation notation à la
Omega [14] – functions can be considered as a special case
of binary relations. This is also the standard notation of the
ISL library [15] that we shall use extensively in this paper:

d =

{
(i, j)→ (i′, j′)

∣∣∣∣ (i, j) ∈ DS0
∧ (i′, j′) ∈ DS0

∧ (i′, j′) = (i− 1, j)

}
(1)

Since they represent all the instances of the dependency in a
compact polyhedral relation, dependency functions are called
polyhedral reduced dependencies. The graph representing all
the dependencies for one SCoP is called the polyhedral
reduced dependency graph (PRDG).

In the remaining of this paper, sink(d) ⊆ D denotes the
domain of the dependence function d, that is to say, the set
of array reads on which d can be applied, and src(d) ⊆ D
denotes the range of function d, i.e. the set of array writes that
it leads to.

In summary, the second part of the first step of the polyhe-
dral model flow, ADA, is to build the PRDG of a SCoP, which
is much more involved as the SCoP detection and extraction
(see [13] for details on ADA.)
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C. Scheduling

In the polyhedral model, the precedence order is known
exactly. Therefore, transformations of the loop execution order,
also known as scheduling transformations, can be constrained
to enforce data-flow dependencies. This is the second step in
the polyhedral flow of Figure 4.

A one-dimensional, integral schedule σ enforces a depen-
dency d : {~a → ~b} if σ(~a) > σ(~b). More generally, a multi-
dimensional, integral schedule σ enforces a dependency if
σ(~a) � σ(~b).

To enforce all dependencies, a schedule must meet a set
of affine constraints. The intersection of these constraints for
all the dependencies in the PRDG gives a polyhedron. Not
only some properties can be checked on this polyhedron,
for example the legality of a given transformation, but also
one can automatically compute the space of all possible
transformations, in order to find the “best” one according to
some criterion. A considerable amount of work has been done
on this topic, and the reader is referred to Feautrier [16] and
Pouchet et al. [5] for more details.

As far as loop pipelining is concerned, scheduling is not a
central transformation, as one may assume that pipelining is
applied to the sequential version of the loop without changing
its schedule. However, it is worth mentioning this step, as in
some cases, it may be useful to change the schedule of a loop
in order to reach a better pipelining transformation.

D. Code Generation

The last step of source-to-source transformation within the
polyhedral model is to re-generate a sequential code that scans
the new domain, as shown in Figure 4. Two approaches to
solve this problem dominate in the literature.

1) Loop Nests Generation: The first one was developed by
Quillere and al. [17] and later extended and implemented by
Bastoul in the ClooG software [3]. ClooG allows regenerated
loops to be guardless, thus avoiding useless iterations at the
price of an increase in code size. With the same goal, the
code generator in the Omega project [14] tries to regenerate
guardless loops, and provides options to find a trade-off
between code size and guards.

2) Finite State Machine Generation: The second approach,
developed by Boulet et al. [18] aims at generating code without
loops. The principle is to determine during one iteration the
value of the next iteration vector, until the entire iteration
domain has been visited. Rather than generating nested loops,
this instead amounts to derive a finite state machine that scans
the iteration space.

To do so Boulet et al. introduce a nextD function which,
given an iteration ~x ∈ D, provides its immediate successor
nextD(~x) in D according to the lexicographical order. The
construction of this function is detailed in section IV-C. Since
this second approach behaves like a finite-state machine, it is
believed to be more suitable for hardware implementation [19],
though there are still very few quantitative evidences to back-
up this claim. We discuss one main aspect of this approach in
section V-C, that is its efficiency for coalescing loops.

IV. LEGALITY CHECK

This section considers the problem of checking that a
given nested loop pipelining transformation does not violate
dependencies. Section IV-A describes the pipeline model and
presents the legality condition. Section IV-B shows how this
condition can be checked by computing the reuse distance of
dependencies. Another method, based on the computation of
the successors of the iteration points is described in section
IV-C. Section IV-D explains how to build the set of violated
dependencies. Finally, the complete algorithm is described
in IV-E.

A. Pipeline Model and Legality Condition

Let ∆ be the number of stages of the pipeline, i.e., its
latency. In our pipeline model, we consider that all the reads
are being executed during the first stage of the pipeline, and
all the writes during its last stage (These assumptions are not
essential to our method, but they simplify the explanations.)

Let us call reuse distance of a dependence the number of
points in the iteration domain between a source iteration ~x
and its sink ~y. Since the execution of the loop follows the
lexicographic order on the iteration domain, one can observe
that the executions of two successive iteration points are
separated by one cycle. Therefore, the number of cycles that
separate the execution of the source iteration ~x and that of
the sink iteration ~y is equal to their reuse distance. On the
other hand, the value produced by the execution of iteration
~x is available ∆ cycles after its beginning according to the
pipeline model. Therefore, the nested loop pipelining does not
violate data dependencies provided the distance (in number
of iteration points) between the production of the value (at
iteration ~x, the source) and its use (at iteration ~y, the sink) is
equal to or larger than ∆.

This condition is trivially enforced in one particular case,
that is when the loop nest to be pipelined does not carry
dependencies, i.e. when the loops are parallel. This happens,
for example, if the dependencies in the loop nest are carried
only by the outermost loop. One can then pipeline the n− 1
inner loops, and if the pipeline is flushed at each iteration of
the outermost loop, the latency does not violate dependencies.

To apply the nested loop pipelining transformation on loops
that carry dependencies, or to pipeline a whole loop nest (as
shown in the example of Figure 3 for example), a deeper
analysis is required, and this is just what our legality condition
provides.

B. Checking the Legality by Estimating the Reuse Distance

Computing the reuse distance between a source and a sink
amounts to count the minimum number of iterations that
separate the source and the sink in the iteration domain.

Consider the relation R given by

R = {~x→ ~z | ~x ∈ src(d) ∧ ~x ≺ ~z ≺ d−1(~x) ∧ ~z ∈ D} (2)

For a given source point ~x, R gives all the iterations points
~z which are lexicographically between ~x and one element of
the set d−1(~x), that is, the set of all possible sinks of ~x.
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(a) R when (i, j) = (1, 1) and
N = 5.
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j

d

(b) R when (i, j) = (N − 1, 0)
(for all N > 1).

Fig. 5: Representation of the range of the relation R (enclosed
points) over the domain of the example in Figure 1 given the
source operation of d.

R is a parameterized polyhedron which can be computed
using the ISL software [15]. Given R, the number of points
between a source ~x and its closest sink is a parametric
multivariate pseudo-polynomial P , which depends on the
parameters of the domain and on ~x (see [20]). A closed form
of P can be computed using the Barvinok library [21]. Finally,
one can compute the minimum Bernstein expansion [22] of P ,
which gives a lower bound of this expression.

If the resulting bound is greater than ∆− 1, then applying
the pipeline is legal.

Example: Starting from the dependency d defined in
Equ. (1), we can compute the inverse of d as follows :

d−1 =

{
(i, j)→ (i′, j′)

∣∣∣∣ (i, j) ∈ DS0
∧ (i′, j′) ∈ DS0

∧ (i′, j′) = (i+ 1, j)

}
Using Equ. (2):

R =

{
(i, j)→ (i′, j′)

∣∣∣∣ (i, j) ∈ src(d) ∧ (i′, j′) ∈ DS0

∧ (i, j) ≺ (i′, j′) ≺ d−1(i, j)

}
After resorting to the simplification of this polyhedral relation
thanks to a polyhedral library [15], one obtains:

R =

(i, j)→ (i′, j′)

∣∣∣∣∣∣∣∣
(0 ≤ i ∧ i′ = i ∧

0 ≤ j < j′ < N − i) ∨
(0 ≤ i ∧ i′ = i+ 1 ∧

0 ≤ j′ < j < N − i− 1)


When (i, j) = (1, 1) and N = 5, the range of R represents

the highlighted set in Figure 5a, that is {(i′ = 1 ∧ 2 ≤ j′ ≤
3)∨ (i′ = 2∧ j′ = 0)}. The number of integer points between
a source and a sink in DS0 , according to the dependency d,
is expressed as follow :

P = card(R) = {(i, j)→ (N − i− 1)}

that is 3 when (i, j) = (1, 1) and N = 5.
Using the Bernstein expansion, one can compute the mini-

mum value of P over DS0
, for all the possible values of N .

As shown in Figure 5b, the minimum is 1, and it is reached
for (i, j) = (N − 1, 0). Thus applying nested loop pipelining
with ∆ = 4 on this loop nest is not ensured to be legal.

The above method is fast, but it does not always give a
good estimate of the lower bound. Besides, the result of this
analysis does not provide a means to fix the loop, if the legality
condition is not met.

C. Constructing the next∆D(~x) function

To avoid the drawbacks of the previous method, one can
construct a function next∆D(~x) that gives for a given iteration
vector ~x its successor ∆ iterations away in domain D. Then by
checking that all the sink iteration vectors ~y ∈ d−1(~x) verify
~y � next∆D(~x), one is sure that the value produced at iteration
~x is used at the earliest ∆ iterations later.

The next∆D(~x) function can be derived by leveraging on the
nextD function introduced by Boulet et al. [18] in their code
generation technique (see Section III-D2). By convention, let
nextD(~x) = ⊥ when an iteration vector ~x has no successor
inside D, and let nextD(⊥) = ⊥.

Algorithm 1 recalls Boulet et al.’s method, where dim(D)
is the number of dimensions of D, lexmin(succi) (given
by ISL) provides the lexicographic minimum of the relation
succi, and domain(nextD) denotes the iteration domain on
which nextD is applicable. As expressed here, this algorithm
computes the nextD function only on the depth innermost
loops, and this feature will be used later on to avoid possible
useless computations.

Algorithm 1 Builds the nextD and next∆D function

Require: 1 ≤ depth ≤ dim(D)
procedure NEXTBOULET(D, depth)

n← dim(D)
nextD ← ∅
R ← D
for p = n→ (n− depth) do

lexGTp ← {~x→ ~y | ~x[0..p−1] = ~y[0..p−1] ∧ ~x[p] > ~y[p]}
succp ← {~x→ ~y | ~x ∈ R ∧ ~y ∈ D} ∩ lexGTp

nextD ← nextD ∪ lexmin(succp)
R ← D − domain(nextD)

end for
return nextD

end procedure
Require: 1 ≤ depth ≤ dim(D)

procedure NEXTPOWER(D, ∆, depth)
nextD ← nextBoulet(D, depth)

return
∆︷ ︸︸ ︷

nextD • nextD • . . . • nextD
end procedure

Algorithm 1 can be best explained by following its operation
on the example shown in Figure 6. It starts by generating
the function giving the immediate successor on the innermost
loop at depth p (D2 and p = 2 in the example of Figure 6).
When there is no successor on that innermost dimension,
that is when the iterators are along the upper bound of the
iteration domain, the algorithm looks for a successor on the
next outer dimension, at depth p − 1 (D1 and p = 1 on
Figure 6). This procedure is then repeated until all dimensions
of the domain have been scanned by the analysis, or when
dimensions p−depth is reached. At termination, the remaining
point is the lexicographic maximum of the domain, and its
successor is ⊥ (D⊥ and p = 0 on Figure 6).

The domains involved in this algorithm are parameterized
polyhedra. Therefore, computing the nextD function can be
done using parametric integer linear programming [23], [18].
A solution has then the form of a piecewise quasi-affine
function. (Quasi-affine functions are affine functions where
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i

j

D1 = D ∩ {i,j | j ≥ N-i-1, i < N-1}

nextD(i,j) = (i+1,0) (p=1)

D2 = D ∩ {i,j | j < N-i-1}

nextD(i,j) = (i,j+1)          (p=2)

D⏊ = D ∩ {i,j | i ≥ N-1}

nextD(i,j) = ⏊        (p=0)

Fig. 6: Expression of the immediate successor (the function
nextD) for the example of Figure 1. The expression differs
according to the current iteration in D1, D2 or D⊥.

i

j

1

2

3

4

(a) Using 4th line of equ. (3),
next4DS0

(1, 1) = (2, 1)

i

j

1 2

3
4

(b) Using 6th line of equ. (3),
next4DS0

(2, 1) = (4, 0)

Fig. 7: Representation of the function next4DS0
on example of

Figure 1 when N = 5 for 2 example operations.

division or modulo by an integer constant are allowed.) Since
we only need to look for a constant number ∆ of iterations
ahead, the next∆D function is built by ∆ compositions of
nextD.

Example: When ~x = (i, j), the value of nextDS0
(~x) for

the example of Figure 6 is as follow:

nextDS0
(i, j) =

 (i, j + 1) if j < N − i− 1
(i+ 1, 0) elseif i < N − 1
⊥ else

Composing this relation four times, one obtains the
next4DS0

(i, j) function, which is given by :
next4DS0

(i, j) =

(i, j + 4) if j ≤ N − i− 5
(i+ 1, 3) elseif i ≤ N − 5 ∧ j = N − i− 1
(i+ 1, 2) elseif i ≤ N − 4 ∧ j = N − i− 2
(i+ 1, 1) elseif i ≤ N − 3 ∧ j = N − i− 3
(i+ 1, 0) elseif i ≤ N − 4 ∧ j = N − i− 4
(N − 1, 0) elseif i = N − 3 ∧ j = 1 ∧N ≥ 3
(N − 2, 0) elseif i = N − 4 ∧ j = 3 ∧N ≥ 4
⊥ else

(3)

For example when N = 5 (the chosen parameter) and
(i, j) = (1, 1), the 4th line of equation (3) is active

(j = N − i − 3 and i ≤ N − 3). Therefore the expression
of the successor 4 iterations away is (i + 1, 1) = (2, 1),
which can be checked on Figure 7a.

D. Building the Violated Dependency Set

As mentioned previously, a given dependency d is enforced
by the nested loop pipelining transformation iff, for all (~x→
~y) ∈ d such that ~y ∈ d−1(~x), we have ~y � next∆D(~x).
A consequence of this condition is that if next∆D(~x) = ⊥,
that is when the successor ∆ iterations later is out of the
iteration domain, then the dependency d will be violated by
the pipelined execution, because at least one sink of ~x will
get the value computed by ~x ”too late” due to the pipeline
latency.

This observation allows the set D†d of all the source itera-
tions violating the dependency d to be built:

D†d =

{
~x ∈ src(d)

∣∣∣∣ d−1(~x) ≺ next∆D(~x)
or next∆D(~x) ∈ {⊥}

}
(4)

Checking the legality of a nested loop pipelining w.r.t. the
dependency d then sums up to check the emptiness of this
parameterized domain, which can be done with ISL [15].
Checking the legality condition for a whole SCoP involves
checking the emptiness of the set D† =

⋃
d∈PRDGD

†
d.

Example: Using the inverse of d given in section IV-B,
and the next4DS0

(i, j) function of Equ. (3), one can then find
the domain D†d of the source iterations violating the data-
dependency d using Equ. (4).

In our example, and after resorting to the simplification of
this polyhedral domain thanks to a polyhedral library [15], one
then obtains:

D†d = {i, j|(i, j) ∈ DS0
∧N−4 < i < N−1∧j < N− i−1}

Since d is the only dependency in the loop nest, D† =
D†d. When one substitutes N by 5 (the chosen value in our
example), one gets D† = {(2, 0), (2, 1), (3, 0)}, which is the
set of points that causes a dependency violation in Figure 3.

E. The New Legality Check Algorithm

Algorithm 2 presents the legality check for nested loop
pipelining. Argument depth represents the number of inner
loops on which the legality check is applied.

A few explanations are in order. The Bernstein expansion is
used as a means to avoid some computations of next∆D , since
they are costly. Function ehrhart card(R) is directly pro-
vided by the Barvinok library and bernstein bound min(P )
by ISL.

Function next∆D is built according to Algorithm 1. Function
restrict(PRDG, depth) removes the dependencies of the
PRDG that are not carried by the depth innermost loops, by
intersecting the PRDG with the lexicographic equality, only
for dimensions that are not within the depth innermost loops.

Finally, notice that this method could be extended to a more
general model of pipeline execution, where reads and writes
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Algorithm 2 Checks nested loop pipeline legality
procedure BERNSTEINBOUNDING(D, d)

R←
{
~x→ ~z

∣∣∣∣ ~x ∈ src(d) ∧ ~z ∈ D
∧ ~x ≺ ~z ≺ d−1(~x)

}
P ← ehrhart card(R)
return bernstein bound min(P )

end procedure
Require: 1 ≤ depth ≤ dim(D)

procedure LEGALITYCHECK(PRDG, D, ∆, depth)
D† ← ∅
PRDG = restrict(PRDG, depth)
for all d ∈ PRDG do

l← bernsteinBounding(D, d)
if l < ∆− 1 then

next∆D ← nextPower(D,∆, depth)

D†d ←
{
~x ∈ src(d)

∣∣∣∣ d−1(~x) ≺ next∆D(~x)
∨ next∆D(~x) ∈ {⊥}

}
D† ← D† ∪ D†d

end if
end for
return D† = ∅

end procedure

can occur during any stage. ∆ would then have to be computed
for each pair of read and write, and moreover, write after read
and write after write dependencies would have to be taken into
consideration.

V. POLYHEDRAL BUBBLE INSERTION

A legality condition is an important step toward automated
nested loop pipelining. But it is possible to do better by
correcting a given loop to make nested loop pipelining legal
when the legality check fails. Our idea is to determine at
compile time an iteration domain where wait states, or bubbles,
are inserted in order to stall the pipeline so that the pipelined
execution of the loop becomes legal. These bubbles should
be inserted between the sources and the sinks of violated
dependencies.

Two constraints are imposed to this correction method. First,
bubbles are inserted in the domain scanned by the coalesced
loop, not in the original loop nest. The reason is related to the
behavior of most HLS tools, whose aggressive optimization
techniques are less likely to discard bubbles on the coalesced
loop, thus removing their effect. (This technicality could
probably be overcome by introducing some kind of NOP
instruction that the HLS tool would not optimize.)

Second, this correction mechanism is restricted to loop nests
where at least the innermost loop can be pipelined without
bubble insertion. In such loop nests, the violated dependencies
are not carried by the innermost loop, and one can add the
bubbles at the end of the innermost loop, only for iterations
that are source of a violated dependency. It turns out that
the corrected loop is then quite simple. To the contrary, and
although it is perfectly possible to correct other kinds of
loops, experience has shown us that the resulting corrected
loop contains a large number of new guards, which make an
improvement very unlikely.

The key question is to determine how many bubbles are
actually required to fix the loop, as adding a single bubble

i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

   if(j<N-i) 

S0:   Y[j] = func(Y[j]);

   if((i>N-4&&j<N-i+2&&i<N-1)

||j<N-i-1) 

       j++; 

   else 

       j=0,i++;

}
i

j

D† 

bubbles

Fig. 8: Illustration of simple padding for N = 5 and ∆ =
4. White points correspond to inserted bubbles when D† is
padded with ∆− 1 = 3 bubbles.

in a loop may incidentally fix several violated dependencies.
In the following, two solutions to this problem are proposed:
simple padding, and optimized padding.

A. Simple Padding

In a previous work [24], the solution proposed was to pad
every inner loop containing an iteration in D† with ∆ − 1
bubbles. As a matter of fact, this amounts to recreate the whole
epilogue of the pipelined loop, but only for the outer loops that
actually need it. Although simple, this approach turns out to
be too conservative. Indeed one can notice that padding D†
only, instead of the whole inner loops enclosing it, still adds a
sufficient (and smaller) number of bubbles. How to build this
set of bubbles is described in Algorithm 3, and the result is
illustrated in Figure 8.

Algorithm 3 Builds the set of polyhedral bubbles
Require: size ≥ 0

procedure PAD(D, size)
n← dim(D)

R←
{
~x→ ~y

∣∣∣∣ ~y[0..n−1] = ~x[0..n−1] ∧
~x[n] ≤ ~y[n] ≤ ~x[n] + size

}
return R(D)

end procedure
Require: D† ⊆ D

procedure BUBBLESV1(D, D†, ∆)
B ← ∅
for all D†d ∈ D

† do
B ← B ∪ pad(D†d,∆− 1)

end for
return B −D

end procedure

Nevertheless, this method is still too conservative. For
example, the reader will notice that the inner loop iterations in
D† for index i = 2 in the example of Figure 8 do not actually
need 2 bubbles, but only one.

B. Optimized Padding

The idea behind this second method is to build the set of
bubbles while doing the legality check, and to pad every inner
loop in D enclosing D† with the exact number of iterations
required to preserve the dependency when applying nested
loop pipelining. Consider a dependency between a source ~x
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i

j
i=0;j=0;

while(i<N) {

#pragma ignore_mem_depcy Y

   if(j<N-i) 

S0: Y[j] = func(Y[j]);

   if((i>N-4&&j<4&&i<N-1)

||j<N-i-1) 

       j++; 

   else 

       j=0,i++;

}

D† 

bubbles

Fig. 9: Optimized padding for N = 5 and ∆ = 4. White points
correspond to the inserted pipeline bubbles in the iteration
domain.

and a sink ~y, and let r be the reuse distance associated to
these iteration points. One can note that if r < ∆, then the
dependence is violated, but inserting at least ∆ − r bubbles
will remove the dependency violation. Thus, the legality check
is performed by increasing values of r, r = 1..∆, and if one
computes for each value of r the set of source points D†r for
which the dependency is violated, it becomes possible to pad
the iteration domain with a much more precise number of
bubbles ∆ − r. This is exactly what Algorithm 4 describes
and what is illustrated in Figure 9.

In this example, with ∆ = 4, one has D†1 = ∅, D†2 =
{(3, 0)} and D†3 = {(2, 0), (2, 1)}. Therefore padding i = 2
by 1 bubble and i = 3 by 2 bubbles makes the pipeline legal.

Algorithm 4 Mixed legality check with bubble insertion to
build the optimized set of bubbles
Require: D1 ⊆ D2

procedure ENCLOSING(D1, D2)
n← dim(D1)
return projectOut(D1, n− 1) ∩ D2

end procedure
Require: 1 ≤ depth ≤ dim(D)

procedure BUBBLESV2(PRDG, D, ∆, depth)
PRDG← restrict(PRDG, depth)
B ← ∅
for all d ∈ PRDG do

l← bernsteinBounding(D, d)
if l < ∆− 1 then

for all r ∈ [1..∆− 1] do
nextrD ← nextPower(D, r, depth)
D†dr ← {~x ∈ src(d)|d−1(~x) = nextrD(~x)}
if D†dr 6= ∅ then
B ← B ∪ pad(enclosing(D†dr ,D),∆− r)

end if
end for

end if
end for
return B −D

end procedure

C. The Loop Coalescing Transformation

Once the bubble domain has been computed, the final
step consists in regenerating C code for the HLS tool, after
coalescing the loop. To do so, the loop nest structure is

for (i = 0; i < 100; i++)

  for (j = 0; j < 2; j++)

    S(i,j);

(a) Original sample loop.

i = 0, j = 0;

while (i < 100)

  if (j < 2) {

    S(i,j);

    j++;

  } else

    j = 0, i++;

(b) CFG-coalesced loop.

i = 0, j = 0;

while (i < 100)

  S(i,j);

  if (j < 1)

    j++;

  else

    j = 0, i++;

(c) Boulet et al.-coalesced
loop.

Fig. 10: Difference between (b) CFG- and (c) Boulet et al.
loop coalescing. In CFG loop coalescing, whenever j reaches
2, that is 1/3 of the iterations, time is spent on control only.
Using Boulet et al. approach, j never reaches the value 2.

translated into a software finite state machine expressed as
a while loop. Starting from a polyhedral representation of the
loop nest, there are two possible approaches for implementing
this transformation.

The first approach relies on the ClooG [3] code generator to
produce a loop nest that scans the iteration domains (including
bubbles). Coalescing can then be done by rewriting the Control
Flow Graph (CFG) of the generated loop nest, as it is done by
Ylvisaker et al. [10]. The main advantage of this approach is its
simplicity. (From what we understand, this is the approach fol-
lowed by RHLS when implementing the nested loop pipelining
transformation.) But it has the drawback that the automaton is
built from an implicit representation of the iteration domain
rather than from its formal representation as a polyhedron.
Consequently the resulting automaton may contain extra idle
states that do not correspond to an actual iteration of the loop
nest. This situation is shown in Figure 10b. Indeed, whenever
j reaches the value 2, the then branch of the conditional is
not taken, and statement S is not executed. This results in one
cycle of outer loop execution spent only for control purpose,
that is 1/3 of the total execution time.

The second approach follows the method of Boulet et
al. [18], and consists in building a finite state machine directly
from the loop nest iteration domain using the nextD(~x)
function introduced in Section IV. The generated code visits
the exact loop nest iteration domain. (See the example of
Figure 10c where j never reaches 2.) The drawback of this
second approach is that the resulting code tends to be complex
in term of guards, which increases the hardware complexity.

Since the full loop nest needs not be coalesced, we combine
both generation methods by letting the designer add directives
to specify how many inner loops should be coalesced. The
ClooG software is then used to generate the outer loops (using
the stop option), and Boulet et al.’s method to generate the
inner loops.
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VI. EXPERIMENTAL RESULTS

This section describes how the pipeline legality check and
the polyhedral bubble insertion are implemented within a
compiler framework, and provides qualitative and quantitative
evidence showing that they lead to significant performance
improvements at the price of a moderate increase in hardware
complexity.

A. The GeCoS source-to-source compiler

GeCoS (Generic Compiler Suite) is an open source-
to-source compiler infrastructure [25] integrated within the
Eclipse framework and entirely based on Model Driven Soft-
ware Development tools. GeCoS is specifically targeted to
HLS back-ends, and it provides built-in support for Mentor
algorithmic data types C++ templates.

GeCoS also contains a loop transformation framework based
on the polyhedral model, which extensively uses third party
libraries (ISL [15] for manipulating polyhedral domains and
solving parametric integer linear problems, and ClooG [3] for
polyhedral code generation). All the transformations presented
in this work were implemented within this framework.

B. Benchmark Kernels and Experiment Conditions

To evaluate this approach, a set of application kernels
representing good candidates for our legality check and for the
bubble insertion algorithms was selected. These kernels were
chosen to exercise the robustness and correctness of RHLS
when confronted to non-trivial cases. When needed, they
were modified so that they would allow pipelining for their
innermost loop but still expose loop carried dependencies on
all their outer loops. As a consequence, nested loop pipelining
could not be used blindly, as it might have led to a dependency
violation.

The benchmark kernels are as follows:
• Prodmat: a product of 2 matrices where the dependency

of the accumulation is moved to the second loop using a
loop interchange transformation.

• BBFIR: a block based FIR where the loop nest is skewed
to remove the dependencies on the innermost loop. It is
the only 2-nested loop kernel.

• Jacobi: a 2D Jacobi stencil with the same transformation
as BBFIR.

• FW: an implementation of the Floyd-Warshall algorithm
where the loop nest is also skewed.

• QRC: a QR Decomposition using CORDIC operators
where the original C implementation already shows an
innermost loop without dependency.

The benchmark kernels were submitted to GeCoS, for pars-
ing, polyhedral analysis, and application of pipeline source-
to-source transformations. The transformed kernels were then
processed by RHLS, which produced VHDL code. The result-
ing VHDL code was then synthesized using Quartus, to target
an Altera Stratix IV FPGA.

Unless otherwise stated, data types of the kernels were 32 bit
fixed point numbers. Each kernel was assigned a fixed target
pipeline latency ∆ in the following way. RHLS was forced,

Run-time (ms)
RHLS PBI V1 PBI V2

Kernel ∆ 1D 2D 1D 2D 3D 2D 3D

Prodmat 4 ok illegal 13 230 1671 23 38
BBFIR 4 fail prevent 17 2125 131
Jacobi 8 fail prevent 27 623 2918 153 273
FW 3 fail prevent 54 69 224 88 183
QRC 13 fail prevent 30 2449 879 284 718

ok : HLS tool pipelines and it is legal
prevent : HLS tool does not pipeline and it is effectively illegal
fail : HLS tool does not pipeline whereas it is legal
illegal : HLS tool does pipeline whereas it is illegal

TABLE I: Result of RHLS on application kernels, and run-
time (Xeon at 2.4GHz) of two versions of the Polyhedral
Bubble Insertion (PBI) for the given latency. The analysis
for 1 dimension (column 1D) takes exactly the same time for
both algorithms, while algorithm 3 (V1) takes more time than
algorithm 4 (V2) when bubble insertion is required.

by appropriate directives, to generate a – possibly incorrect
– pipeline hardware description of the kernel, targeting a
frequency of 100 MHz on the Altera Stratix IV FPGA. Since
the pipeline latency is essentially related to the complexity of
statement, and much less to the pipeline control, this method
provides realistic latency values.

C. Qualitative results

The first experiment was to check if RHLS could pipeline
the innermost loop without any directive (1D), and whether it
would prevent the second loop to be pipelined (2D). Results
for the benchmark kernels are shown in the left part of Table I.
RHLS could only pipeline Prodmat, whose array accesses are
very simple (see column 1D). It would also allow the two
innermost loops of Prodmat to be pipelined, whereas it would
lead to a dependency violation when the sizes of the matrices
are smaller than the data-path latency (see column 2D). For
all other kernels, the dependency analysis of RHLS was too
conservative, and it failed at pipelining the innermost loop. It
also prevented the second loop to be pipelined.

The rightmost part of Table I presents the run time of our
methods (PBI, standing for Polyhedral Bubble Insertion). We
run both Algorithms 3 (V1) and 4 (V2) on the kernels. Column
1D gives the time needed to check that there is no dependency
on the innermost loop (identical for both algorithms). Columns
2D V1 and 2D V2 give respectively the time needed for
algorithm 3 and algorithm 4 to build the set of bubbles for
the second loop, and 3D for the whole loop nest.

These run-times depend on the shape of the loop iteration
domains, and on the latency ∆, but they are acceptable in the
aforementioned context.

One can note that V2 is in general much faster than V1.
This is because the linear programming problems solved by
V2 are simpler than those of V1.

Generating this next∆D function is very compute intensive.
Table II shows that the run-time is still acceptable when the
latency ∆ and the depth are reasonable. Although the run-time
grows exponentially with the latency and depth, the analysis
still finishes in extreme cases (last row of the table).
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∆ = 2 4 8 16 32 64Kernel depth

Prodmat
1 2 2 3 3 3 2
2 9 11 20 82 657 7350
3 23 45 222 2089 27250 469139

BBFIR 1 3 4 3 3 3 3
2 34 74 189 1057 15013 362109

Jacobi
1 1 1 1 1 1 1
2 7 11 52 442 5156 78068
3 11 20 80 603 6478 92093

FW
1 1 1 1 1 1 1
2 6 10 42 358 4335 66184
3 8 15 58 465 5336 76615

QRC
1 1 1 1 1 1 1
2 7 9 18 76 615 7019
3 11 15 48 413 5237 80844

TABLE II: Run-time (Xeon at 2.4GHz) in milliseconds to
generate the next∆D function for several kernels, with different
∆ and at different depths.

Kernel Version Hardware Characteristics
ALUT REG DSP Freq. (MHz)

Prodmat

RHLS 1D 489 215 4 272
PBI 2D V1 629 228 4 235
PBI 2D V2 553 198 4 246
PBI 3D V2 559 226 4 231

BBFIR
RHLS 1D 553 152 4 185

PBI 2D V1 727 231 4 213
PBI 2D V2 649 241 4 241

FW

RHLS 1D 383 74 0 271
PBI 2D V1 951 108 0 159
PBI 2D V2 859 87 0 210
PBI 3D V2 955 99 0 180

Jacobi

RHLS 1D 1012 845 8 164
PBI 2D V1 1153 936 8 172
PBI 2D V2 1226 948 8 168
PBI 3D V2 1417 975 8 172

QRC

RHLS 1D 5375 2461 24 155
PBI 2D V1 5792 2755 28 158
PBI 2D V2 5684 2745 28 155
PBI 3D V2 5772 2730 28 152

TABLE III: Hardware characteristics for our nested pipeline
implementations (PBI 2D V1, PBI 2D V2 and PBI 3D V2)
compared to innermost pipeline (RHLS 1D).

To push the methods, algorithm 4 was applied to QRC, with
a target frequency of 200 MHz, a 72 bit data-type, and trying
to pipeline the 3 loops. For this extreme scenario, RHLS gave
a latency of 67 cycles, and algorithm 4 was able to build
the set of bubbles, with a run-time of 25 mn. This shows
that the method, although costly, is realistic for quite complex
examples.

D. Quantitative results

Inserting bubbles in the loop nest makes the control of the
loop more complex, since the bubbles domain adds guards to
the statements, and constraints to the loop bounds. This extra
control code results in additional hardware for the control
in the hardware description generated by HLS tools, and it
can reduce the maximum frequency achieved by the logic
synthesis.

To evaluate the actual impact of these methods, the hard-
ware complexity and the run-time of the algorithms on the
benchmark kernels were estimated. Hardware was generated

by RHLS using directives to make the tool ignore the depen-
dencies known to be false positives.

Table III provides an evaluation of the hardware complexity
and frequency. For each problem size, four versions were
considered: RHLS 1D generates hardware using RHLS. PBI
2D V1 and PBI 2D V2 are Algorithms 3 and Algorithm 4
respectively, applied on the second level of the loop nest. PBI
3D V2 is Algorithm 4 applied on the whole loop nest. (Notice
that Table III does not contain pipelining results of RHLS,
since as explained in subsection VI-C, RHLS failed to detect
possible pipelining or would generate illegal pipelines on the
kernels.) For each method, Table III displays an estimation
of the area cost in terms of registers (REG), adaptive look-
up tables (ALUT) and DSP operators (DSP), and it provides
an estimation of the maximum frequency of the synthesized
design.

The area overhead when inserting bubbles is moderate (less
than 25%), except for FW for which the cost doubles. The
reasons of this exception are first, that FW only involves
additions and comparisons of integer values, which do not cost
a lot as compared to the control, hence the huge overhead when
control is added; second, the bubble domains of FW contains
a number of additional constraints.

The frequency of the generated hardware is smaller when
the domain of the bubbles is complex, compared to the original
iteration domain (for Prodmat and FW), or is equivalent
when the bubble domain is relatively simple (QRC, Jacobi).
This was expected, since additional constraints make the
control data-path longer, thus increasing the critical path. For
unknown reasons, RHLS achieved a much higher frequency
when pipelining the 2 loops in the BBFIR kernel, whereas the
bubbles domain is complex.

Table IV displays the number of cycles required to execute
the pipelined kernels, and it provides the wall clock time w.r.t.
the maximum frequency in Table III. For each kernel, two
problem sizes were considered in order to evaluate the effect
of this parameter.

As shown by the Ratio column, the number of cycles is in
general smaller when using nested loop pipelining, because
the approach inserts fewer bubbles than the number of cycles
required by a full flush at each iteration of the outer loops.
However, when the problem size increases, the loop trip count
is high, and the flush overhead decreases. Therefore, the
reduction of the number of cycles does not compensate for
the lower frequency and the area overhead.

Note that algorithm 4 (PBI 2D V2) always insert less
bubbles than algorithm 3 (PBI 2D V1), or at worst, the same
number (see Prodmat). However, this does not come at the
expense of a higher complexity hardware.

For QRC with problem size = 3×3×3 the gain is relatively
small. This is because the loop trip count is small, compared
to the latency, thus the set of inserted bubbles is comparable in
size to the number of flush cycles of the single loop pipeline.

Results for large problem sizes show that in general, as
expected, nested loop pipelining is effective only when the
loop count is small compared to the pipeline latency.
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Kernel Problem Performance
Size Version # Cycles Time (ns) Ratio

Prodmat

43

RHLS 1D 157 577
PBI 2D V1 89 378 1.52
PBI 2D V2 89 361 1.59
PBI 3D V2 68 294 1.96

1283

RHLS 1D 2179456 8012709
PBI 2D V1 2097921 8927323 0.89

(∆ = 4) PBI 2D V2 2097921 8528134 0.93
PBI 3D V2 2097156 9078597 0.88

BBFIR

256× 8
RHLS 1D 3336 18032

PBI 2D V1 2552 11981 1.50
PBI 2D V2 2030 9279 1.94

1024× 32
RHLS 1D 37548 202962

PBI 2D V1 34412 161558 1.25
(∆ = 4) PBI 2D V2 32282 148050 1.37

163

RHLS 1D 6625 24446
PBI 2D V1 4178 26276 0.93
PBI 2D V2 4169 19852 1.23
PBI 3D V2 4107 22816 1.07

FW

1283

RHLS 1D 2260737 8342202
PBI 2D V1 2097682 13192968 0.63

(∆ = 3) PBI 2D V2 2097673 9988919 0.83
PBI 3D V2 2097163 11650905 0.71

Jacobi

30× 16

RHLS 1D 13261 80859
PBI 2D V1 10981 63843 1.26
PBI 2D V2 7831 46613 1.73
PBI 3D V2 7568 44000 1.83

30× 256

RHLS 1D 2072461 12636957
PBI 2D V1 1941421 11287331 1.11

(∆ = 8) PBI 2D V2 1937431 11532327 1.09
PBI 3D V2 1937168 11262604 1.12

33

RHLS 1D 90 580
PBI 2D V1 89 563 1.03
PBI 2D V2 82 529 1.09
PBI 3D V2 81 532 1.08

QRC

323

RHLS 1D 23406 151006
PBI 2D V1 28670 181455 0.83

(∆ = 13) PBI 2D V2 17464 112670 1.34
PBI 3D V2 17610 115855 1.30

TABLE IV: Performance for different problem sizes with
architecture characteristics described in Table III.

VII. RELATED WORK AND DISCUSSION

This section compares our approach to previous work on
loop pipelining and nested loop pipelining.

A. Loop pipelining in hardware synthesis

Earlier work on systolic architectures addressed the problem
of fine grain parallelism extraction. Among others, Derrien
et al. [8] propose to use iteration domain partitioning to
help combine operation-level (pipeline) and loop-level paral-
lelism. A somewhat similar problem is addressed by Teich
et al. [9] who propose to combine modulo scheduling with
loop-level parallelization techniques. The main limitation of
these contributions is that they only support one-dimensional
schedules [26], which significantly limit their applicability.

Alias et al. [27] address the problem of generating efficient
nested loop pipelined hardware accelerators leveraging custom
floating-point data-paths. Their approach (also based on the
polyhedral model) consists in finding a parallel hyperplane
for the loop nest, and then in deriving a tiling (hyperplanes
and tile sizes) chosen in such a way that a pipeline of depth ∆
is legal. This research only targets perfectly nested loops, and
it also requires that incomplete tiles be padded to behave like
full tiles. Besides, the authors restrict themselves to uniform
dependencies, so as to guarantee that the reuse distance is

always constant for a given tile size. In contrast, our methods
are more general and support imperfectly nested loops with
non-uniform (i.e. affine) dependencies. In addition, in the case
of tiled iteration domains, we can provide a more precise
correction (in terms of extra bubbles) that would not require
padding all incomplete tiles.

The Compaan/Laura [20] tool set takes another point of
view, as it does not try to find a global schedule for the
program statements. Instead, each statement of the program is
mapped on its own process. Dependencies between statements
are then materialized as communication buffers, following the
so-called polyhedral process network semantics [28]. Because
the causality of the schedule is enforced by the availability
of data on the channel output, there is no need for taking
statement execution latency into account in the process sched-
ule [29]. On the other hand, this approach suffers from a
significant hardware complexity overhead, as each statement
requires its own hardware controller plus possibly complex
reordering memory structures. In our opinion, this research is
geared toward task level parallelism rather than toward fine
grain parallelism/pipeline.

B. Nested loop software pipelining

Software pipelining has proved to be a key optimization for
leveraging the instruction level parallelism available in most
compute intensive kernels. Since its introduction by Lam et
al. [30] a lot of work has been carried out on this topic. Two
directions have mainly been addressed:
• Many contributions tried to extend software pipelining

applicability to wider classes of program structures, by
taking control flow into consideration [31].

• The other main research direction focused on integrat-
ing new architectural specificities and/or additional con-
straints when trying to solve the optimal software pipelin-
ing problem [32].

Among these numerous contributions, some of them tackle
problems very close to ours.

Rong et al. [7] study software pipelining for nested loops.
Their goal is to pipeline a loop that is not innermost by using
loop interchange, and to merge the flush and initialization parts
of the pipeline to reduce the impact of the latency. This is
similar to our research – although they do not target hardware
synthesis, – but they restrict themselves to a narrow subset of
loops (only constant bound rectangular domains) and they do
not leverage exact instance-wise dependency information.

Fellahi et al [33] address the problem of prologue/epilogue
merging in sequences of software pipelined loops. Their
work is also motivated by the fact that the software pipeline
overhead tends to be a severe limitation as many embedded-
multimedia algorithms exhibit low trip count loops. Again, our
approach differs from theirs in the scope of its applicability,
as we are able to deal with loop nests (not only sequences
of loops), and as we solve the problem in the context of
HLS tools at the source level through a loop coalescing
transformation. On the contrary, their approach handles the
problem at machine code level, which is not possible in our
context (source-to-source transformation).
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Thanks to the specificities of the Itanium EPIC architecture,
Muthukumar et al. [6] are able to control the flush of the
pipeline. Their research aims at counting the number of itera-
tions separating the definition of a value from its use. However
their approach is only applicable to bounded loops with
uniform dependencies. This work also proposes a correction
mechanism that partially drains the pipeline when memory
dependencies may be violated. Since the same number of
bubbles is used for all the iterations of the immediate outer
loop, this method implies fewer guards, but also more bubbles
than our approach.

C. Loop coalescing

Loop coalescing was initially used in the context of pa-
rallelizing compilers in order to reduce the synchronization
overhead [34]. Indeed, since synchronization occurs at the end
of each innermost loop, coalescing loops reduces the number
of synchronizations during the program execution. Such an
approach has some similarity to ours (indeed, one could see
the flush of the innermost loop pipeline as a kind of synchro-
nization operation). However, in our case we can benefit from
an exact timing model of the synchronization overhead, which
can be used to remove unnecessary synchronization steps.

D. Correcting illegal loop transformations

The idea of correcting a schedule as a post-transformation
step is not new, and it was introduced by Bastoul et al [35].
Their idea was to first look for interesting combinations of
loop transformations (be they legal or not), and then to try
to fix possible illegal schedule instances with loop shifting
transformations. Their result was later extended by Vasilache
et al. [36], who considered a wider space of correcting
transformations.

Our work differs from theirs in that we do not propose to
modify the existing loop schedule, but rather to add artifact
statements to improve the behavior of the loop.

E. Generality of the approach

The technique presented in this work can be applied to
a subset of imperative programs known as Static Control
Parts. Some extensions to this model have been proposed
to handle dynamic control structures such as while loop
and/or non-affine memory accesses [37]. Proposed approaches
suggest approximating non-affine memory index function by
a parameterized polyhedral domain (the parameter being used
to model the ”fuzziness” introduced by the non-affine array
references).

As a matter of fact, the technique presented in this work
is able to deal with arbitrary (non-affine) memory access
functions, by considering a conservative name based data-
dependency analysis whenever non-affine index functions are
involved in the program. Extending the approach to program
constructs where the iteration space cannot be represented as
a parametric polyhedron is however likely to be much more
challenging.

VIII. CONCLUSION

In this paper, a new technique, called polyhedral bub-
ble insertion, was proposed to support nested loop software
pipelining in C-to-hardware synthesis tools. A nested pipeline
legality check that can be combined with a compile-time
bubble insertion mechanism was described. This bubbles
insertion allows the causality in the pipelined schedule to
be enforced, for a large class of loop nests called SCoPs,
thanks to the polyhedral model representation of loops. This
technique was implemented as a proof of concept in a source-
to-source compiler, and experiments show promising results
for nested loops operating on small iteration domains (up to
45% execution time reduction in terms of clock cycles, with
a moderate hardware complexity overhead).

This research also demonstrates the potential of source-to-
source compilation as a means to overcome the shortcomings
of state of the art HLS tools. Especially, source-to-source
compilers are very well suited to implementing program
transformations using high-level representations such as the
polyhedral model.

Future research could go in several directions.
• First, we believe that these methods could be used in

more classical optimizing compiler back-ends, for exam-
ple for deeply pipelined VLIW architectures with many
functional units. In that case one simply needs to use the
value of the loop body initiation interval as additional
information to determine which dependencies may be
violated.

• Since all the control within the polyhedral model fits
into (quasi-)affine expressions, one possible enhancement
would be to apply aggressive strength reduction in order
to reduce the overhead induced by the extra guards.

• Another research direction is to investigate the case when
dependencies cross several iterations of the outer loop,
since our optimized bubble insertion has shown to be
suboptimal in this case.

• The value of ∆ in the pipeline model is a conservative
over-approximation. For example, operations may have
different latencies, thus the distance between read and
write may differ depending on the operation, resulting in
several ∆ values (one per read/write pair). More accurate
values for ∆ could, for example, be obtained by analyzing
more precisely the schedule provided by the HLS tool.
This might result in less conservative pipeline legality
conditions.
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