
A Timing-Accurate HW/SW Co-simulation of an ISS with
SystemC

Luca Formaggio Franco Fummi Graziano Pravadelli
Dipartimento di Informatica – Università di Verona

Strada le Grazie 15, 37134 Verona, Italy
luca.formaggio@students.univr.it franco.fummi@univr.it pravadelli@sci.univr.it

ABSTRACT
The paper presents a system level co-simulation methodol-
ogy for modeling, validating, and analyzing the performance
of embedded systems. The proposed solution relies on the
integration between an instruction set simulator (ISS) and
the SystemC simulation kernel. In this way, the ISS is used
to abstract the model of the real programmable device where
the SW should run, while SystemC is used to model HW
components that interact with the SW. A correct validation
of such an architecture is infeasible without taking care of
timing information. Thus, the paper proposes an effective
timing synchronization mechanism, which uses timing infor-
mation of an ISS (or a board) to synchronize the SystemC
simulation.

Categories and Subject Descriptors: B.8.2 [Performance
and Reliability]: Performance Analysis and Design Aids

General Terms: Design, Performance.

Keywords: System level modeling, Co-simulation.

1. INTRODUCTION
The integration of HW and SW components is one of the

most challenging tasks in system-level design of embedded
systems. An accurate co-simulation technique is mandatory
to validate the behavior and evaluate the performance of
the whole system at the early stages of the design flow. For
this reason, several co-simulation platforms [1, 2, 3, 4, 5,
6, 7, 8] have been developed in the past years. In spite of
the variety of architectural targets, performance efficiency
and description languages, we can classified these different
solutions in two main categories: homogeneous co-simulation
environment and heterogeneous co-simulation environment.
Homogeneous environments use a single engine for the si-

mulation of both HW and SW components. The Ptolemy [1]
and Polis [2] environments are pioneering works in that di-
rection. In these approaches, homogeneity is achieved by
abstracting away the distinction between hardware and soft-
ware parts that are described as functional blocks. Homoge-
neous environments simplify the design modeling and they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

������� �	��

�� ������� �

��������������! �"�#$# �

�&%�')(*�+,+-�&�.%��

/ 0 �

/ 0 �

1 232
465)798,:

Figure 1: SystemC wrapper and ISS.

provide good simulation performance. However, they are
suitable only in a very initial phase of the design, prior to
HW/SW partitioning. On the contrary, heterogeneous envi-
ronments ensure a more accurate tuning between HW and
SW components. Most of these frameworks essentially ad-
dress the same problem: how to efficiently link event-driven
hardware simulators and cycle-based instruction set simula-
tors. Earlier HW/SW co-simulation frameworks [5, 6, 7] are
mainly focused on multi-language system descriptions, i.e.,
HDL for hardware description, and programming language
for software. All these approaches are quite similar in that,
as heterogeneous co-simulation solutions, their main effort
aims to solve the issue of controlling and synchronizing two
(or more) simulation engines. This heterogeneous style is
sub-optimal in terms of simulation performance and easi-
ness of integration, but it was the only possible choice when
VHDL or Verilog simulation was the highest possible level
of abstraction for simulating hardware. Some commercial
tools, such as Mentor Graphics Seamless [4] and Synopsys
Eaglei [3], also provide heterogeneous co-simulation capa-
bilities. However, they allow HW/SW co-simulation at bus
level, where each bus transaction involves all signals nec-
essary to accomplish the bus function, thus degrading the
co-simulation performance.
The advent of design flows based on SystemC allowed the

definition of efficient semi-homogeneous approaches [9, 10,
11, 12, 13], where the bus is abstracted to obtain a more
efficient co-simulation. They are homogeneous from the lan-

152

guage point of view, since both HW and SW are described
by using C++. This definitely simplifies the implementa-
tion of the initial model as well as the subsequent HW/SW
partitioning. However, these approaches are heterogeneous
from the simulation point of view, since HW and SW can
be executed by using different simulators: the SystemC si-
mulation kernel for the HW components and an ISS for the
SW programs. In this way, a more accurate performance es-
timation can be performed, since the heterogeneous model
reflects the final embedded system. All these environments
are based on two basic concepts (Figure 1):

• Interprocess communication (IPC). It is used to realize
the communication between the Instruction Set Simu-
lator (ISS), where the SW part runs, and the SystemC
simulator, that model the HW part. The simulators
run as distinct processes on a host system.

• Bus wrapper. It ensures synchronization between the
system simulation and the ISS, and it translates the
information coming from the ISS into cycle-accurate
bus transactions.

Most of these approaches [9, 10, 11] define a custom in-
terface between the bus wrappers and the ISS. This makes
harder the integration of new processor cores within the co-
simulation framework, because the ISS needs to be modified
to support the IPC primitives defined by the co-simulation
system. This issue is addressed in [8], where a standardized
interface between bus wrapper and ISS is proposed. It is
based on the remote debugging primitives of GDB [14]. In
this way, any ISS that can communicate with GDB (that
is, basically any) can also become part of a system-level co-
simulation environment. The approach of [8] still suffers
from some performance bottlenecks, since the ISS and the
SystemC simulators evolve in lock-step, because synchro-
nization is driven by the host operating system via IPC.
In [12] the authors solve some limitations of previous works

by proposing two alternatives co-simulation methodologies
that allow a SystemC description of hardware and an ISS
to efficiently co-execute. The two proposed solutions differ
with respect to the simulation kernel (SystemC or ISS) that
drives the co-simulation. However, in both cases the inter-
action with SystemC simulation sessions is implemented at
the kernel level, thus making it transparent to the SystemC
code written by the user.
The main drawback of previous ISS-based co-simulation

methodologies is represented by the lack of timing synchro-
nization. This heavily reflects on a definitely not accurate
design performance evaluation. On the contrary, timing in-
formation is considered in [15, 16]. These works propose
a timing HW/SW co-simulation between native execution
of operative system (OS) and application SW, and HW si-
mulation. SW execution delay is annotated into the code of
OS and application SW to allow HW synchronization. How-
ever, these solutions have two main drawbacks which limit
an easy applicability: they are closely related to the specific
implementation of the native OS, and the delay annotations
depend on the processor where the SW runs (if the core
model changes, delay annotations must be rewritten).
In this paper, starting from the GDB-Kernel approach

presented in [12], we take care of timing information, thus
providing a timing-accurate co-simulation mechanism. The
proposed approach can be adopted to co-simulate SystemC
modules describing HW components with a SW program

�����������
	
� �� ��� �
� � � � � � � ��� � � � � � ����� � � ��� � � � � ���
� ! ! ��� "�� " ��� � � � #
� � � � � � � ��! � " ����� � � ��� �$� ���
� ! ! � � % � � % � � � � � � #
� � ! � � " � � � ��� � � � !
� ��� � ����% " � � � � �
� � &'� � (�� � (� � ��� � %) � !
* * *����� �,+���-
 ��� �
. / 0 1 2 3 4 5 / 6 78. 9 9 0�. / : ; 2 < 4 0,= > 3 ; ? @
. / 0 1 2 3 4 A B > C C 0�D 3 6 > E 1 2 . / 4 : ; F�> . / G H H ; I J K ? @
� ! ! ��� � � � � % " � � �,L M � " ��� � � � � #
2 < 4 0 1 2 3 4 5 / 6 78. 9 9 0�2 < 4 : N . / 0�= > 3 ; ? @
2 < 4 0 1 2 3 4 A B > C C 0�D 3 6 > E 1 2 . / 4 : ; F�> . / G H H ; I J O ?
� ! ! ��� � � � � % " � � � P M � % � � � � � � � #
Q
R

LS� " � ��� � " � �
PT� " � � � � � � ! !�U�V W X X V V #
YT� " � ! � � � � � � � � M � � � ! � � U�Y P #
Z[� � � � � � � \) ��� � �) � � � � � � "S� ��� � � " ! ��� �
] � � &'� � (���^ ! � � ���
_T� " � � " � � � � #
` � " � � % � � � � � #
ab� � &'� � � ��� � � � � \) �
cd� % � � � � � U�� � � � � ! !�e�� � � ! � � #
L Vgf h i j k j l m�k�n$o p q
L Lr� � s�� � " � � � � �S� � � �t��^ ! � � ���
L Pvu m w l�x x$y z,j l j�n�{Sx x$| } ~ � j k q
L Y � � � % � "�V #
Q

�
��� �������

� � �������

� � �
���
� �

�
� � �
���
� �

�����8� ������ �g�

Figure 2: GDB-Kernel synchronization example.

running on an ISS or on a real board. To achieve this goal,
the main solved problems have been:

• Definition of a simplified communication mechanism
between ISS/board and SystemC which exploits Sy-
stemC-native sc port.

• Definition of a communication protocol for exchang-
ing timing information between the ISS/board and Sy-
stemC.

• Definition of a mechanism to keep timing synchroniza-
tion, which has required the modification of the Sy-
stemC kernel.

The paper is organized as follows. Section 2 summarizes the
GDB-Kernel approach upon which this work is built. Sec-
tion 3 explains how a timing-accurate co-simulation between
ISS/board and SystemC is achieved. Experimental results
are shown in Section 4. They highlight the effectiveness of
the methodology. Finally, concluding remarks are reported
in Section 5.

2. GDB-KERNEL CO-SIMULATION
The GDB-kernel co-simulation approach assumes an ar-

chitectural template consisting of several processors inter-
acting with hardware blocks, and communicating between
them through a common bus. Besides modeling hardware,
the SystemC simulation kernel serves as a master that drives
the overall co-simulation. It is based on the use of the GDB
remote debugging interface (RDI) between the ISS and the
wrapper used to connect ISS and the SystemC simulator.
The wrapper can be seen as an extension of SystemC that
makes HW/SW communication more efficient. Figure 1
summarizes these features.
The synchronization between ISS and SystemC is realized

by modifying the SystemC kernel in such a way that it can
establish and control the communication by using GDB com-
mands. The required modifications to the SystemC kernel
consist essentially of: (a) the addition of two type of ports
iss in and iss out, that are devoted exclusively to the com-
munication between a SystemC module and an ISS; (b) the
addition of a special process called iss process (similarly to
a sc method, an iss process will start execution when a new
data is ready on a iss in port to which the process is sensi-
tive); (c) the modification of the event scheduling algorithm
to handle the presence of special ports and processes.

153

� ��� ����� 	�
�
 ���

 � ������� ��	��
���� � ���
 � 	�� ����� � � ������
 ��� �

��� �
!#" $�%�$'&(�) *�+', -

. $) "
/'0 .21

 ������3 ��� � ���
 ��� 4�� � 576 	�� � 	���8 �
 ��	�6 �74�	�� 	7���7
���� �
9 :2; <�= ;#> ?�?2@2A�BDCFE ������3 ��� � ���
���� 4�� ��5D6�	�� � 	���8 �

 � 	�� �74�	 � 	7G � ���H
���� �

I#J�K�L ; M
M�N�O K'P�Q'R <�; S T L

U &�$�" V *')
�W� & "
-

X YZY�[�\�]Z^

X YZY�[#X _

! /#`�.

_

a

_

a b V + &�& *�c*'d % " e
-

_

a

Figure 3: Modified scheduling algorithm.

From the ISS side, the interface between the SW pro-
gram and SystemC is realized through ordinary variables,
and it does not require any special modification. To set
up the ISS/SystemC co-simulation, the programmer have to
set breakpoints on the variables of the SW program that are
considered as a channel to read or write data from the device
described by the SystemC model. Then, the SystemC de-
scription has to be modified by defining iss in and iss out

ports and associating them to the breakpoints previously
set. Data exchange happens only when the SW is suspended
on such breakpoints. Figure 2 shows a simple example of
how variables and ports are matched to setup communica-
tion. Breakpoints at lines 10 and 12 allow, respectively, to
connect the separator variable to the SystemC in port and
the SystemC out port to the in var variable. The control of
the simulation is handled by the SystemC kernel. Figure 3
shows a high-level flowchart of the modifications of the Sy-
stemC scheduler. The algorithm, at the beginning of a simu-
lation cycle, verifies if the GDB is stopped at a breakpoint
by checking the content of the data structure of the IPC
mechanism used to connect the ISS and the wrapper (i.e.,
a pipe). If not, the kernel does the normal handling of the
events in the scheduler queue. Otherwise, the kernel checks
at which breakpoint the GDB is stopped. If the breakpoint
is associated to an iss in port, a method of the wrapper
class is used to get the new value of the variable from the
ISS, then the value is stored into the corresponding iss in

port and the iss process, sensitive to that port, is started.
If the breakpoint is associated to an iss out port, the value
stored in this port is copied to the variable by using another
method of the wrapper.

3. TIMING-ACCURATE CO-SIMULATION
Heterogeneous approaches require an ad-hoc synchroniza-

tion mechanism to achieve a timing-accurate HW/SW co-
simulation. In fact, differently form homogeneous solutions,
the SW and the HW simulators do not share the same time
schedule, because they are executed by distinct processes.
In this section we show how the GDB-kernel co-simulation
technique, described in Section 2, can be modified to imple-
ment a timing-accurate co-simulation framework, which is
completely transparent to the designer.

3.1 Timing Information
To implement a timing-accurate synchronization mecha-

nism, we modified the communication protocol between the
ISS and the SystemC simulation kernel to exchange not only
data, but also messages containing timing information. In
particular, the SystemC simulation kernel, which drives the
overall co-simulation, gets timing information from the ISS
by means of GDB commands at each communication point
(breakpoints in the SW code). Thus, the synchronization
between the two simulators happens only when data ex-
change is needed; otherwise they run independently from
each other. In this way, the synchronization overhead is
reduced to the minimum.
Some ISSs, e.g., PSIM, the standard PowerPC emula-

tor [17] integrated in the eCos environment [18], can be
questioned about their execution time. PSIM provides the
number of clock cycles elapsed since the SW program, that
it is executing, has started. This number is a good estima-
tion of the real elapsed time. Note that the co-simulation
mechanism proposed in this paper can be adopted even if
the SW is executed on a real programmable device mounted
on a board, rather than on the ISS. In this case, timing infor-
mation is extracted from the board, which definitely allows
a correct computation of the SW execution time.
In real systems, HW and SW parts exchange data through

a bus. Thus, to improve the co-simulation accuracy, we have
defined a function that returns the number of clock cycles
needed for data exchange, based on the bus type, the data
size and the operation type (read or write). The return
value of this function is added to the number of clock cycles
provided by the ISS. In this way, the SystemC simulator
can compute the correct execution time of the ISS/board
by taking care of time needed for bus transfer too.

3.2 Timing Synchronization Issues
One of the following four cases (Figure 4) may happen

when data are exchanged between the SystemC HW model
and the SW running on the ISS:
Case 1. SystemC execution time is lower than ISS/board
time and SystemC sends data to ISS/board.
Case 2. SystemC execution time is lower than ISS/board
time and SystemC reads data from ISS/board.
Case 3. SystemC execution time is higher than ISS/board
time and SystemC sends data to ISS/board.
Case 4. SystemC execution time is higher than ISS/board
time and SystemC reads data from ISS/board.
According to the previous time inconsistencies, the Sy-

stemC kernel restores a correct timing synchronization by
putting off SystemC events or forcing the ISS/board to waste
time. This is implemented as follows:
Case 1. The SystemC event corresponding to data send-
ing, and all events depending on it, are postponed to the
ISS/board time. In the meanwhile the ISS/board is blocked
on the breakpoint.
Case 2. The SystemC event corresponding to data reading
is postponed to the ISS/board time. In the meanwhile the
ISS/board is blocked on the breakpoint.
Case 3. The ISS/board must waste time until it equals the
SystemC execution time, then SystemC can send data.
Case 4. The ISS/board must waste time until it equals the
SystemC execution time, then SystemC can read data.
Section 3.3 describes how these operations are performed

by modifying the SystemC simulation kernel.

154

n

T
im

e
ax

is

SystemC ISS

Data writing

Data reading

(a) (b)

SystemC ISS

n+x

Data
 w

rit
ingData

 re
ad

ingn

Figure 4: (a) Cases 1 and 2: SystemC execution
time is lower than ISS time when data are ex-
changed. (b) Cases 3 and 4: SystemC execution
time is higher than ISS time when data are ex-
changed.

3.3 SystemC Kernel Modifications
The implementation of the re-synchronization actions ex-

plained in the previous section demanded to modify the Sy-
stemC kernel described in Section 2. The required modifi-
cations consist essentially of the followings tasks:

• The definition of two types of ports, iss sc in and
iss sc out, that replace the iss in and iss out ports
of the original implementation. The iss sc in and
iss sc out ports derive directly from the SystemC
sc inout port class. Thus, SystemC traditional pro-
cesses (SC METHOD, SC THREAD, ...) can be declared
sensitive to iss sc in and iss sc out ports without
requiring ad hoc modifications to the SystemC events
scheduling. The ISS-SystemC communication is sim-
plified by using these new ports. On the contrary, the
original implementation of the GDB-Kernel mecha-
nism requires the definition of ad hoc processes (ISS PROC)
to use iss in and iss out ports, and a heavy modifi-
cation of the kernel to manage ISS PROC activation.

• The modification of the event scheduling algorithm, to
implement the synchronization mechanism described
in Section 3.2. It is worth to note, that the changes
introduced to the SystemC kernel (see Figure 5) are
not intrusive. They do not change the normal behavior
of the kernel when events occur on signals not involved
in the synchronization mechanism, thus not degrading
the standard simulation performance.

Figure 5 shows the changes (dark shapes) introduced to
the SystemC kernel with respect to Figure 3. When SW run-
ning on the ISS/board stops on a breakpoint, the SystemC
kernel picks out the iss sc port necessary to exchange data
with ISS, and before data exchanging, it restores the syn-
chronization, according to the four cases described in Sec-
tion 3.1.
Case 1 and case 2. SystemC needs to waste time before
executing event e corresponding to data exchange. ISS/board
is stopped on the breakpoint, while SystemC continues the
normal events schedule. Event e, and all events depending
on it, are postponed (Figure 5: spend time diamond) until
SystemC time equals ISS/board time.
Case 3 and case 4. ISS/board needs to waste time before
SystemC executes event e corresponding to data exchange

GDB Agent Init

- Get breakpoint #
- Take SystemC port

GDB
Stop on
break?

Channel is
empty?

Port
TYPE

- GDBAgent GetVariable()
- Save data on port
- Start ISS_PROC

- Take data from port
- GDB Agent SetVariable()

Events schedulation

Another
event ?

ISS_OUT

ISS_IN

STOP

No

Yes

No

Yes

No

Yes

Spend
time?

No

Yes

Case 2 or
4?

Spend
ISS time

4

To events
schedulation.
..2

Case 1 or
3?

1

Spend
ISS time

ISS_SC_OUT

3

ISS_SC_IN

Figure 5: Modified scheduling algorithm for timing-
accurate co-simulation.

1 void ConsumeTime(int clocks, int setup, int step)

2 {

3 int iterations_num;

4 iterations_num = (clocks - setup) / step;

5 for (; iterations_num >= 0; iterations_num--)

6 {

7 /*empty body*/

8 }

9 }

Figure 6: ConsumeTime() function.

(Figure 5: spend ISS time box). We have defined an ad hoc
function to waste ISS/board time (Figure 6). The Consume-
Time() function is added to the file containing the SW pro-
gram, and its execution is forced, by a GDB command, when
the ISS/board is stopped on the breakpoint. The function
body consists of an “empty” loop that is executed a number
of times depending on the difference between the ISS/board
and the SystemC time. Unfortunately the ConsumeTime()
function cannot be cycle-accurate because the execution of
each loop iteration takes more than one clock cycle. The
step parameter specifies how many clock cycles are wasted
by the ISS/board for each iteration (e.g., 8 cycles for PSIM).
Moreover, the setup parameter specifies how many clock cy-
cles are wasted by the function call, the instruction 4 and
the function return. It represents the minimum number of
clock cycles that can be wasted (e.g., 35 for PSIM). How-
ever, the little inaccuracy of the ConsumeTime() function
does not heavily reflect on the co-simulation accuracy and
performance. In any case, a perfect timing synchronization
is achieved, since even if the ISS/board time overcomes the
SystemC time, the latter is adjusted by following cases 1
and 2.

4. EXPERIMENTAL RESULTS
The accuracy of the proposed co-simulation approach has

been proved by modeling an extended version of the Mul-

155

Synchronization cases
Simulated time all 2,3,4 3,4 4 no sync

forwarded packets 871 2383 2358 2315 2491
get ISS time calls 6973 19070 18873 18523 0

1 s. GDB commands 26845 60521 59798 56752 39867
simulation time(sec) 28 70 69 68 19

forwarded packets 16909 24045 25516 25156 25694
get ISS time calls 135287 192389 204159 201284 0

10 s. GDB commands 521137 672580 709591 640680 411161
simulation time(sec) 523 689 750 744 197

forwarded packets 169812 232897 236875 235403 249723
get ISS time calls 1358680 1863480 1895290 1883530 0

100 s. GDB commands 5226200 6644050 6761430 6046650 3996082
simulation time (sec) 5721 7072 7205 7096 1928

Table 1: Co-simulation of the router for 1, 10 and 100 seconds of simulated time.

0

20

40

60

80

100

200 167 143 125 111 100

Packet generation frequency

F
o

rw
ar

d
ed

 p
ac

ke
ts

 %

board
ISS timed

ISS no timed

(S-1)

Figure 7: Percentage of forwarded packets.

ticast Helix Packet Switch1 example distributed with Sy-
stemC. The router is modeled in SystemC. All packets com-
ing into the router are buffered into a FIFO queue, then the
main process takes the first packet in the queue and reads its
destination address. Before sending the packet, according to
the routing table, a checksum algorithm is computed on the
packet to detect possible errors. The checksum is performed
by a SW program running on the ISS, as commonly done
in embedded routers. Breakpoints are defined in the source
code of the checksum in correspondence to variables con-
nected to iss sc in and iss sc out ports of the SystemC
description. The environment is modeled in SystemC: the
producers are modules that generate packets with a random
destination address; the consumers are modules that analyze
the integrity of the received packets.
Table 1 reports the co-simulation results for the router

considering 1, 10 and 100 seconds of simulated time. Col-
umn all is related to the timing-accurate methodology pro-
posed in this paper where all 4 synchronization cases are
managed. The following columns report the results for co-
simulations where the timing synchronization is provided
only for the cases indicated in the column label. Moreover,
the last column shows the result for the untimed approach.
The rows of the table report the number of forwarded pack-
ets, the number of calls to the get ISS time function (which
provides the execution time of the ISS), the number of GDB

1In the following we call it router.

executed commands, and the simulation time. It is worth to
note how the full timing-accurate approach does not dramat-
ically affect the performance of the co-simulation. On aver-
age 2, the simulation time of the synchronized co-simulation
is only 2.8 times higher with respect to the untimed co-
simulation.
Despite of a little performance degradation, the timing-

accurate mechanism gives a more precise performance esti-
mation with respect to the case without synchronization. To
evaluate the quality of the proposed co-simulation approach,
we have analyzed the performance estimation achieved by
running the checksum program on a real board, connected
to the SystemC description of the router. The timing infor-
mation extracted from the board allows a precise synchro-
nization with the SystemC simulation kernel. Figure 7 com-
pares the percentage of forwarded packets, with respect to
the packet generation frequency, by applying three different
co-simulation approaches: the ISS-SystemC untimed co-si-
mulation mechanism, the timing-accurate ISS-SystemC ap-
proach proposed in this paper, and the same timing-accurate
approach where the ISS has been replaced by a board with
a real microprocessor. It is evident that the trend of the
timing-accurate ISS/SystemC co-simulation is very similar
to the board/SystemC co-simulation trend. By using an
opportune scale factor, the error committed by considering
the ISS instead of the real board is quite small. On the
contrary, the number of forwarded packets by the untimed
co-simulation is independent from the packet generation fre-
quency. In such a case, a valuable performance estimation
is infeasible.
The characteristics of the router does not allow us to an-

alyze the co-simulation approach from the HW/SW parti-
tioning point of view. Thus, we applied the methodology to
another example: the TPWire network protocol [19]. The
benchmark consists of a SystemC description modeling a
TPWire chain with 126 slave nodes, and one master that
transmits packets over the chain. The computation of some
operations, related to packet data filling, can be extracted
from the SystemC description and implemented in a C pro-
gram executed by the ISS. Table 2 shows the experimental
results of the co-simulation, when only one of these opera-
tions is implemented in SW.
Then, we evaluated a different HW/SW partitioning sche-

ma, where three operations of the protocol have been im-
plemented in SW. Figure 8 shows the analysis performed
by observing the variation of the transmission rate with re-

2For 10 and 100 seconds of simulated time.

156

Synchronization cases
all 2,3,4 3,4 4 no sync

get ISS time
calls

10551 11405 11145 11704 0

GDB com-
mands

41969 39637 39221 35191 20661

simulation
time(sec)

40 40 39 41 10

byte/sec 25 25 26 24 100

Table 2: Co-simulation of the TPWire protocol.

1

10

100

1000

b
yt

e/
se

c.

Timed No timed SystemC

Co-simulation approaches

1 SW funct.

3 SW funct.

Figure 8: Transmission rate of the TPWire protocol.

spect to the partitioning schemas. It is evident that, the
untimed co-simulation and the full SystemC simulation are
not suited for HW/SW partitioning evaluation. In fact, they
provide the same result independently from the number of
SW functionalities. On the contrary, the proposed solution
highlights that increasing the number of SW functionalities
decreases the transmission rate.

5. CONCLUDING REMARKS
The paper described a timing-accurate co-simulation ap-

proach for modeling embedded systems, where the HW part
is modeled by using SystemC, and the SW part is a pro-
gram running on an ISS or on a real microprocessor. The
synchronization mechanism is totally encapsuled into the
SystemC kernel and completely transparent to the designer.
Experimental results have highlighted that the proposed
timing synchronization does not sensibly degrade the co-
simulation time, while performance estimation of the Sy-
stemC/ISS becomes comparable with SystemC/board archi-
tecture. Finally, we have showed that the timing-accurate
co-simulation allows a more precise design exploration for
HW/SW partitioning.

6. REFERENCES
[1] J. Buck, S. Ha, E. Lee, and D. Messerschmitt.

Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems. International
Journal in Computer Simulation,
vol. 4(2):pp. 155–182, 1994.

[2] F. Balarin, M. Chiodo, P.Giusto, H.Hsieh, A.Jurecska,
L.Lavagno, C.Passerone, A.Sangiovanni-Vincentelli,
E.Sentovich, K.Suzuki, and B.Tabbara.
Hardware-Software Co-Design of Embedded Systems:
The Polis Approach. Kluwer Academic Press, 1997.

[3] Synopsys Inc. Eaglei .
Http://www.synopsys.com/products.

[4] Mentor Graphics Inc. Seamless CVE .
Http://www.mentor.com/seamless.

[5] C. Liem, F. Nacabal, C. Valderrama, P. Paulin, and
A. Jerraya. System-on-Chip Co-simulation and
Compilation. IEEE Design and Test of Computers,
vol. 14(2):pp. 16–25, 1997.

[6] C. Valderrama, F. Nacabal, P. Paulin, and A. Jerraya.
Automatic VHDL-C Interface Generation for
Distributed Co-Simulation: Application to Large
Design Examples. Design Automation for Embedded
Systems, vol. 3(2/3):pp. 199–217, 1998.

[7] P. Coste, F. Hessel, P. L. Marrec, Z. Sugar,
M. Romdhani, R. Suescun, N. Zergainoh, and
A. Jerraya. Multilanguage Design of Heterogeneous
Systems. In Proc. of IEEE International Workshop on
Hardware-Software Codesign, pp. 54–58. 1999.

[8] L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi,
and M. Poncino, SystemC Co-simulation and
Emulation of Multi-Processor SoC Designs. IEEE
Computer, vol. 36(4):pp. 53–59. 2003.

[9] J. Liu, M. Lajolo, and A. Sangiovanni-Vincentelli.
Software Timing Analysis Using HW/SW
Co-Simulation and Instruction Set Simulator . In Proc.
of IEEE International Workshop on
Hardware/Software Co-design, pp. 65–69. 1998.

[10] L. Semeria and A. Ghosh. Methodology for
Hardware/Software Co-verification in C/C++. In
Proc. of IEEE Asian and South Pacific Design
Automation Conference, pp. 405–408. 2000.

[11] K. Lahiri, A. Raghunathan, G. Lakshminarayana, and
S. Dey. Communication Architecture Tuners: a
Methodology for the Design of High-Performance
Communication Architectures for System-on-Chips. In
Proc. of ACM/IEEE Design Automation Conference,
pp. 513–518. 2000.

[12] F. Fummi, S. Martini, G. Perbellini and M. Poncino
Native ISS-SystemC Integration for the Co-simulation
of Multi-Processors SoC . In Proc. of IEEE Design
Automation and Test in Europe, pp.564–569. 2004.

[13] I. Moussa, T. Grellier, and G. Nguyen. Exploring SW
Performance Using SoC Transaction-level Modelling .
In Proc. of IEEE Design Automation and Test in
Europe, pp. 120–125. 2003.

[14] GNU Project Web server .
Http://www.gnu.org/software/.

[15] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and
A. Jerraya. Building Fast and Accurate SW
Simulation Models Based on Hardware Abstraction
Layer and Simulation Environment Abstraction Layer .
In Proc. of IEEE Design Automation and Test in
Europe, pp. 550–555. 2003.

[16] I. Bacivarov, S. Yoo, and A. Jerraya. Timed HW-SW
Cosimulation Using Native Execution of OS and
Application SW . In Proc. of IEEE International High
Level Design Validation and Test Workshop, pp.
51–56. 2002.

[17] PSIM User Guide and Reference Manual .
Http://sources.redhat.com/psim/manual/.

[18] eCos Home Page. Http://sources.redhat.com/ecos/.
[19] N. Drago, F. Fummi, M. Monguzzi, G. Perbellini, and

M. Poncino. Estimation of Bus Performance for a
Tuplespace in an Embedded Architecture. In Proc. of
IEEE Design Automation and Test in Europe, pp.
188–193. 2003.

157

