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Abstract—FPGAs offer attractive power and performance for
many applications, especially relative to traditional sequential
architectures. In spite of these advantages, FPGAs have been
deployed in only a few, niche domains. We argue that the difficulty
of programming FPGAs all but precludes their use in more
general systems: FPGA programmers are currently exposed to
all the gory system details that software operating systems long
ago abstracted away.

In this work, we present the Latency-insensitive Environment
for Application Programming (LEAP), an FPGA operating sys-
tem built around latency-insensitive communications channels.
LEAP alleviates the FPGA programming problem by providing
a rich set of portable latency-insensitive abstraction layers for
program development. Unlike software operating systems services,
which are generally dynamic, the nature of FPGAs requires
that many configuration decisions be made at compile time. We
present an extensible interface for compile-time management of
resources. We demonstrate that LEAP provides design portability,
while consuming as little as 3% of FPGA area, by mapping several
designs on to various FPGA platforms.

I. INTRODUCTION

In contrast to modern software, current FPGA programming
environments remain primitive. Many of the abstractions
typically available in general purpose systems: high-level
languages, abundant libraries, code portability, and automatic
resource management, do not exist for FPGAs. Creating a
design for an FPGA often requires that programmers start from
bare metal, bringing up not only their application, but significant
operating infrastructure including memory controllers, I/O
systems, and debugging facilities. All of these activities require
large amounts of time, slowing the FPGA development process
to the point that the relative simplicity of software becomes
very attractive. Worse, getting an application to work once
is insufficient. The lack of portability of FPGA programs
between platforms and generations means that building the
next generation implementation usually requires significant re-
implementation. Although FPGAs offer attractive power and
performance relative to traditional sequential processors, they
are not commonly used in systems architecture because they
are painful to program.

To address these development issues, we propose the LEAP
FPGA operating system. Like a software operating environment,
LEAP provides both basic device abstractions for FPGAs and
a collection of standard I/O and memory management services.
These abstraction layers shield programs from the complex
details of the underlying FPGA hardware while simultaneously
providing design portability across all FPGAs supported by
LEAP.

LEAP resembles general-purpose operating systems in
function. However, because LEAP targets FPGAs, its implemen-
tation is necessarily very different. In general-purpose systems,
user programs are organized into processes and threads that
share a common execution substrate with the operating system:
the processor and its memory system. Interaction between the

program and the operating system generally occurs by storing
data in memory and then changing contexts to the operating
system by a function call. FPGAs differ from this general-
purpose model in two ways, both of which profoundly affect
the organization of LEAP.

In the FPGA, user programs and the operating system share
neither a common execution substrate nor a common, global
view of storage. Instead, FPGA programs are organized as
spatially distributed modules, with portions of the FPGA fabric
dedicated to each of the different functions of the program
and the operating system. To accommodate this distributed
programming model, LEAP’s fundamental abstraction is com-
munication. To enable portable, abstract communications, LEAP
builds upon the concept of latency-insensitive design [1]. LEAP
formalizes latency-insensitive design as latency-insensitive
(LI) channels, programming constructs that provide point-to-
point, reliable communication but do not explicitly specify
the timing or the implementation of the communication. By
decoupling the notion of communication from the physical
and timing details of data transmission, latency-insensitive
channels slacken the requirements of synchronous timing while
preserving the parallelism intrinsic to hardware designs. This
timing relaxation is critical in providing operating system
abstractions on FPGAs, since the timing behavior of operating
system services must necessarily change between platform
and program configurations. We will demonstrate, by example,
that latency-insensitive channels can capture most important
operating systems functionalities in FPGAs while providing a
user-friendly programming interface.

In general-purpose systems, new instructions can be intro-
duced into a program at any time during execution. As a result,
general-purpose operating system activities occur at program
run time: context-switching is lightweight and operating system
instruction flows incur overhead only when those instructions
are executed. FPGAs are typically programmed only once
per execution. While possible, including dynamic management
layers within a static FPGA program incurs fixed area and
performance overhead that lasts for the life of the FPGA
program. To avoid these penalties, most resource management
decisions in LEAP, for example memory and clock management,
are made statically at compile time. This decision results in
a deeper coupling of compiler and operating system. LEAP’s
static incorporation of resources resembles early software
operating systems, which did require re-compilation to integrate
new functionalities. A key contribution of this work is an
extensible compiler interface that permits the integration of
new operating systems services within the LEAP framework.

In this work, we outline a philosophy for the construction
of FPGA systems that allows developers to focus on core
algorithms, while retaining the full flexibility of FPGAs. In
building platforms for FPGAs, there is much to be learned from
general-purpose operating systems. Throughout the paper, we
will highlight the similarities and differences between LEAP
and traditional software operating systems and the importance



of communication to FPGA design. This work will also explore
the unification of operating-systems features, many of which
have been previously evaluated individually, into a conceptual
whole that has never been available, previously, for FPGAs.

II. RELATED WORK

Previous work on FPGA operating systems has focused
on adding communications support within existing general-
purpose operating systems. BORPH [2] views FPGA programs
as UNIX processes that can communicate externally by means
of UNIX pipes. HThreads [3] takes a similar processor-centric
approach, in which fabric-based accelerators are treated as
threads that coordinate with other activities on a soft processor.
FSMLanguage [4] proposes a new domain-specific language
for finite state machines. FSMLanguage abstracts communica-
tions between hardware and software FSM components, using
channel constructs analogous to latency-insensitive channels.
LEAP generalizes the concepts put forward in these works
by supporting channel-based communication between arbitrary
combinations of execution platforms, including multiple FPGAs.
LEAP, BORPH, HThreads, and FSMLanguage all provide strong
compilation support for mapping user programs to the FPGA.

In addition to communication, researchers have investigated
memory abstractions for FPGAs. CoRAM [5] proposes a cache
interface similar to LEAP’s Scratchpad [6] interface. Whereas
LEAP allows the user RTL to control the memory interface
directly, CoRAM advocates control by way of control threads
programmed using a C-like language. Unlike LEAP, CoRAM
does not address communication and provides no support
for shared memory within or among FPGAs. FSMLanguage
provides a basic memory abstraction, but its treatment of
memory is limited to scheduling the ports of in-fabric SRAM
resources.

Both Xilinx and Altera have produced OpenCL [7] tool
flows which simplify the coupling of a processor and FPGA.
These flows allow a user to specify a C kernel, which the tool
will then implement on the FPGA. We believe OpenCL is a
good option for a class of kernel-based programs, and LEAP’s
latency-insensitive primitives can capture the kernel model
of computation. However, OpenCL does not expose the full
flexibility of FPGAs. For example, the kernel model proposed
by OpenCL does not capture any design in which a kernel
makes requests back to the host for service or in which kernels
communicate with each other dynamically. LEAP’s interfaces
are intended to facilitate the expression of a more general class
of parallel programs.

III. LI CHANNELS: THE LEAP DESIGN PHILOSOPHY

Operating systems are built on abstraction. In software,
memory serves as the primary operating system abstraction
layer. Core features like virtual memory, communication, I/O,
and dynamic library linking all occur through memory. Even
communication between the user program and the operating
system, in the form of system calls, occurs through memory.
Memory-as-abstraction is enabled in part by the dynamic time-
multiplexing capabilities of the processor and in part by support
for sharing within the processor memory system.

In contrast to general-purpose systems, FPGAs have no
intrinsic concept of a globally shared storage or execution
infrastructure. Moreover, constructing such an infrastructure

in the FPGA as a fundamental operating system abstraction
layer is inefficient. FPGAs are comprised of small state and
logic elements which are typically dedicated to a single task
and which communicate with each other using wires.

Communication of data, as opposed to the storage of data
in memory, is fundamental to the FPGA. However the basic
communication primitives provided by the FPGA, wires, are
not sufficiently abstract for an operating system. Wires in
the FPGA are synchronous, and clock edges have concrete
semantic meaning. Synchronous semantics present a problem
for operating systems: the timing behavior of operating system
services necessarily changes depending on the user program and
the platform targeted. Although it is possible to automatically
abstract away syncronicity [8] within an FPGA program, the
overhead of such abstraction is very high. Thus, communication
over pure wires cannot be used as a basic interface into the
operating system. To enable FPGA operating systems, a higher-
level abstraction for communication is required.

LEAP introduces latency-insensitive channels as its primary
communication primitive. Latency-insensitive channels have
operating behaviors and interfaces similar to the concurrent
FIFO modules commonly available in hardware and software
programming libraries – a simple enqueue and a simple dequeue
operation along with some status methods, e.g. notFull and
notEmpty, for use by the user program in determining when
to send and receive data. Syntactically [9], latency-insensitive
channels consist of named send and receive endpoint pairs,
instantiated with the following syntax:

module mkA (Empty);
SEND(Bit(42)) toB = mkSend("AtoB");

endmodule
module mkB (Empty);
RECV(Bit(42)) fromA = mkRecv("AtoB");

endmodule

Semantically, these pairs represent a reliable, in-order
channel from the sender to the receiver. Unlike library FIFOs,
which have a fixed implementation within a given library, the
latency-insensitive channel denotes abstract communication and
makes only two basic guarantees. First, the channel guarantees
reliable, FIFO delivery of messages. Second, the channel
guarantees that at least one message can be in flight at any
point in time. Consequently, a latency-insensitive channel may
have dynamically-variable transport latency and arbitrary, but
non-zero, buffering. At compile time, LEAP’s compilation
infrastructure (Section‘VIII) matches channel endpoints and
produces physical implementations of the latency-insensitive
channels.

LEAP leverages the indeterminate behavior of the latency
insensitive channel in three ways. First, LEAP leverages the
abstract nature of latency insensitive channels as a means of
orchestrating communications between FPGA and CPU and
across FPGAs (Section IV). Second, LEAP relies on latency-
insensitive channels to safely decouple its services, like memory,
from the user program (Sections V and VI). Finally, LEAP
uses latency insensitive channels to abstract physical device
interfaces, providing portability among platforms (Section VII).

IV. LEAP COMMUNICATIONS

When a programmer instantiates a latency-insensitive chan-
nel, he asserts that the potentially variable timing behavior of the
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Fig. 1: Two implementations of a LEAP-based program. Dotted lines represent the logical latency insensitive channels. These
channels are inferred at compile time from the combination of user source and platform devices. LEAP targets multiple FPGA
platforms and communicates with software by stretching channels across chip boundaries.

channel does not impact the functional correctness of the design.
Thus, the semantics of latency-insensitive channels permit
LEAP to select any channel implementation that preserves
reliable, FIFO message delivery. Much like the POSIX socket
interface, LEAP uses latency-insensitive channels both for
communication between hardware modules within an FPGA
and for communication with other types of programs on external
platforms. At compile time, LEAP analyzes the user program
and discovers channels that terminate externally. These channels
are tied, via a synthesized communications network, to physical
devices capable of communicating externally.

In addition to managing communication between hardware
and software, LEAP leverages latency-insensitive channels to
map user programs automatically across arbitrary sets of FPGAs
[10]. This operation is analogous to the mapping of threads to
a multi-core processor by a general purpose operating system.
Mapping an FPGA program to multiple platforms first requires a
mechanism for partitioning the program. Again, LEAP leverages
latency-insensitive channels. We define a latency-insensitive
module to be a region of a program that interacts externally
only by way of latency-insensitive channels. LEAP views all
user programs as collections of latency-insensitive modules,
a subdivision that can be thought of as the FPGA equivalent
of operating system process or thread management. To map a
program across FPGAs, LEAP allocates the latency-insensitive
modules comprising the program to the available FPGAs in the
system based on area consumption and communication. As in
the case of FPGA-processor communications, LEAP synthesizes
a networking layer to transport messages between connected
FPGAs. Figure 1(b) shows an example of a simple program
that has been mapped to two FPGAs. As in software operating
systems, no changes are necessary in the user program to make
use of LEAP’s partitioning.

Latency-insensitive modules offer a good balance between
the abstraction needed for operating-system-level management
and program expressivity. Moreover, this balance is achieved
without a significant impact to program performance or area

consumption: most latency-insensitive channels will be imple-
mented as RTL FIFOs, preserving the performance of hand-
coded RTLs. Latency-insensitive modules are already a common
design paradigm in hardware systems, both at the system
and micro-architectural levels. For example, SoCs targeting
FPGAs are generally framed in terms of network-on-chip pro-
tocols, which are usually latency-insensitive. Within individual
hardware blocks, it is a common design practice to decouple
components with guarded FIFO interfaces. Because LEAP’s
latency-insensitive channel syntax and semantics resemble
existing RTL structures, LEAP’s latency-insensitive channel
syntax can often be substituted directly into existing RTL.

Although LEAP primarily targets RTLs mapped to FPGAs
with some support for software, latency-insensitive modules
admit of a diversity of programming substrates and languages.
So long as the external latency-insensitive interface semantics
of a module are maintained by the programmer, modules may
have any implementation internally that programmers require.
Such implementations include not only RTL, but also arbitrary
software either on an external host processor or an internal soft
processor.

V. LEAP SCRATCHPADS: SCALABLE FPGA MEMORY

Although we argue that abstract communication is the
fundamental building block of FPGA programs, memory is
critical to many applications. FPGAs offer a rich set of memory
primitives: SRAM resources are available within the fabric,
FPGA boards include off-chip DRAM, and host virtual memory
may be accessible over a communications link. Unfortunately,
these memory resources are often difficult to use, in part because
FPGA programmers are fully exposed to the low-level details of
the memory: the number of memory banks, the width of memory,
timing, and the number of beats per memory access. Memory
systems in general purpose machines are also complex, and
large fractions of processor die area are consumed by memory
management: caches, memory controllers, and virtualization
hardware. However, most user programs in general purpose
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systems are insulated from the complexity of the memory
hierarchy through a simple, abstract load-store interface to
virtualized memory. The internal complexity of the memory
hierarchy improves throughput dramatically, but the simple
interface to memory allows programmers to focus on algorithms
and enables program portability.

LEAP provides a software-like in-fabric memory abstrac-
tion for FPGA programs. LEAP’s memories have a latency-
insensitive interface with three methods: read-request, read-
response, and write. A LEAP program may instantiate as
many memories as needed and these memories may have
arbitrary size, even if the target FPGA does not have sufficient
physical memory to cover the entire requested memory space.
Programmers instantiate LEAP memories using a simple,
declarative syntax:

// Instantiate two memory interfaces with private
// address spaces
module mkModuleA();
MEM_IFC(ADDR,DATA) priv1 = mkMem();

endmodule
module mkModuleB();
MEM_IFC(ADDR,DATA) priv2 = mkMem();

endmodule

LEAP provides two basic interfaces to memory: private
and shared [11]. Each declaration of a memory resource
creates a latency-insensitive interface to memory. For shared
memories, programmers declare a named coherence domain
and instantiate a LEAP coherence controller in addition to the
memory interface itself.

LEAP’s memory primitives are portable among and across
FPGAs. Like the load-store interface of general-purpose ma-
chines, LEAP’s memory interface admits of complex backing
implementations. LEAP’s memory interface does not explicitly
state how many operations can be in flight, nor how quickly
in-flight operations will be retired. As was the case in com-
munications, this ambiguity provides significant freedom of
implementation to the operating system. For example, a small
memory could be implemented as a local SRAM, while a
larger memory could be backed by a cache hierarchy and host
virtual memory. LEAP leverages this freedom to build complex,
optimized memory architectures on behalf of the user, bridging
the simple user interface and complex physical hardware.

At compile time, LEAP aggregates the declared user memory
interfaces into a cache hierarchy, making use of whatever
physical memory resources are provided by the platform, as
shown in Figures 1 and 2. This hierarchy is optionally backed
by an interface to host virtual memory, as shown in Figure 1,
which provides the illusion of an arbitrarily large address space.
LEAP’s backing memory hierarchy automatically multiplexes
host virtual memory by explicitly assigning segments of virtual
memory to each memory region declared in the user program,
preventing independent memory regions from interfering with
one another within the cache hierarchy.

VI. LEAP SERVICE LIBRARIES

One of the most attractive features of software programming
is that minimal programs, e.g. hello_world, are small and
easy to understand, even for a novice programmer. Contrast the
conciseness and clarity of a basic software program with a basic
RTL program running on an FPGA. The difference is stark. The
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side server, which implements the service library.

chief distinction between the software and RTL program is not
the complexity of the binary: the software binary is comprised of
tens of thousands of unique instructions. Rather, the perceived
simplicity of software arises from the availability of good
libraries, which mask system complexity through intuitive APIs
and strong composability. By combining communications and
memory primitives with an extensible compilation infrastructure,
LEAP is able to provide libraries that rival software in their
scope and simplicity. Indeed, the programmer-supplied portion
of LEAP’s hello_world application is only a dozen lines
of code.

Although we argue that the LEAP libraries are as easy to
use as software libraries, there are some obvious differences.
Software libraries consist of instruction flows to which the
user program gives control. LEAP service libraries take a
distributed approach: service libraries consist of clients and
servers which interact over latency-insensitive channels. The
typical architecture of a service library, a central server and
multiple clients, is shown in Figure 3. To make use of the
service library, programmers instantiate client modules in
their code. Client modules provide a latency-insensitive local
interface framed in terms of request and response methods,
as in Figure 4. Pairwise, these methods resemble software
function calls, but are decoupled to enable hardware pipelining.
At runtime, clients issue requests to the controller over the
network. These requests are serviced by the controller, often by
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interface STDIO(type data);
// fopen is a request/response interface, returning the file handle
Void fopen_req(GLOBAL_STRING_UID nameID, GLOBAL_STRING_UID modeID);
STDIO_FILE fopen_rsp();

// The list of arguments to printf may be up to STDIO_WRITE_MAX elements
Void printf(GLOBAL_STRING_UID msgID, List(data) args);
Void fprintf(STDIO_FILE file, GLOBAL_STRING_UID msgID, List(data) args);

endinterface
Fig. 4: A portion of the interface to an STDIO client. LEAP supports most common STDIO functions.

invoking a software routine using a latency-insensitive channel
which terminates in software. Direct composition with software
libraries, for example, using software to allocate physical
memory or handling printing to a terminal, greatly simplifies the
FPGA-side server implementation and underscores the value
of good hardware-software communications support.

To facilitate the aggregation of library clients, LEAP
provides a broadcast communication primitive: the latency-
insensitive ring. Participants in the broadcast instantiate named
ring stops. At compile time, ring stops are aggregated by
name and connected in a ring topology via latency-insensitive
channels. Rings are advantageous for service libraries both
because they carry a low area overhead and provide a convenient
way to describe library implementations in which the number
of clients is unknown prior to compilation. Indeed, the overhead
is so low that LEAP’s debugger service library can instantiate
debugger clients at every latency-insensitive channel in a
program, enabling programmers to monitor channel state at
runtime.

LEAP provides many basic service libraries, including as-
sertions, statistics collection, command line parameters, locking,
and synchronization. For brevity, we describe only Standard
I/O (STDIO) in detail.

STDIO is one of the most fundamental libraries available in
C and often serves as an introduction to software programming.
LEAP’s STDIO service, part of which is listed in Figure 4,
provides the functional analog of STDIO in the FPGA. Like
its software counterpart, LEAP STDIO provides a simple API
which masks the complexity of actually writing formatted data
to a file.

Programmers instantiate STDIO clients and invoke methods
on them. Internally, STDIO clients marshal programmer com-
mands into a packet format, which is then streamed over the
service ring network to an STDIO server. The server transmits
these packets to software on an attached processor. Software
then invokes the appropriate C STDIO functions using the
FPGA-supplied arguments.

One issue in Standard I/O is dealing with strings. Strings,
which are logically unbounded, are expensive to manipulate
directly in the FPGA. To avoid the area overhead of string
manipulation in fabric, we borrow a tactic from C and cast
strings as pointers. At compile time, string literals are replaced
by pointers, the GLOBAL_STRING_UID. When FPGA pro-
grams manipulate strings, as in snprintf, they do so by
passing string pointers to software. Software creates a new
string and returns a pointer to the new string back to the
FPGA. LEAP’s string pointer management makes use of the
SoftServices interface described in Section VIII to keep track
of string pointers at compile time.

VII. LEAP PLATFORMS

Physical devices are hardly abstract, whether they are
attached to a general purpose processor or to an FPGA.
Interfacing to these devices requires a deep understanding
of device behavior, the details of which can leak back into
user code if the interface programmer is not careful. This is
especially true in FPGAs, where device timing details are often
absorbed by user logic. For example, a design targeting an
FPGA with an attached SRAM may absorb and come to rely
on the fixed-latency behavior of a particular SRAM. As a result
of this dependence, the design becomes unportable.

To deal with physical devices, software operating systems
utilize hardware abstraction layers. Each device provides some
basic API which is common among all devices of that type.
LEAP adopts this approach. In LEAP, classes of physical
devices each provide a uniform, abstract device interface.
Rather than a call-based API, LEAP devices provide a latency-
insensitive-channel-based API, usually framed in terms of
request and response channels. Internally, any implementation
may be chosen by the driver writer, but the external driver
interface is constrained by the LEAP compilation flow to use
only latency-insensitive channels.

LEAP-enabled FPGA platforms may be viewed as a
collection of driver modules for these low-level devices, in
much the same way that linux/arch is used to differentiate
low-level interfaces to different processor architectures. For
each target platform, LEAP accepts a platform description file
which includes abstract drivers for each physical device on the
platform. LEAP uses this configuration file at compile time
to instantiate those drivers required by the user program. As
with software, a platform description must be written only once
per platform and may be shared by all programs targeting the
platform. To represent systems with multiple platforms, LEAP
simply bundles together descriptions of single platforms with
a description of platform interconnectivity.

Some FPGA platforms will not provide all of the resources
required by all of the LEAP services. To maintain compatibility
with such platforms, LEAP provides virtualized device imple-
mentations. These devices may rely on support from an external
platform, either FPGA or processor, which can provide the
service. In the case of LEAP Scratchpads, if no backing memory
is available on the local FPGA, backing memory on a remote
FPGA or on a remote processor may be used instead. LEAP
virtual services resemble the memory-based virtualization layers
typically found in software, such as ramdisk. LEAP’s latency-
insensitive approach directly enables platform virtualization:
virtual devices are functionally equivalent to physical devices
but their timing and performance may be radically different.

LEAP’s FPGA platform abstraction directly enables its
multiple FPGA partitioning capabilites. Because operating
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system interfaces are consistent across platforms, LEAP can
map user modules to any platform irrespective of the services
and resources provided by that platform.

VIII. LEAP COMPILATION

In software, applications typically access system resources
by making a request to the operating system for an interface
object. For example, fopen requests access to a file by way
of a FILE handle. From the programmer’s perspective, this
interface is very clean: a request results in a simple object, which
the program then manipulates. In this transaction, the operating
system functions as an intermediary between the program and
the underlying file system resource, and the operating system’s
responsibility is to provide an efficient implementation of the
accessor object on behalf of the user program.

Resource access in LEAP is functionally analogous to
software resources. Programmers request abstract resource
accessor objects, which are then supplied by LEAP. The key
difference between LEAP and software operating systems is
when accessor objects are created. Since instructions incur low
overhead, resource management decisions in general purpose
systems can be made dynamically and the operating system
has the freedom to optimize its provided implementation at
runtime. Although LEAP makes FPGA resource management
decisions dynamically wherever prudent, dynamic management
of resources in an FPGA often requires both additional control
and storage overhead. These overheads frequently outweigh the
benefit of dynamism: for point-to-point communication, a FIFO
is much cheaper to implement than a network router. Avoiding
dynamism at runtime means that resource allocation decisions
must be made at compile time, resulting in a tighter coupling
of compiler and operating system than is typically found in
modern general-purpose operating systems.

Consider, as an example, the problem of allocating clocking
resources in an FPGA. On the surface, clocking seems like
a trivial problem in FPGA design: the designer instantiates a
new clock primitive and ties it to the design RTL. However,
even a resource as simple as a clock benefits from abstraction.
Clock primitives are finite resources within the FPGA fabric.
If a program instantiates too many clocks, it will not fit in the
FPGA, even if these clocks all have the same frequency. A
second issue in clocking is portability. Since FPGA clocks are
parameterized in terms of ratios, including a fixed clocking
primitive in the RTL immediately renders a design unportable.

To address these issues, LEAP provides the SoftClocks
service. Programs ask for a clock at a particular frequency.
Internally, the service maintains a list of previously requested
frequencies. In response to a user request for a clock, the
service searches its list for a clock of that frequency. If found,
the service returns the appropriate clock object, which may be
used directly in the program. Otherwise, the service instantiates
a new clock, inserts it in the clock list, and returns the new
clock. All clocks generated by the service are derived from
physical clocks provided by the target platform. User designs
are thus portable, depending only on clocks derived from the
SoftClocks service.

SoftClocks illustrates a general resource management
paradigm: a resource management service gathers information
at compile time about how a resource is used within an FPGA
program, and then creates an efficient implementation of the

resources required by the program. To manage general classes of
FPGAs resources at compile time, LEAP defines a programmer-
extensible compiler interface, called SoftServices. LEAP uses
SoftServices to manage many diverse functionalities, including
clocking, the implementation of the latency-insensitive channels
described in Section III, and the construction of efficient scan
chains for run-time debugging.

Conceptually, SoftServices are objects that contain arbitrary,
service-specific state. Services provide two interfaces: a private
compiler interface and a user interface, by which programmers
interact with the service object and request resources. Service
objects register with the LEAP compiler, and the compiler
invokes the private interface at certain points during compilation.
In a typical service implementation, the user program invokes
the public service interface to request resource access. The
service builds a representation, often a list, of these requests.
At the end of program compilation, LEAP invokes a service-
provided handler, which allows the service to examine its data
and produce an efficient, program-specific service implementa-
tion.

SoftServices provide the following interface to the LEAP
compilation flow:

interface SOFT_SERVICE(type service_state);
service_state initService();
Void finalizeService(service_state state);
Void handleModule(service_state state);

endinterface

Each service may maintain whatever state information
it requires, as represented by the structure service_-
state. Services must provide three functions to the compiler.
initService is called at the start of compilation and
finalizeService is called at the end of compilation. This
permits a service to view all requests for resource accessors
for the entire program, thereby permitting the construction of
globally efficient management hardware. handleModule is
called at each latency-insensitive module, allowing services to
make regionally-scoped implementation decisions.

SoftServices may make use of other SoftServices. For
example, the implementation of named latency-insensitive
channels interacts with the SoftClocks service by automatically
inserting channels with clock domain crossings when necessary.
To capture these inter-service dependencies, LEAP allows
system programmers to specify the order in which the private
service interfaces should be invoked by the compiler, in much
the same way that init.d manages service startup in a general
purpose operating system.

LEAP’s SoftService infrastructure requires that the RTL
compiler have strong support for static elaboration. Although
legacy compilers are limited in this respect, recent hardware-
oriented compilers [12] [13] provide sufficient infrastructure
for LEAP.

IX. EVALUATION

The primary advantage of LEAP, the abstraction of user
programs from common services and physical platforms,
is qualitative. Software systems separate applications from
libraries and kernels even in the most constrained embedded
systems, because the gains in programmer efficiency outweigh
the resource costs. The question for FPGAs is whether the cost
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Fig. 5: HAsim Performance when mapped to different FPGA
platforms. All cores in the design run a version of PARSEC’s
ray-trace program. Performance is reported in aggregate MIPS,
the sum of throughput across all cores. When more resources
are available, HAsim can scale to large numbers of cores.

of operating system abstractions is acceptable. We evaluate
LEAP by measuring program performance and area overhead
across a diverse set of programs and platforms.

A. FPGA Platforms

Our evaluation targets two different FPGA platforms with
markedly different physical device characteristics, which we
have chosen to illustrate the portability provided by LEAP.
Although we will evaluate only Xilinx boards in this work,
LEAP also supports a number of Altera platforms.

Nallatech ACP [14]: The Nallatech ACP module consists of
a pair of Virtex-5 LX330Ts that plug directly into an Intel
Front Side Bus (FSB) socket. The two FPGAs on the ACP
are connected by way of a high-speed LVDS bi-directional
interconnect. 8MB SRAM modules attached to each of the two
FPGAs.

Xilinx VC707: The VC707 is a widely deployed evaluation
board built with the Virtex-7 LX485T. The VC707 includes a
1GB DDR2 memory. The VC707 has both a PCIe interface for
processor communication and numerous SERDES transceivers
for inter-FPGA communication. We target both a single VC707
board and a dual VC707 configuration in which two boards
communicate using multiple LEAP-managed SERDES links.

B. Benchmarks

To illustrate the broad applicability of LEAP, we examine
several benchmarks of drastically different size.

Hello World: Like its well-known software equivalent, this
program prints a message and then terminates. It illustrates the
value of LEAP even in expressing simple programs.

Heat Transfer: A highly parallel stencil computation modeling
heat transfer in a two-dimensional space. When implemented
using LEAP’s shared memory primitives, heat transfer can easily
scale to consume all the area on a set of FPGAs.

HAsim: HAsim is a framework for constructing high speed,
cycle-accurate simulators of multi-core processors. To model
multiple cores, HAsim time-multiplexes components of a
single processor, sharing these components among all modeled
processors. HAsim is highly parametric, both in terms of the
structure and the number of cores modeled. As a result of
its time-multiplexed architecture and parameterization, HAsim
models can scale to hundreds or thousands of cores with
trivial source modifications, assuming that the operating system
provides sufficient support to map large designs.

C. LEAP Overhead

Table I shows the areas of the benchmark programs when
targeted to four different FPGA platforms. LEAP’s overhead
varies depending on the resources and services required by the
user program. Hello World uses only two services and does
not use memory, resulting in a LEAP overhead of only around
3% for a single FPGA implementation. The area overhead of
LEAP in the case of Hello World underscores the value of
LEAP: running even a baseline program requires significant
support logic. Heat makes use of LEAP’s shared memory. As a
result, the overhead of LEAP for a small number of processing
elements (PEs) is high. However, if the number of PEs is scaled,
the overhead of shared memory is amortized. HAsim makes
use of most LEAP services, specifies some application-specific
services, and includes multiple memory interfaces to the LEAP
memory hierarchy. As a result, LEAP overhead in HAsim is
larger, with the cache hierarchy contributing around 12% of the
area used by LEAP on each FPGA. High overhead to support
memory is not unique to LEAP. Cache hierarchies and memory
controllers are a large fraction of general purpose processors
and many FPGA-based designs.

As a further proof of LEAP’s design partitioning capabilities,
we note that the area consumed by single and multiple FPGA
implementation of the same design is identical, within a small
margin for tool noise. LEAP and device driver area increase
by a few percent due to the need to manage inter-FPGA
communication. Since device usage on multiple FPGAs can
be asymmetric, the area consumed by LEAP can vary between
FPGAs in a multiple FPGA implementation. For example, the
second FPGA in the dual VC707 configuration does not include
a PCIe device.

D. Design Portability

One of the chief benefits provided by LEAP is strong design
portability. In Figure 5 we show the performance of LEAP-
based implementations of HAsim targeting four different FPGA
platforms. Other than changing a handful of parameters to scale
HAsim, the user code is unchanged across the four designs.
LEAP transparently provides all of the platform-specific I/O,
memory, and device management required to map HAsim to
the four platforms.

On a single FPGA, HAsim scales to 8 (ACP) and 64
(VC707) cores before the FPGA runs out of resources. Using
LEAP to map HAsim to two FPGAs, without changing any
user code, we are able to build a partitioned model capable of
supporting up to 256 cores. HAsim scaling is mainly governed
by the availability of SRAM in the FPGA fabric. We achieve
super linear scaling in problem size because many structures
in HAsim are either time-multiplexed among all cores or
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(a) ACP
LUTS Registers BRAM freq(MHz)

User LEAP Devices User LEAP Devices User LEAP Devices

Hello World, Single 0.2% 1.1% 1.8% 0.2% 3.0% 2.5% 0.0% 0.3% 3.7% 100
Hello World, FPGA 0 0.2% 2.9% 3.1% 0.2% 4.2% 4.4% 0.0% 0.9% 6.1% 100
Hello World, FPGA 1 0.0% 1.1% 1.8% 0.0% 1.5% 2.5% 0.0% 0.9% 3.7% 100

Heat, 2 PEs, Single 8.6% 13.5% 1.8% 4.5% 18.3% 2.5% 0.8% 0.7% 3.7% 75
Heat, 16 PEs, FPGA 0 32.4% 8.7% 3.1% 16.4% 25.1% 4.4% 2.9% 1.7% 6.1% 75
Heat, 16 PEs, FPGA 1 30.1% 13.0% 1.9% 15.9% 14.0% 2.5% 3.0% 0.1% 3.7% 75

HAsim, 8 cores, Single 72.0% 18.7% 1.8% 62.9% 19.3% 2.4% 78.0% 0.3% 3.7% 50
HAsim, 64 cores, FPGA 0 34.7% 20.5% 3.1% 25.7% 19.4% 4.4% 83.3% 2.2% 6.2% 60
HAsim, 64 cores, FPGA 1 68.9% 15.3% 1.8% 46.7% 13.8% 2.5% 88.2% 4.9% 3.7% 50

(b) VC707
LUTS Registers BRAM freq(MHz)

User LEAP Devices User LEAP Devices User LEAP Devices

Hello World, Single 0.2% 3.6% 1.8% 0.1% 3.3% 4.1% 0.0% 0.0% 6.8% 100
Hello World, FPGA 0 0.2% 7.4% 6.2% 0.1% 6.5% 5.1% 0.0% 3.1% 7.4% 100
Hello World, FPGA 1 0.0% 3.3% 6.2% 0.0% 3.0% 5.1% 0.0% 2.8% 7.4% 100
Heat, 2 PEs, Single 4.9% 15.1% 6.6% 1.4% 6.4% 2.6% 0.4% 0.6% 3.2% 75
Heat, 32 PEs, FPGA 0 47.8% 9.0% 7.8% 9.9% 7.9% 3.2% 1.9% 2.2% 9.7% 75
Heat, 32 PEs, FPGA 1 37.3% 7.9% 7.8% 9.7% 4.1% 3.2% 2.3% 1.6% 9.7% 75
HAsim, 64 cores, Single 73.8% 24.0% 6.6% 18.5% 9.4% 2.6% 28.0% 2.6% 3.2% 80
HAsim, 256 cores, FPGA 0 46.9% 21.5% 7.8% 8.7% 8.8% 3.2% 46.6% 3.4% 9.7% 60
HAsim, 256 cores, FPGA 1 62.0% 13.8% 7.8% 13.7% 4.1% 3.2% 72.4% 3.5% 9.7% 60

TABLE I: Synthesis metrics for single and multiple FPGA implementations. Results were obtained using the Xilinx tool chain at
14.5. Utilization results are listed as a fraction of the total FPGA resources for the target FPGA.

scale logarithmically with the number of cores. Dual-FPGA
implementations of HAsim have lower performance in terms
of aggregate MIPS than single FPGA implementations due to
the overhead of communication between chips. While much of
this latency is hidden by deeper pipelining, some critical loops
are exposed.

X. CONCLUSION

FPGAs have great potential as platforms for many kinds of
computation. However, the difficulty of programming FPGAs
hinders their adoption in general systems. In this work, we
presented the general philosophy and implementation of LEAP,
an operating system for FPGAs. Like a software operating
system, LEAP reduces the burden of programming FPGAs by
providing uniform, abstract interfaces to underlying hardware re-
sources, automatic management of these resources, and powerful
system libraries that aid program design. LEAP achieves these
goals through formalizing the principle of latency-insensitive
design and providing strong compiler support for automating
implementation decisions.

We believe that LEAP, or at least the design principles
embodied in LEAP, is applicable to a wide range of other
systems. We have found LEAP particularly useful in describing
programs partitioned across multiple, heterogeneous platforms.
The rise of programmable accelerators has made heterogeneous
systems increasingly attractive. Because programming hetero-
geneous systems fundamentally requires strong communication
support and because accelerator-based systems share many
characteristics with FPGAs, we see LEAP as being valuable
in programming and managing these new architectures.

LEAP is open-sourced under a BSD-style license and may
be freely downloaded at http://leap.csail.mit.edu.
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