
1

Celoxica announces DK1.1 for rapid
hardware design

Copyright © 2002 Celoxica Limited. All rights reserved. Celoxica, the Celoxica logo and “cutting a LONG story SHORT” are trademarks of Celoxica Limited. All
other trademarks. All other trademarks acknowledged. The information contained herein is subject to change without notice and is for general guidance only

2

Celoxica Limited

> A supplier of high-level design tools that bridge the gap
between the worlds of ESD (Embedded System Design)
and EDA (Electronic Design Automation)

> Bringing new efficiencies to hardware design

> At the same time, we enable software engineers to
accelerate software in parallel hardware to overcome CPU
bottlenecks

3

Celoxica’s products and services

DK1.1 featuring Handel-C, the world's
first design suite to build custom

hardware from a high-level software
language

Design services for proof of concept
work and applications engineering

RC range of development boards
for rapid prototyping

Hardware libraries (Rijndael,
voice Codec, SDRAM controller)

PAL and DSM for rapid design,
design reuse and co-processor

acceleration

4

FPGA evolution

> FPGA/PLD technology has evolved rapidly

! Glue logic

! Alternative to ASIC

! System or sub-system platform

> FPGA/PLD technologies now offer chips that integrate

! Soft or hard processors

! Memory, multipliers and advanced I/O functionality

! Millions of programmable gates

5

Implications

> The hardware design objects are no longer circuits but
systems or sub-systems

> Designers are not necessarily pure hardware designers
but system designers, hardware and/or software
designers working in cooperation

> Similar design methods for hardware and software can
simplify optimal allocation of functionality to software,
hardware and reconfigurable hardware

> The close integration between processors and hardware
logic opens up new opportunities to accelerate software
functionality

6

A software-like design approach

A C-based
language

A software-like
design

environment

Libraries of
predefined
functions

7

A C-based language: Handel-C

> Almost all of ANSI-C plus syntactic extensions for hardware

! Describes the behaviour rather than the structure

! Software code compiled to hardware has same behaviour

> Optimise code incrementally with full control

! Introduce parallel execution with simple par construct

! Set key variable widths and deduce the rest automatically

! Control resource sharing by in-line functions or arrays of functions

! All constructs translate directly to hardware

> Restructure code to gain more optimisation

! Concise readable code for better exploration of a large design space

8

Key hardware adaptations
> Assignment takes one clock-cycle

> Serial execution is default – Parallel is declared

> Declare and infer width of variables

int 5 a;
int b;
par {

a = b; // first clock-cycle
b = a; // same clock-cycle

}

int 5 a;
int b;
par {

a = b; // first clock-cycle
b = a; // same clock-cycle

}

int a;
int b, tmp;
{

tmp = a; // first clock-cycle
a = b; // second clock-cycle
b = tmp; // third clock-cycle

}

int a;
int b, tmp;
{

tmp = a; // first clock-cycle
a = b; // second clock-cycle
b = tmp; // third clock-cycle

}

9

Pars and channels

> With nested par and seq blocks
any serial/parallel execution graphs
can be built

> No finite state machines are
needed to control the flow

> Parallel treads can communicate
via channels

! synchronised transfer of values
between threads
between clock-domains

! I/O
files (in simulation)

10

Benefits

A software-like design approach?

> A programming language for hardware
rather than a hardware description language

> A high level of abstraction to express algorithmic functionality
while allowing full control over sequencing and resource use

> Simple timing model and par construct enables mixed
sequential and parallel execution flow without FSMs

> Compact readable code enables designers to investigate a
larger design space to find more optimal solutions.

11

A software-like design environment

> An integrated design environment with the look and feel of a
software design system

! Manage multiple source, header and object files

! Symbol view with direct jump to definition or use

! Syntax high-lighting

> Verify and debug using a Symbolic Debugger

! Execute stepwise or to break-point or cursor

! Watch selected and local variable values

> Co-simulation with software and HDL-cores

> Fast compilation targeting FPGA/PLD (Xilinx, Altera, Actel)

> Immediate execution on plug-in prototyping boards

12

DK1.1 user interface

File view

Symbol view

Syntax high-lighting

Break-points

Watch
variables

SimulateCompile

13

DK1.1 design flow

EDIF

Place and Route

VHDL

HDL Synthesis

EDIF

Co-Simulation

VHDL/Verilog

Simulator

Software

Co-Simulation
IS Simulator

Specification
(executable)

Simulator

Handel-C / C / C++

14

Benefits

A software-like design approach?

> An Integrated Design Environment that includes source
browsing, editing, symbolic debugging with the ability to follow
parallel threads of execution.

> Fast simulation and compilation/synthesis as expected in a
software design environment

> Co-simulation and verification facilities, that enable
hardware/software partitioning decisions to be made at any
stage in the design process.

15

Software-like library access

> Access to predefined functionality via Header files and
linkage with precompiled functions

> Standard libraries with
language extensions

> Platform environment
and access to peripherals
and processors

> Project libraries

> Application libraries of
third party IP-cores

#include "stdlib.h“

#include “Platformlib.h“

#include “Projectlib.h“

#include “Encryptionlib.h“

. . .

void main()
{

. . .
}

#include "stdlib.h“

#include “Platformlib.h“

#include “Projectlib.h“

#include “Encryptionlib.h“

. . .

void main()
{

. . .
}

16

Example: API for peripheral access

> Inverting colours in a video signal

#include “Platformlib.h”
VideoPixel Pixel;
VideoCoord X, Y;
.
.
par {

VideoInInit(VideoIn[0], …);
VideoOutInit(VideoOut[0], …);

}

while(1) par {
VideoInGet (VideoIn[0], &X, &Y, &Pixel);
VideoOutPut(VideoOut[0], X, Y, ~Pixel);

}

#include “Platformlib.h”
VideoPixel Pixel;
VideoCoord X, Y;
.
.
par {

VideoInInit(VideoIn[0], …);
VideoOutInit(VideoOut[0], …);

}

while(1) par {
VideoInGet (VideoIn[0], &X, &Y, &Pixel);
VideoOutPut(VideoOut[0], X, Y, ~Pixel);

}

17

Benefits

> Simplify development by providing an environment of
predefined definitions, macros and functions

> Enable multiple team co-development

> Enable portability of application designs between different
platforms

> Enable reuse of own and third party IP-cores

A software-like design approach?

18

Conclusions

> New technology that integrates processors and
programmable logic on large chips is likely to trigger a
paradigm shift in embedded system design

> Integrated technology that blurs the distinction between
software, hardware and reconfigurable hardware

> Integrated design teams can work across traditional
competence barriers

> Using similar languages, methods and tools for software
and hardware design is a critical factor in utilizing this
technology to its full potential

19

Integrated
Development

Environment (IDE)

Handel-C Language
Compiler

Project
Management

Interactive Simulator &
Debugger

Source Code
Editor

EDIF & RTL VHDL
Output

Co-simulation

DK1.1 overview

> Designed for system architects, hardware
and software developers

> Introducing software design methods for
hardware design

! Increasing the productivity of hardware
engineers

! Enabling software engineers to target
hardware

> Language is based on ANSI-C

! A programming language for hardware

! Not another HDL with C-language syntax

> Suite includes functions typical of
software development environment

20

DK1.1 new features overview

> System level design
! Mixed Handel-C/C/C++ simulation

! Co-simulation support for ARM and PowerPC embedded processors

! APIs for peripheral access (PAL)

> Compatibility
! Verilog output added to VHDL - improved structure and readability

! Improved EDIF preserving names and added debug info

> Optimization
! Technology mapping of gates to LUTs

! Timing and area analysis tool with direct reference to source

> New simulator improves speed by 100x

> New target technologies - Altera Excalibur and Actel parts

> Operating systems – Windows 95/98, NT, 2000, XP

21

Multiple language descriptions in
DK1.1

> Design projects can include descriptions in Handel-C, C
and C++

! C/C++ functions can be called from Handel-C and vice versa

> This enables:

! High level modelling of system functionality in C/C++

! Functional level software/hardware co-design

! Incremental conversion of software to hardware

! Test-benches in C/C++

! Access to C/C++ for advanced analysis

22

Co-simulation support

> High level functional co-simulation

> Support for plug-ins to ModelSim and cycle-accurate
Instruction Set Simulators

> Back plane model enables powerful co-simulation

! Multiple simulators connected via a single node

! Handel-C, C/C++, ModelSim and ARM, PowerPC SWIFT
models

23

Compatibility

> DK1.1 produces RTL-level Verilog output as well a VHDL

> The code is improved for readability and cross-
referencing

! The hierarchy from the Handel-C code is preserved

! The code is structured for readability

! Names of functions and variables are preserved for cross-
referencing

! Code is targeted to simulators and synthesis systems
(ModelSim, Synplify, Leonardo/Spectrum, FPGA Express)

> EDIF output improved

! Names are preserved

! Debug info for cross-referencing

24

Fast simulation

> A new simulator is added to the DK1.1 Suite

! Cycle accurate

! Compiles directly to native code

> Executes in the order of 100 times faster than the current
net-list based simulator

> Enables analysis of large designs

25

Optimisation

> Technology mapper

! Maps gates into LUTs of the target technology

! Based on CutMap, an area efficient, depth optimal algorithm

> Timing and area analysis tool

! Estimates area resource use

! Estimates timing for critical paths

! Both directly related to the source code

> Gate and LUT based analysis

26

Target technologies

> New target technologies added:

> Xilinx

! Virtex-II Pro (PPC405, 3 Gbit serial I/O)

> Altera

! EPXA10 – Excalibur (Apex2ke + ARM 922T)

> Actel

! EX

! 54SX, 54SX-A, RT54SX, RT54SX-S

! ProASIC, ProASIC+

27

Operating Systems

> Windows

! 98, NT, 2000, XP

! Available now

