Safety Checks 1

iIn @ domain of collaborating(?)
applications

Dr David Greaves
Systems Research

Group

djg@cl.cam.ac.uk
1

1
——

B H UNIVERSITY OF

|

-—

Project

CMI Pebbles and Goals

Groups

Cambridge: AutoHAN (SRG)
MIT CSAIL: Oxygen

Local People

David Greaves
Tope Omitola
Daniel Gordon

Atif Alvi <

UNIVERSITY OF
CAMBRIDGE

Computer Laboratory
e Staff

- 30 academic staff,
- 20 support staff, and

- 25 affiliated research staff.
* Students

- 100 research students (PhD),

- 20 Diploma Students,

- 20 Mphil in Speech and Language,
- 3x90 Undergraduates.

B UNIVERSITY OF

&¥ CAMBRIDGE

Talk Overview

i 1 ‘
* Reliable Computing (historical)

* The new environment (ubicomp)
* RBC / Pushlogic project

B.E UNIVERSITYOF

¥ CAMBRIDGE

Highly-reliable Computer
Systems

* Pre-1970, hardware used to cause the
problems.

* “A common view of software reliability is
that it is ensured by solely ensuring it is
free from bugs.

...Software errors are seen as design
errors and cannot arise from component
ageing.” -- Randell 1971

B.E UNIVERSITYOF

¥ CAMBRIDGE

Traditional Reliability
Dimensions

* High availability (many 9's)

* Graceful failure

* Automatic recover after reboot
* Hardware interlocks

* Safe defaults

* Voting

B UNIVERSITY OF

€¥ CAMBRIDGE

Use a good lanhguage

C/C++ (eg. MISRA profile)
- Popular, ANSI reformed, but...

- Space station dereferences constants!

ADA plus coding standard (eq.
Ravenscar).

Erlang

Esterel

Modellica, Statecharts, SysML.
Pushlogic

B UNIVERSITY OF

&¥ CAMBRIDGE

Coding Standards

* MISRA-C
- 127 rules

- R104: “Non-constant pointers to functions
should not be used”

* ADA Ravenscar 97
- Standard templates for timing/threading
- No use of asynchronous select
- No use of dynamic priorities
- many other rules

B UNIVERSITY OF

&¥ CAMBRIDGE

Erlang

-module(math) .
-export([areas/1]).
-import (lists, [map/2]).

slareas(L) ->

lists :sum(
map (
fun(I) -> area(I) end,
L)).
area({square, X}) ->
1.E) .8
area({rectangle,X,Y}) ->
X+Y,

& H UNIVERSITY OF

&Y CAMBRIDGE

emit WATCH_MODE_COMMAND;
loop
trap WATCH_MODE in

loop
do
<watch mode — exit WATCH_MODE on LL>
upto UL;
do
<set-watch mode>
upto UL
end
end
end;

emit STOPWATCH_MODE_COMMAND; E St e re I

do
<stopwatch mode>
upto LL;
emit ALARM_MODE_COMMAND:
loop
trap ALARM MODE in
loop
do
<alarm mode — exit ALARM_MODE on LL>
upto UL;
do
<set-alarm mode>
upto UL
end
end

%5 UNIVERSITY OF
4P CAMBRIDGE

mﬁv ? _“%StateCharts

L sysML

»X

stopTime

v

e

Counting ! Up ‘ Stopped | EditHout
R

sewnd np H 1
\\\‘u —

|
.J
stopTime
) " O C '
ssTime = A] = A |
i Tier
larigth Left T A enath
Do
A ode e lengthLeft
. -~

BB UNIVERSITYOF
&¥ CAMBRIDGE

stategraph graph_name()
{

state statenameO (subgraph_name, subgraph_entry_state), ... :

entry: statement;
exit: statement;
body: statement;

statement;
// implied 'body:' statements
statement;
cl -> statenamel: statement;
c2 -> statename?2: statement;

c3 -> exit(good);

exit(good) -> statename3: statement;
exit(bad) -> statename4: statement;

endstate
state statenamel:

endstate

Hierarchical
Stategraph
Syntax

(SysML/
Pushlogic)

5.8 UNIVERSITYOF
CAMBRIDGE

Reliable Toolchain

* Validated compiler
- Hard to find one
- User's program could be wrong

* Validate the object code at point of use
- Easy to understand code, or
- Proof carrying code

B UNIVERSITY OF

&¥ CAMBRIDGE

System Validation

* Simulation/emulation/exercising

- Hours of switching switches according to
printed script

- Output as expected: yes/no ?
- Run-time assertion monitors.
* Code coverage.
* Static checking with formal methods.

B UNIVERSITY OF

&¥ CAMBRIDGE

Automatic(?) Error Recovery

* BPELAWS and STAC provide

- exceptions
- roll back contexts

* New language constructs:
- Enter a new named context
- Add a rollback command to the context

- Pop to named context (forget associated
rollbacks)

- Abandon to named context (unwind,
executing rollbacks in reverse order)

B UNIVERSITY OF

&¥ CAMBRIDGE

New Environment

Many concurrent applications sharing
resources,

Dynamic population of applications and
resources,

Multiple, overlapping domains,

Dynamic disconnection and
reconnection,

Device API evolves (new models).

B UNIVERSITY OF

€¥ CAMBRIDGE

Es wurde eln neues
Gerat gefunden.

Device:
Airbus A310

Soll die Auto-
Konfguration
gestartet werden ?

& H UNIVERSITY OF

1.

2.

3.

4.

APl Reflection (mature).

Early, wire protocol RPC APIs:

» Sun RPC, CORBA, HAVI, MOSTNET

Evolvable XML APIs with Reflection:
> UPnP, EDDL, (SNMP), XMLRPC, SOAP,

WSDL

Self-Assembling Directory Services
» UPnP, RDF, LDAP, SCP, SSDP, INS, ...

Namespaces and Ontologies
» OWL, OWL-S, DAML, RDF

ELE UNIVERSITY OF

4P CAMBRIDGE

A Device: A collection of Pebbles and a Canned App I

Let's look at what a modern TV set contains:

> 1. The following separate devices, each of which can be
individually useful in a networked home:

 RF Tuner * IR Receiver

» Colour Display * Teletext Decoder

* Ni-Cam Audio Decoder * MPEG Decoder

* Power Amplifier * Programming Memory

S ST * Front Panel User Interface

Decoder

> 2. A canned application that joins the components.

UNIVERSITY OF
CAMBRIDGE

Generic Device: Pebble View

Dizplay
Fehble Pushlogic
keypad Interpreter
Febhle by
Fushlogic
imer
T&TS;E — Fehble
Febble
atorage
with
Iniversal Access
e.q. Tuple Space Specialized
Fieﬂectinn"r rarctiare
Infarrnatian f Lanngd
Firmware ; x
Etherret Application Hyar DWD
and Fosix Gockets Pehhle Mechanism
1 Febble
Controller User |{F
Fushlagic Pushlogic
Bytecode Bytecace JIVERSITY OF

a@P CAMBRIDGE

Definitions:Pebbles and
Applications

* Pebble:

- A passive network entity (hardware or software)
that implements a useful, reusable function and
can register and describe itself to its environment.

* Application:
- A proactive bundle of controlling code that

connects pebbles together to achieve some user
goal.

* Device:

- A hardware entity that encompasses some
pebbles and bundles

B UNIVERSITY OF

&¥ CAMBRIDGE

Example User Scripts

Record both Simpson’s shows tonight and charge to
Pam’s pay-per-view account.

Create a video call to Peter of best quality.

Whenever the doorbell is pressed during darkness turn
on the porch light for 10 minutes.

Do not render dialog or other popups when video
recording is taking place.

BE UNIVERSITYOF

¥ CAMBRIDGE

Benz C200 Interior Light

* Interior light rules:

- On when door open and auto mode (if not
night)

- On when manual mode,
- Slow fade out when has just been on,

- On for 15 seconds after remote door unlock
at night,

- On until engine started at night,
- Otherwise off.

* Darkness sensor should be ignored when
any interior light is on.

B UNIVERSITY OF

&¥ CAMBRIDGE

Code Reflection (new)

* A device must expose the proactive
behaviour of its canned application(s)

— Actual source code (constrained language)
— Proof carrying actual source code

— Summary of behaviour

— E.G. | will not send control messages when | am in
standby mode.

— E.G. | am always off between 1:00 and 5:00.

* Device is banned for remote operations
unless proof obligations are met.

B UNIVERSITY OF
P CAMBRIDGE

Standing Rules (non-disjoint I
domains).

No rule should issue a command under the same
circumstances where another rule issues the
counter-rule.

Jonny is not allowed to spend more than 2 pounds
per day on pay-per-listen.

Fire Alarm sounding => all music sources muted.

The front gates must always be remotely openable
by some method or other.

& H UNIVERSITY OF

¥ CAMBRIDGE

Pushloqic

An easy-to-use programming language
that

integrates state, events and error recovery
and is amenable to automated checking,

for
Embedded Applications
and
User Scripting

B UNIVERSITY OF

€¥ CAMBRIDGE

Pushlogic Aims

Source language

- Familiar looking

- Easy to use (imperative, C-like)

- Automate error recovery

- Cleanly integrate state and event

Do many new things in the compiler
Carry much more into the object file

Define a run-time environment
evolvable systems

for

B UNIVERSITY OF

&¥ CAMBRIDGE

Application Scenarios

Consumer and Home Automation

Automotive
- CAN car area network

- Rail: two sets of train carriages join

Plant and Site Control
- Fire and intruder alarms

- Pump and tank monitor (brewery, refinery)

System On Chip
- IP assembly and integration

B UNIVERSITY OF

€¥ CAMBRIDGE

Pushlogic Restrictions

All integrators must be inside
differentiators:

if (x !'= x_last) { sum := sum + 1; x last := x }
All pointer, arithmetic and time
calculations must be reduced to
undetermined boolean inputs.

Dynamic allocation only performed at
bundle load time (SPL1).

All assertions are in CTL.

BB UNIVERSITYOF
&¥ CAMBRIDGE

Event versus State (level)

Differentiation:

- If we change state we have an event

Integration:

- If we record the last event received we have

a state

Networks are better at carrying events ?
Safety assertions are best written about

state ?

B UNIVERSITY OF

€¥ CAMBRIDGE

Level and Event Expressions

* Level expressions are functions of state
variables using the normal operators

* Event expressions are
- event variables
- differentiations
- disjunctions of event expressions

- certain conjunctions of level and event
expressions

- certainly not negated event expressions

* Actually defined by elaboration and not
syntax

B UNIVERSITY OF

&¥ CAMBRIDGE

Embedded Assertions

* Three forms:
- always <level expression>
- never <expression>
- live <expression>

* Might add “a until b' and other CTL
operators?

* Assertions are carried though object file
for domain manager use.

B UNIVERSITY OF

&¥ CAMBRIDGE

Pushlogic Restrictions (2)

e Re StriCted The object-level constraints allow the
assignments following four basic source forms, or
between anything tantamount to them:
state and
event 1if {le) 1v 1= le;

. if (le) ev := ee;
eXDFESSIOnS if {ee) lwv := le;
if {le) lwv := ee:;

Rather than assigning to an event

variable, emitting an event is possible,
described 1n §5.8.1.

ELE UNIVERSITY OF

4P CAMBRIDGE

Emit Statement

if (<ee>) emit <event-name>;
if (<ee>) emit <event-name>(args, ...);

The "emit' statement is shown in the context of an "if' statement that
1s guarded by an event expression. Such a guard must normally exist
within the surrounding program flow control in some form or

another.

If the guard is a level expression, this would allow cause a nominal,
continuous stream of back-to-back events to be emitted and would

tend to violate idempotency.

ELE UNIVERSITY OF

4P CAMBRIDGE

Emit Statement (2)

The guarding context may be a level expression if the event being
emitted 1s entirely local and the nominal stream of events 1s local to
the current bundle and is integrated back to being a level expression

in all places where it is used.

In the future, it is envisaged that closer integration with UPnP,
SOAP and other device control languages will be implemented, and
hence the emit statement will be implied by constructs such as

if (<ee>)
house.livingroom.curtains.setto(halfway) ;

ELE UNIVERSITY OF

@ ¥ CAMBRIDGE

Values

* All values are string constants or integers
* Variables may be

- level, with safe value(s)

- event
- fuse
- lock

* Variables are currently implemented as
part of a global distributed tuple space.

pebble heatingpump = tup://128.232.7.22:1080#device;
input heatingpump#status#temp : { unk -273..1000 };

inout heatingpump#status#command : { off: 0..9 };

BB UNIVERSITYOF
&¥ CAMBRIDGE

Mechanism View of Pushloqgic I

 Controlled devices can fail or self-
reset to a safe value.

* Controlling scripts are reversible, so
that a failure feeds back to the
control source in a defined way.

* Feedback form is intrinsic or explicit.

« System behaves like a ‘mechanism’:
both the controller and the controlled
can push on each other.

B UNIVERSITY OF

&¥ CAMBRIDGE

Reversible Operation
(Pushbacks)

input X#x :
inout Y#y :
Vo=

I 8 09 1;
-8 11945
}

The problem 1is that if v#y makes a unilateral change

from US to S, which it 1s free to do, since it is an

“1nout’, then no push back 1s possible because x: 1s an

“input’ that cannot be changed from inside the bundle.

BB UNIVERSITYOF
&¥ CAMBRIDGE

Using a Fuse for protection

input s fod eI o d

inout Y#yv @ {8 Us 1

fuse F1l;

I v = %5} fuse Fl;

forever { wait Fl; sleep_secs(5); Fl := false; }

The fuse declaration defines a boolean variable with both
values safe and to be set false on bundle load. The fuse
statement 18 just syntactic sugar, because the line " y : = x;
fuse F1;' 1s rewritten during initial expansion as "1f (If1) y :

= X;'. During pushback path creation, the fuse is chosen as

BB UNIVERSITYOF
&¥ CAMBRIDGE

Push Lo glC Sourc Sourc Sourc Sourc Sourc

Compile/bind/
execute
Flow diggram \ l / \ l /

e
"""""" ¥ | Compiler 1| " Compiler 2
Checke / l \ / l \
r

Objec Objec
Checke bundle Lundle sundle
/ \ e l l
Device bindings —, Re- Re-

. . Re- Re-
Semantic Web / Hydration Hydration Hydration Hydration

/

r

I Domain of

Run €t Execu Gon p articipation
lime n Platform
Checke Platjorm A
D) NT\ | OF
< E

Compilation Method

Parse input file(s).
Break threads into arcs at blocking primitives.

Guard each arc by a runtime program counter being
set to a label constant and create rules to update
the program counters.

Repeated symbolic evaluation of arc set until fixed
point reached.

Perform bundle checks using internal model checker.
Generate declarative bytecode bundle, containing a
mix of

— Executable rules (v:i=e, ...)
— CTL assertions (always, live, until, ...).

BB UNIVERSITYOF
&¥ CAMBRIDGE

Source Likarary
Code Code

MULL EMW

Fepeat
urtil
closure

— B Encodings

Equivalence EDD
? Checker |~ 7 7 7 | Packade
- ! ¢
" ¢

E=pand
and Cormpile

Ternporal
Aszzertions

Create Binary

Farallel
Elabworation

Create P
Fush Back Faths PR

FAIL

Subexpresion
Sharer

T

Fall

Consistency
Checkers

prTmommmmmeennes : Compile

k)

Bundle
File C Struct

' Tirne
to C : Azzert
"""""""" Failures

Mative Code

h J

Compiler
Internal
Flow
Diagram

BB UNIVERSITYOF
%P CAMBRIDGE

World and Plant Models

def world name()
{
input plantfheaterfisetting : { off: lo, hi };
output plant#ambientftemperature : { -273 .. 1000 };

forever

{

sleep_seconds (1) ;

if (setting==hi && temperature < 90) temperature += 3;

else 1f (setting==lo && temperature < 90) temperature += 1;
else 1f (setting==off && temperature > 0) temperature -= 1;

A world model generates bytecode that does not execute on any

platform, but which is used for bundle consistency checking.

BB UNIVERSITYOF
&¥ CAMBRIDGE

World and Plant Models (2)

& H UNIVERSITY OF

4P CAMBRIDGE

Dynamic Participation Issues

* Monotonicity over bundles present

* Monotonicity over expansion of variable
range

- recorder#quality : { hi: low medium };
* Domain create, refine, merge, divide...

B UNIVERSITY OF

€¥ CAMBRIDGE

Compile-Time Checks

 Safe Value Check

— There exists a setting of the variables where each
IS In a safe state and all executable rules hold.

* Rule Consistency

— No two rules will try to set the same variable to
different values at any one time.

* ldempotency Check

— No ring of rules exists that causes an observable
output to oscillate when rules are obeyed more
than once with the same input settings.

BB UNIVERSITYOF
&¥ CAMBRIDGE

Compile-Time Checks(2)

 Hazard/Race Check

— All inter-leavings of parallel statements must
lead to the same result.

Ad&B

if (s==18& A) s = 2,
if (s==2 && B) g = 5;
if (s==18&& B) g = 3;
if (s==3&& A) s = 4,
BB UNIVERSITYOF

@» CAMBRIDGE

Compile-Time Checks(3)

 Push Back Check

— For any unilateral change in any output, to any
safe value of that output, internal variables or
iInputs to the bundle can be changed, again to
safe values, so that all rules hold

* User’'s Embedded and Imported CTL Expressions

— Safety, liveness and until assertions may be
embedded in the source.

* Monotonicity Check

— Rules cannot cease to hold when an un-
associated (separate) bundle or device leaves.

BB UNIVERSITYOF
&¥ CAMBRIDGE

Load-Time Checks

* All the compile-time checks are repeated but over
thedurlnon of participating bundles and wold/plant
models

* Oscillation

test
with Timer#Countdown if (#atimer == ()
{
a := bj; #atimer := 1000; // Delay for one second
b := la; b agelayed = b;
}
a := b delayed;
b= las

* Re-synchronisation constraint:

- A liveness assertion that any supposedly-
coupled systems will re-synch after a network

error. UNIVERSITY OF

&¥ CAMBRIDGE

Practical Work Complete

Have built various hard and soft Pebbles
Have a compiler

Don't have a domain manager

Don't have a re-hydrator

We use the compiler as the domain
checker for inter-bundle checking.

B UNIVERSITY OF

&¥ CAMBRIDGE

CD Player - Pebble Decompositio

Transport Control Keypad Flay LED O EH IEEI?EH
Pauss LED () TRACK
F FY P N
b hd bd b4 FY P EEEE
EJECT PLAY PAUSE &TOR hd b d
SKEIF PYD SKIP BCR MIM:SEC
Fy F 3
L Keypad Canned Application Bundls Display
Febhile Febble
cD
Raolly; HS:S Embedded Processor
Embedded 05 # Ethernet!Flash/FORIFARS
Fushlogic Interpreter ETE, AutolP
TCRJDF
bech YWarks Timer |a—pe| CPLU Ermbedden] |g—pd SACK
Febble | Febble Counterstirmer Webserver F 3
v I v
Ethierret
CD CAVD MECHAMISH Poswer M CIEHY
Supply Interface
Horne
Ethernet

B UNIVERSITY OF

CD Player: Tuple Space View

Keypad Pebble:
input devices#keypad#now : { Stop : Play Pause Eject Tfwd Trwd};
output devices#keypad#playled : {0: 1};
output devices#keypad#pauseled ; {0: 1}

Mechanism Pebble:
output works#cmd : {stop : play pause resume eject};
output works#sink; /7 Destination URI for streaming audio.
input parts¥mech#stat#track : {0..99},
input parts¥mech#stat#sec : {0..59};
input parts¥mech#stat#min : {0..99};
input parts#mech#stat#icdx ; {0..99};

Display Pebble:
output parts#disp#track : {0..99};
output parts#dispisec : {0..59};
output parts#disp#min : {0..99};
output parts#disp#idx : {0..99};

L LML Y Lol L L L SR

ﬂ CAMBRIDGE

Heating Controller

Display Pushbuttons EH EE 4 Digit
Mode Display
FYPr Y FYr N F
Ad bd bd W (O HotWater LED
UP FAST pown FAST GVERRIDE (O Heating LED
UP DOWN
I—’ Keypad Canned Application Bundles Display > |
Pebble Pebble

Embedded OS

Mclly: HES Embedded Processor
Ethernet/Flash/ROM/RAM/

Pushlogic Interpreter ETC
UDP
Control | g Timer {agp C:Plfll Stack
Pebble Pebble Counter/timer *
\ I
Hardware Ethz\e-lmet
Interlock B Power MAC/PHY
HVAC INTERFACE | T l Supoly Interface
Eurnace |fwm] FU'nace Room Pump Tank ¢
Thermostat Relay Thermostat Relay Thermostat
(Home
Ethernet) SITYOF

@¥ CAMBRIDGE

N

Heating Controller Prototype

PEBBLES HEATIMNG COMNTROLLER

5.5 UNIVERSITY OF
4P CAMBRIDGE

[=][o][x]

7 outside 7 hall [> Bundielnfo
gutsidedlantem hali#light D ol
o off
=7 main
i hali¥Swirch
mains#supply
off W
off | ¥

inout hall#light : foff : on3}?
output outside#lantern § foff @ oni:

input mains#supply : foff : oni:
inout hall#Switch : {off : on3;

local light_on ¢ £0 ¢ 13:

local light_not_on @ €1 & 03}

light_on = {(hall#Switch=—on 22 mains#supply==on,:
light_not_on = 1 - light_onh;

outside#lantern (= (light_not_on? ? off : on:
hall#light (= (light_not_on? ? off : on:

GUI
Example

ELE UNIVERSITY OF

- - @ E-”h |._. http:/flocalhost: 8080/ tuplec ore. xml j D Go ||Q,henr'|.i robinson

Getting Started L7 Latest Headlines

€% SPL1 - Language Re... | || Reading Group - Peb...| | Suggested papers - ... | http:/floc...lecore.xml | %

B
REBOOT |
Tuple Timer

0| Change I
Change I
Change I

Tuple Timer#Timenow

[3%]

Timer#Timenow#second

Timer#Timenow#minute {

=]

Timer#Timenow#hour {)

Tuple Timer#Timenow

%]

(})| Change I
Change I
Change I

[wpebundes |

Timer#Timenow#second [

Timer#T imenow#minute [

=1=]

Timer#Timenow#hour [}

platformi#etc Active | |1 RO
platform#etcPort | |9698 RO
platformé#id Nol Change I
platformiftype CBG Embedded Push Logic Interpreter| Change I
platform#substrate | |[UNIX Change I

RSITY OF
SRIDGE

Canned Tuplecore XSL Stylesheet Version 1.3 (C) 2006 University of Cambridge.

Pebbles Alarm Clock

def bundle Pushllack()
{
pragma elab = false;
inout Timer#Timenowihour : {0..23}, Timer#Timencwiminute : {0..58}:
output Display#leds#hour : {0..23}, Display#leds#Minute : {0..39};
input buttonsgnow : {0 : stop hour alarm time minute alarm hour alarm minute alarm stap);
local Times#hlarmHour @ {0..23}, TimesfilarmfMinute : {0..59};
output audicfbuzzer : {0 : 1}:
if (buttons#now == alarm)
{
Display#ledsgHour := Times#AlarmfHour;
DisplayfledsiMinute := TimesfAlarmiMinute:
I
elee if (buttons#now == alarm hour)
{
Display#ledegfonr := Times#AlarmfHour;
Displayfled=gMinute := TimesfAlarmiMinute:
Times#ilarmibour := (Times#Alarm#four == 23) 7 0 : Times#AlarmfHour + 1;
I
elee if (buttonstnow == alarm minute)
{
Display#ledsgHour := Times#Alarm#Hour;
Display#ledsiMinute := Times#AlarmiMinute;
Times#ilarmiinute := (TimesAlarm#ilinute == 53) ? 0 : Times#Alarm#tlinute + 1;
1
elee if (buttonsfnow == alarm stop)

{
Display#leds#tour := Times#AlarmiHour;
Displayfledsiinute := Times#Alarm#iinute;
Times#ilarmfilinute := 0;
TimesfAlarmfHour :

}

else if [(buttonsfnow == stap)
audiofbuzzer := 0;
else if ((Timer#Timenowithour == TimesfhlarmHour) bd
[Timer#Timenovfminute == Times#AlarmiMinute))
audiofbuzzer := 1:
else
{
Display#ledssHour := Timer#Timenowdhour;
DisplayfledsgMinute := TimerfTimencwiminute:
}

UNIVERSITY OF
CAMBRIDGE

Non-Real-Time Applications:

* EDA: components are brought together:
— As IP and devices from many suppliers

— Meta-info ranging from data-sheets to
machine-readable formal specs

— Often a rapid time-to-market requirement
— Sometimes a live-insertion requirement

* Bringing a new production line online
— Start the checking the day before!

B UNIVERSITY OF

&¥ CAMBRIDGE

Future Work

Compilation of bytecode to ROM-able machine code (PIC)
and integrate with CAN car node checking project.

Some larger examples need exploration.

Talks with industrial collaborators who might use it ?
Bundle format optimised for incremental model checking.
Further work on eventing (GENA) and SOAP integration.
Complete formal semantics and reference manual
Further work on disconnection and merging.

Further HCI and multi-view editing projects.

BB UNIVERSITYOF
&¥ CAMBRIDGE

1 --|I
Questions ? ‘

& H UNIVERSITY OF

|

mailto:David.Greaves@cl.cam.ac.uk
http://www.cl.cam.ac.uk/Research/SRG/HAN/Pebbles

Typical Plant Control Stack I

DOMAIN-SPECIFIC APPLICATION SCRIPTING

GUI
VIEWER CONTROLLING SYSTEM
TOOLS APPLICATIONS LIVE/SAFE
CONSTRAINTS
DEVICE INVENTORY STATUS
DESCRIPTIONS DATABASE DATABASE

Network: LAN or FIELDBUS

PLANT MODEL PLANT DEVICES
(Known Sensor/Actuator Feedback Paths, (Sensors, Valves, Pumps...)

Autonomous Controller Behaviour)

58 UNIVERSITY OF
P CAMBRIDGE

Problems Doing This Today

The main technique (so far) is symbolic
model checking.

Model checking is slow and does not
scale.

Can we do anything in real time ?

How much can be pre-computed ?

Can we use type-based checks?

What about non-real time applications ?

B UNIVERSITY OF

€¥ CAMBRIDGE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

