Declarative Control of the Future Home Environment

Tope Omitola
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue Cambridge CB3 OFD UK
too20@cam.ac.uk

ABSTRACT

In this paper, we show how declarative rules, and
declarative programming, are used to control a complex,
heterogeneous system where rules from disparate sources
must interoperate. We show how imperative codes can
be automatically generated from declarative rules to bind
with the resources in the execution environment. Our
approach shows how declarative programming can be
used to effectively compose disparate systems together.
We apply our approach to the control and co-ordination
of home devices.

Keywords
Rules, Rule-Based Programming, Rule-Based Control,
Declarative Programming.

Permission to make digital or hard copies

of all or part of this work for personal or classroom use

is granted without fee provided that copies

are not made or distributed for profit or commercial advar

and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish,

to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

1 INTRODUCTION

The future home environment will be complex and highly
dynamic consisting of myriad devices with different prop-
erties providing different functionalities, an environment
where the autonomous devices interact directly but have
to be responsible for their own behaviour. [Figure 1 shows
our view of the computational environment of the future
home].

A mechanism is needed to co-ordinate and control the

= e
Figure 1: Computational Environment of the Future

Home

User Interface
User Proglets and/
or Speech Interface

Parsing Engine

Device 1 Device N

Prolog-C#

Generator

Figure 2: Schematic diagram of our declarative control
system



services offered by these devices, and harness their ser-
vices to create a more responsive environment for their
users.

There have been various attempts to provide a unifying
framework to connect devices. Some solutions have fo-
cused on the physical media, such as X.10, others have fo-
cused on the network layer, such as Bluetooth, and others
have focused on the middleware layer, such as Jini. Some
of the aforementioned solutions describe proprietary ar-
chitectures, therefore not open, and others do not have
the registry, transaction, nor the events services needed
for device networking. The challenges of verifying ser-
vices’ reliability and of usability are still open problems.
We describe a declarative control system that allows users
to write small scripts, called user proglets, and converts
the functionalities provided by these devices together with
these proglets, into Horn clauses, for validating against
inconsistencies, and for verifying the interactions. The
declarative control system generates imperative C# codes
that elicit the desired behaviour from these devices. We
use UPnP as the middleware mechanism in our work.
UPnP defines a language-neutral non-proprietary archi-
tecture using XML and the TCP/IP protocols. The de-
vices expose the functionalities over the UPnP network
using XML descriptions.

Our aim is to build an environment that the user can
control the behaviour of by specifying policies, i. e. rules,
and a mechanism that verifies the interaction of these
rules with the devices’ behaviour.

2 ELEMENTS OF DECLARATIVE
CONTROL

Our declarative control system consists of:

e A user-interface mechanism allowing users to de-
scribe device policy behaviour(s)

o The devices to be controlled
e Parsing Engine

e Rule Base Controller (RBC), including Rule Base
Engine(s) and the Devices’ Registrar

e Prolog-C# Generator

A schematic diagram is shown in Figure 2.
The present user-interface mechanism is a scripting in-
terface that allows users to create user proglets, such

as “...switch on the living room light”, “

...turn dining
room light on for one hour”. ! Our Parsing Engine parses
the user proglets and the devices’ XML descriptions, turn-
ing them into Prolog (Horn) clauses, and storing them in
the Rule Base(s), where validation, consistency, and ver-
ification are performed. We are presently experimenting
with federating our rule bases to provide adequate scal-
ability. The Prolog-C# Generator generates imperative
C# codes from the Prolog clauses passed to it by the
RBC.

3 EXAMPLE APPLICATION

Our current implementation controls and coordinates
light switches and light devices. A user-created proglet
specifies how to control the switches and light devices,
is converted into (Voice)XML and then to Prolog rules.
These rules are fired at designated times and sent to the
Prolog-C# generator, after validation and verification, by
the RBC. The Generator generates the C# codes that
control the devices.

4 EVALUATION

We have tested our declarative system using virtual de-
vices, and are currently building embedded device hard-
ware that will be controlled by our system.

5 CONCLUSION

In this paper, we have shown how declarative rules and
rule-based programming are useful to control disparate
systems of disparate functionalities, and how to mix
declarative and imperative programs to control devices.

1We have done some work using speech to control a UPnP-
enabled network security camera (using a speech recognition
system from Linguamatics (www.linguamatics.com)), and we
are currently evaluating how to incorporate this speech recog-
nition system into our declarative control system.



