Eavesdropping Near Field Contactless Payments: A Quantitative Analysis

Thomas P. Diakos1 Johann A. Briffa1 Tim W. C. Brown2 Stephan Wesemeyer1

1Department of Computing, University of Surrey, Guildford
2Centre for Communication Systems Research, University of Surrey, Guildford

Computer Laboratory, University of Cambridge, January 21, 2014
Outline

Introduction: Near Field Communications

Eavesdropping Antennas

Experimental Work

Results

Conclusions and Future Work
Near Field Communications

Near Field

- Distance \(\ll \) Wavelength (\(\approx 22m \))
- HF 13.56 MHz radio inductive coupling
- H-fields
- Reader and tag (passive)
- Short (‘from a touch to a few cm’) range of operation

NFC devices

- Reader and tag on the same device
- Power on-board
Near Field Communications

Near Field Contactless Payments

- Marketed as ideal for quick, convenient transactions
- Contactless Cards and NFC devices
- 23 million cards in the UK alone
- 13.32% of smartphones equipped with NFC
Near Field Communications

Near Field Contactless Payments

- Marketed as ideal for quick, convenient transactions
- Contactless Cards and NFC devices
- 23 million cards in the UK alone
- 13.32% of smartphones equipped with NFC

What’s the catch?

‘Because the transmission range is so short, NFC-enabled transactions are inherently secure.’

http://nfc-forum.org/what-is-nfc/nfc-in-action/
Motivation

Eavesdropping - Chosen attack

- Why eavesdropping?
Motivation

Eavesdropping - Chosen attack

- Why eavesdropping?
- ‘Inherently’ secure?
- Difficult to defend against
- ‘Contact world’ heritage
Motivation

Eavesdropping - Past work

- Expensive, cumbersome equipment
- No control over transmit power
- Traces on a scope?

Our contribution
Motivation

Eavesdropping - Past work

- Expensive, cumbersome equipment
- No control over transmit power
- Traces on a scope?

Our contribution

- Relatively inexpensive, inconspicuous equipment
- Varying Magnetic field strength
- Quantitative analysis
Eavesdropping Antennas

Design Factors

The ideal eavesdropping antenna

- Maximise SNR
- Resonance
- Suitable Q factor
- Impedance matched
NFC antenna design principles

Ideal H-antenna

- H-field antenna
- L constant
- R (DC) negligible
NFC Antenna Design Principles

H-Antenna Receiver Mode

- In RX mode:
 \[
 \frac{V_L}{V_{in}} = \frac{1}{1 + \frac{j\omega L(\omega)}{R_L} - \omega^2 LC}
 \] \hspace{1cm} (1)

- At resonance:
 \[
 \frac{V_L}{V_{in}} = \frac{R_L \sqrt{C}}{j \sqrt{L(\omega_0)}}
 \] \hspace{1cm} (2)

H-Antenna Conclusions

- Low Inductance, high load Resistance
- Magnitude of 2 is equal to the Q-factor
Large Metallic structures

The shopping trolley

- Various distances
- Fixed Ground
- Network Analyser
The shopping trolley

Findings at 13.5 MHz

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Inductance at 13.5 MHz / μH</th>
<th>Resistance at 13.5 MHz / Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near End</td>
<td>0.42</td>
<td>1.31</td>
</tr>
<tr>
<td>Middle End</td>
<td>1.42</td>
<td>18.48</td>
</tr>
<tr>
<td>Leg End</td>
<td>3.73</td>
<td>70.66</td>
</tr>
<tr>
<td>Far End</td>
<td>2.59</td>
<td>7.67</td>
</tr>
</tbody>
</table>

Connection point dependence
Shopping Trolley antenna

Pros

- Ease of execution (variable C)
- High load resistance desirable
- Short connection points

cons

- Trolley resistance
- Loop size
Eavesdropping Antenna Benchmarks

Eavesdropping H-fields

- H-loop antenna used as a transmitter
- Controlled H-field through current
- Signal generator and power amplifier
- Three types of eavesdropping antennas
- Path Loss measurements
NFC Antenna Design Principles

H-Loop Antenna

- Matched to 50 Ω with a resistor (10 Ω) in series
Path Loss Measurements

Various H-fields for H-loop and trolley only

![Propagation range for various magnetic fields](chart.png)
Quarter Wavelength Antenna

S_{11} Reflection Coefficients

Reflection Coefficient of a 5m wire

Thomas P. Diakos (t.diakos@surrey.ac.uk)
Quarter Wavelength Antenna

Worn over body

- Water content of body reduces efficiency
Path Loss Measurements

Trolley

![Trolley Path Loss](image_url)
Summary

- H-loop and trolley are most efficient
- Antenna orientation
- H-field strength
- Proceed with FER measurements
Eavesdropping Near Field Contactless Payments

Near Field Contactless Payments

- PHY layer based on ISO 14443 standard
- Half-duplex communication
- Type A and Type B
Near Field Contactless Payments

ISO 14443 type A communication

- 106kbps or 9.4 μs bit duration
- Manchester encoded baseband
- 847 kHz Subcarrier modulation (OOK)
- Standard / short frames
- SOF and EOF markers
Eavesdropping Near Field Contactless Payments

Computing Frame Error Rates

- A known (random), long sequence
- Transmitter / Receiver
- Processing and computation
Eavesdropping Near Field Contactless Payments

Transmitter arrangement

- Synthetic data, 60 bytes per frame
- Subcarrier generated in software
- External trigger signal at 1.7 MHz
Eavesdropping Near Field Contactless Payments

Sequence of 5 bits
Eavesdropping Near Field Contactless Payments

Transition between two PICC frames
Eavesdropping Near Field Contactless Payments

Receiver arrangement

- LNA maximises SNR
- Band Pass Filter 12.7-14.4MHz
- Logarithmic detector
Eavesdropping Near Field Contactless Payments

Receiver arrangement

[Image of receiver arrangement with labeled components: LNA, Band Pass Filter (BPF), RF AMP, NOTCH FILTER, PEAK DETECTOR]
Eavesdropping Near Field Contactless Payments

Receiver arrangement

- LNA maximises SNR
- Band Pass Filter 12.7-14.4MHz
- Logarithmic detector
- Capture card sampling at 1.7MS/s
Eavesdropping Near Field Contactless Payments

Noise corruption

- Frame synchronisation becomes challenging
Eavesdropping Near Field Contactless Payments

Noise corruption

- Frame synchronisation becomes challenging
- Variance computing sliding window
- Threshold crossing

Thomas P. Diakos (t.diakos@surrey.ac.uk)
University of Surrey

Eavesdropping Near Field Contactless Payments: A Quantitative Analysis
Eavesdropping Near Field Contactless Payments

Variance sliding window
Eavesdropping Near Field Contactless Payments

Variance smoothing and threshold

\[\text{Gaussian smoothing} \]
Eavesdropping Near Field Contactless Payments

Robust Frame Synchronisation

▶ Frame length
▶ Rough estimate based on ρ crossing
▶ $(EOF - SOF - 32) \pm Y \Rightarrow$ multiple of 144
▶ Cross correlation for bit decoding
Eavesdropping Near Field Contactless Payments

Experimental Set-up

```
Outside Chamber

PC → Data Card → IQ Modulator → 13.56 MHz carrier

Pre Amp → Step Attenuator

Inside Chamber

RF Amp → Tx Antenna → Rx Antenna → Receiver & Peak detector

Thomas P. Diakos (t.diakos@surrey.ac.uk)
University of Surrey
Eavesdropping Near Field Contactless Payments: A Quantitative Analysis
```
Eavesdropping Near Field Contactless Payments

Receiver circuit and antenna

![Image of receiver circuit and antenna](image-url)
Eavesdropping Near Field Contactless Payments

Preliminary testing

- Anechoic chamber
- Controlled environment
- 500 frame tests
- Establish σ and ρ values
Eavesdropping Near Field Contactless Payments

\(\sigma\) and \(\rho\) selection at 7.45 A/m
Eavesdropping Near Field Contactless Payments

Experimental procedure

- 5000 frames (20 minutes per run)
- 20–170 cm, increments of 5 cm (2–30 cm for trolley)
- 1.5, 3.45, 7.45 A/m
- Experiments ran over 2 days
Results

H-Loop Antenna FER

- Normal approximation, 95% confidence interval levels

Thomas P. Diakos (t.diakos@surrey.ac.uk)
University of Surrey
Eavesdropping Near Field Contactless Payments: A Quantitative Analysis
Eavesdropping Near Field Contactless Payments

Shopping trolley eavesdropping arrangement
Eavesdropping Near Field Contactless Payments

Shopping trolley FER (σ = 10, ρ = 50)

- Trolley generates its own noise, lossy antenna
Conclusions and Future work

Conclusions

- Eavesdropping distance 45-90 cm in shielded environment
- Similar conditions to those found in underground stations
- Relatively inexpensive equipment, inconspicuous antennas
- Gaussian filtering and variance computation are reliable

Future work

- Real data with real devices
- Improve portability (FPGA), integrate a skimmer
- What does this mean for the user?
Eavesdropping Near Field Contactless Payments

Thank you for listening

Please forward any questions