Optical surveillance on silicon chips: your crypto keys are visible

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

UNIVERSITY OF CAMBRIDGE
Computer Laboratory
Talk Outline

• Introduction
• Background of optical emission
• Experimental setup
• Results for an old microcontroller chip
• Limitations and improvements
• Challenge with modern chips
• Results for a secure FPGA chip
• Countermeasures
• Conclusion
Introduction

• Operating semiconductor circuits emit photons
 – known for over 40 years
 – actively used in failure analysis for over 20 years

• Existing failure analysis techniques
 – picosecond imaging circuit analysis (PICA) uses photomultiplier array
 – photon emission microscopy (PEM) uses special IR cameras
 – both techniques are expensive and require sophisticated sample preparation

• What about hardware security?
 – any possibility of seeing internal signals?
 – any leaks from memory arrays?
Introduction

• Optical emission analysis attacks were introduced in 2008 and exploit well known fact that photon emission of a chip is correlated with the processed data*
 – done on a PIC16F84A (0.9 μm) running at 6MHz with 7V supply
 – from backside with the silicon substrate thinned down to 20 μm
 – using Mepsicron II camera with hi-res 2D imaging and 50ps timing
 – continued for 12 hours with test code in a loop
 – proved that AES key can be extracted from the operating device

• Can this be used to compromise security in silicon chips?
 – requires expensive equipment and special chip preparation
 – was not considered as a threat, hence, no protection is in place
 – does not form part of standard security evaluation techniques

* J. Ferrigno et al, “When AES blinks: introducing optical side channel”, IET Information Security
Introduction

• Challenges
 – find low-cost detectors suitable for optical emission analysis
 – reduce the cost of sample preparation

• Any technical progress for the past 20 years?
 – are modern CCD cameras good for the attack?
 – what about photomultipliers (PMT)?
 – what parameters are essential for such detectors?

• If optical emission from operating chip has correlation with processed data, is there any correlation between photon emission and power consumption?
 – if found, this can be used for finding weak spots in protection against power analysis attacks
 – optical emission can be scaled down to an individual transistor
Background

• What is the problem with optical emission analysis attacks?
• Number of photons emitted per every switch of a transistor
 \[N_e = S_e B \left(\frac{L_H I_d}{q v_s} \right) T_s \sim 10^{-2} \ldots 10^{-4} \text{ photons/switch} \]
 \(S_e \) – spectral emission density, \(B \) – emission bandwidth, \(L_H \) – hot-carrier region length,
 \(I_d \) – drain current, \(q \) – e\(^{-}\) charge, \(v_s \) – carrier saturated velocity, \(T_s \) – transition time
• Emission spectrum is from \(\sim 500\text{nm} \) to above \(1200\text{nm} \) with maximum emission at \(900\text{nm} \ldots 1100\text{nm} \) (NIR region)
• Small fraction of emitted photons can be detected: <1%
 – emission is isotropic, so with a lens only 25%…45% is observed
 – there are losses in optics due to reflections and absorption (80%)
 – low quantum efficiency (QE) of detectors in NIR region: 1%…20%
• Backside approach: <0.1%
 – high refractive index of silicon \(n_{1000\text{nm}} = 3.58 \) causes high reflection (32%) and low critical angle \((\theta = 16.2^\circ) \) results in reduced aperture
Background

- Optical emission is higher from the n-MOS transistor due to higher mobility of electrons
- Emission takes place near the drain area where the speed of carriers declines
Experimental setup

• Challenges in choosing the right detector
 – single-photon sensitivity
 – low emission intensity requires longer integration time, hence, detectors must have low noise and low dark current
 – NIR emission spectrum requires detectors sensitive in that area

• Photomultiplier (PMT)
 – single-sensor detector with large aperture
 – fast detection

• Avalanche photodiode (APD)
 – single-sensor detector with small aperture
 – fast detection

• Cameras with charge-coupled devices (CCD)
 – 2D detector with high resolution: 500x500 to 4000x3000
 – very low frame rate: 10μs to 1s
Experimental setup

- Challenges in choosing the right PMT and APD: as good as possible NIR sensitivity, as low as possible dark current
 - PMT usually have very limited NIR sensitivity
 - detectors with better NIR sensitivity have higher dark current
 - low dark current in APD is caused by their small aperture size
 - too small aperture size of APD (10μm…500μm) complicates their usage

<table>
<thead>
<tr>
<th>Type of detector</th>
<th>Wavelength, nm</th>
<th>QE at 900nm</th>
<th>QE at 1000nm</th>
<th>Dark current, e⁻/s</th>
<th>Time response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantar Mepsicron II, S25</td>
<td>180–940</td>
<td>1%</td>
<td>0%</td>
<td>0.005</td>
<td>50ps</td>
</tr>
<tr>
<td>Hamamatsu H10330-25</td>
<td>850–1250</td>
<td>2%</td>
<td>2%</td>
<td>2000</td>
<td>900ps</td>
</tr>
<tr>
<td>Hamamatsu H6780-01</td>
<td>250–850</td>
<td>0%</td>
<td>0%</td>
<td>400</td>
<td>780ps</td>
</tr>
<tr>
<td>Sensl PCDMini-0020</td>
<td>400–1100</td>
<td>2%</td>
<td>1%</td>
<td>50</td>
<td>200ps</td>
</tr>
</tbody>
</table>
Experimental setup

- Challenges in choosing the right CCD camera: as good as possible NIR sensitivity, as low as possible dark current
 - monochrome cameras have good NIR sensitivity
 - CCTV and hobbyist astronomical cameras have low dark current and good NIR sensitivity

<table>
<thead>
<tr>
<th>Type of detector</th>
<th>Wavelength, nm</th>
<th>QE at 900nm</th>
<th>QE at 1000nm</th>
<th>Dark current, e⁻/s</th>
<th>Time response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantar Mepsicron II, S25</td>
<td>180–940</td>
<td>1%</td>
<td>0%</td>
<td>0.005</td>
<td>50ps</td>
</tr>
<tr>
<td>Hamamatsu C4880-21</td>
<td>200–1200</td>
<td>50%</td>
<td>20%</td>
<td>0.3</td>
<td>20ms</td>
</tr>
<tr>
<td>Hamamatsu C4880-50</td>
<td>200–1100</td>
<td>30%</td>
<td>10%</td>
<td>0.01</td>
<td>20ms</td>
</tr>
<tr>
<td>Average monochrome CCD</td>
<td>400–1000</td>
<td>5%</td>
<td>1%</td>
<td>1</td>
<td>20ms</td>
</tr>
<tr>
<td>Average colour CCD</td>
<td>400–700</td>
<td>0%</td>
<td>0%</td>
<td>1</td>
<td>20ms</td>
</tr>
<tr>
<td>Sony Super HAD CCD</td>
<td>300–1050</td>
<td>8%</td>
<td>1%</td>
<td>0.02</td>
<td>10μs</td>
</tr>
<tr>
<td>Sony EXview HAD CCD</td>
<td>300–1100</td>
<td>12%</td>
<td>5%</td>
<td>0.02</td>
<td>10μs</td>
</tr>
</tbody>
</table>
Experimental setup

- Sample preparation: PIC16F628 microcontroller (0.9μm)
- Locating internal blocks: Flash, EEPROM, SRAM, CPU
- Running the chip at 20MHz clock (5MIPS) with 6V power supply to boost the emission
Experimental setup

• PMT setup: decapsulated chip facing sensor's aperture
 – Hamamatsu H6780-01 PMT sensor

• CCD setup: camera mounted on a microscope with the chip placed in a test socket
 – Starlight Xpress SXV-H9 CCD camera
Results

- **PMT**: 60' acquisition time, digital storage oscilloscope in color-graded mode with infinite persistence with histogram
- **SPA**: 10Ω resistor, digital storage oscilloscope with active probe
- **Test code**: `bsf portb,3
cclf 0x75
decl 0x75,f
dcf portb,3
goto loop`

- **PMT vs SPA**
 - higher bandwidth
 - special hardware will suit better as oscilloscope is not designed for long-time integration (latency issue)
Results

• PMT vs SPA
 – higher bandwidth provides more data for analysis
 – possible localisation of source through apertures and optics
 – good correlation suggests possibility of using optical emission analysis for characterisation of areas contributing to power trace
 – acquisition of emission requires some time with the device under test performing the same operation and precisely synchronised
Results

- **CCD**
 - 2× objective lens
 - 30' integration time
 - EEPROM data: 00h, FFh
 - SRAM data: variable 00h…FFh
 - continuous EEPROM reading and SRAM writing and reading

- **Test code:**
 - incf EEADR,f
 - bsf EECON1,RD
 - movf EEDATA,w
 - decf 0x75,f
 - goto loop

- **2D image with recognisable areas of emission from Flash, EEPROM, SRAM and CPU**
Results

• CCD with high magnification
 – 100× objective lens
 – 10' integration time
 – EEPROM data: 00h, FFh
 – continuous EEPROM reading

• Test code:
  ```
  incf EEADR,f
  bsf EECON1, RD
  movf EEDATA, w
  goto loop
  ```

• Emission from the NMOS transistor is significantly higher than from the PMOS
Results

• EEPROM area
 – 10× objective lens
 – 10' integration time
 – data: 56h, 56h, 56h…56h, 00h
 – continuous EEPROM reading

• Test code: in cf EEADR,f
 bsf EECON1,RD
 movf EEDATA,w
 goto loop

• Flash memory has similar structure and gives similar result
 – data extraction is complicated by the fact that program code is executed from the flash memory
Results

• SRAM area
 – 10× objective lens
 – 10' integration time
 – data: A6h, W=A6h
 – continuous reading and writing

• Test code: \texttt{movf 0x75, w} \texttt{movwf 0x75}
 \texttt{goto loop} \texttt{goto loop}

• Low emission from memory cells
 – write drivers, bus drivers, row and column selectors leak the most

• Write data have the same emission for ‘0’ and ‘1’
 – dual-rail logic used in SRAM: separate bit lines for writing ‘0’ & ‘1’
 – difference in the emission could predict leakage in the power trace
Results

• **SRAM area**
 - 10× objective lens
 - 10' integration time
 - data: A6h, W=C3h
 - continuous XOR operation

• **Test code:**

  ```
  movlw 0xA6
  movwf 0x74
  movlw 0xC3
  xorwf 0x74, f
  goto loop
  ```

• **Leakage through both read and write logic**
 - read: intensity is proportional to the number of ‘1’s
 - write: ‘0’s and ‘1’s are separated
Limitations and improvements

• Data recovery
 – slow process: minimum 1 minute per byte

• Modern chips
 – three or more metal layers prevent direct observation and analysis
 – smaller technologies will require longer integration time

• Backside approach
 – silicon is transparent to light with wavelengths above 1000 nm
 – lower spatial resolution of ~1μm (R=0.61λ/NA)
 – longer integration time due to higher losses in silicon and optics
 – higher magnification lenses give better result
 – use of NIR optics improves result, but expensive
 – substrate thinning and AR coating are useful, but expensive
 – increase of the power supply voltage boosts the optical emission
Limitations and improvements

- Increasing the power supply voltage: every 10% of increase above nominal voltage boosts the emission by 40%…120%

- PIC16F628: EEPROM reading

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>3.5V</th>
<th>4.0V</th>
<th>4.5V</th>
<th>5.0V</th>
<th>5.5V</th>
<th>6.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photometry results</td>
<td>1046</td>
<td>1286</td>
<td>2427</td>
<td>8400</td>
<td>23292</td>
<td>43026</td>
</tr>
</tbody>
</table>
Limitations and improvements

- PIC16F628 (0.9μm) vs PIC16F628A (0.5μm):
 higher density with CMP technology: approx. 5 times lower intensity
Limitations and improvements

- PIC16F628: EEPROM area from front and rear sides
 higher reflections and absorption in Si: approx. 10 times lower intensity
New challenges

- **Actel® ProASIC3® 0.13μm, 7 metal layers, flash FPGA**
 - “highly secure FPGA” which is reprogrammable, non-volatile, single-chip and live-at-power-up solution
 - “offer one of the highest levels of design security in the industry”
 - robust design security features: flash logic array, flash ROM, security fuses, FlashLock™, AES
 - “even without any security measures (such as FlashLock with AES), it is not possible to read back the programming data from a programmed device”
 - allows secure ISP field upgrades using 128-bit AES-encrypted bitstream with AES authentication and MAC verification
 - other security measures: voltage monitors, internal charge pumps, asynchronous internal clock and many others
 - “unique in being highly resistant to both invasive and noninvasive attacks”
Experimental setup

• Sample preparation of A3P060 FPGA: front and rear
 – the surface is covered with sticky polymer which needs to be removed for physical access to the surface
 – >99% of the surface is covered with supply grid or dummy fillers
 – backside: low-cost approach used – without any treatment
Experimental setup

• Sample preparation: front
 – only three top metal layers are visible at most
 – full imaging will require de-layering and scanning electron microscopy
 – any invasive attacks will require sophisticated and expensive equipment
Experimental setup

• Backside imaging is the only possibility
 – low spatial resolution of about 1μm (R=0.61λ/NA=0.61·1000/0.5)
• 20× NIR objective lens, light source with Si filter
• Locating internal blocks: JTAG, Flash ROM, SRAM
• Optical emission analysis
 – power supply was increased from 1.5V to 2.0V to boost the emission
Experimental setup

- Increasing the power supply voltage: every 10% of increase above nominal Vcc boosts the emission by 40%…120%
- A3P060: JTAG ID reading

<table>
<thead>
<tr>
<th>Power supply voltage</th>
<th>1.5V</th>
<th>1.6V</th>
<th>1.8V</th>
<th>2.0V</th>
<th>2.2V</th>
<th>2.5V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photometry results</td>
<td>889</td>
<td>1194</td>
<td>1953</td>
<td>5270</td>
<td>9536</td>
<td>23270</td>
</tr>
</tbody>
</table>
Results

• JTAG glue logic
 – 20× NIR objective lens, 60' integration time
 – repeating the same operation
• Some recognisable differences
• Partial reverse engineering – information
 – operation-related activity
 – obfuscated data flow paths
 – security-related operations
Results

• Flash ROM (Settings + Data)
 – 20× NIR objective lens
 – 60' integration time
 – continuous reading

• Recognisable data pattern
 – some data can be extracted
 – gives information about location
Results

• SRAM dedicated for AES
 – 20× NIR objective lens
 – 120' integration time
 – continuous initialisation

• AES key recovery
 – key scheduling used in AES
 – AES key can be easily calculated from any round key
 – existence of separate JTAG commands for AES initialisation, authentication and decryption
 – information is leaked by the SRAM array and write drivers
Results

• SRAM dedicated for AES
 – 20× NIR objective lens
 – 120' integration time
 – continuous initialisation

• Exploiting power supply trick
 – alternating the supply voltage during the operation: 2.0V peak
 – 16μs per AES initialisation
 – 1.6μs per each round key: calculation + storage
 – 16 bit at a time: 8 write cycles
Results

• SRAM dedicated for AES
 – 20× NIR objective lens
 – 120' integration time
 – continuous initialisation

• Exploiting power supply trick
 – alternating the supply voltage during the last round operation: 2.5V peak
 – 0.2μs increase of the supply voltage from 1.5V to 2.5V for one write cycle
Countermeasures

• Use of modern chips with multiple metal layers forces an attacker to use backside approach and results in longer time required for the attack
• Metal shielding over sensitive areas can help but cannot prevent backside analysis
• Adding dummy cycles to normal operations
• Encryption makes analysis harder
• Asynchronous circuits could make the attack more problematic as data analysis requires synchronisation
Conclusion

• Optical emission analysis can be carried out at a relatively low cost using hobbyist astronomical CCD cameras with low-magnification optics
• Long exposure time is required: the device must perform the same operation millions of times in a loop
• PMT offers high bandwidth and acquired data have correlation with power analysis results and can be used for finding weak spots in protection against power analysis attacks
• Optical emission analysis offers possibility for partial reverse engineering of chips including data analysis
• Backside approach can help in modern chips, but has lower spatial resolution and requires longer integration time
• Increase of the power supply voltage boosts the optical emission and considerably reduces the time of analysis
• Modern deep-submicron chips do leak information through optical emission when their power supply is increased by at least 30%
• Lack of protection against optical side-channel attacks in modern chips might lead to possible vulnerabilities
Further reading

- Up-to-date information: http://www.cl.cam.ac.uk/~sps32/