Privacy Implications of Public Listings on Social Networks

Security Seminar
24 March 2009

Joseph Bonneau, Jonathan Anderson, Frank Stajano, Ross Anderson
Security Research Group
Computer Laboratory
Why Facebook Matters

Facebook Active Users (Millions)

0 50,000,000 100,000,000 150,000,000 200,000,000
Why Facebook Matters

- Over 190 M users

- 70% outside of the USA and growing
 - Growth rates for 2008 around the world
 - Italy: 2900%
 - Argentina: 2000%
 - Indonesia: 600%
 - France: 400%

- Fast growing age segment: 55+
Why Facebook Is Different

- Most users provide accurate data
- High level of disclosure
- Aggressive policing of false profiles
- Limit on number of friends at 1K
- Rich ACL settings available
- Based on University/Regional networks
- Most users don't consider their profiles “public”
Why Facebook Is Different

• Users feel an intimate connection
• Huge backlashes against changes:
 – News Feed (Sep 2006)
 – Beacon (Nov 2007)
 – “New Facebook” (Sep 2008)
 – Terms of Use (Feb 2009)
 – New Product Pages (Mar 2009)
A Quietly Introduced Feature...

Public Search Listings, Sep 2007
Public Search Listings

- Unprotected against crawling
- Contains name, location, 8 friends
- Indexed by search engines
- Opt out—but most users don't know it exists!
Utility

Promotion via Network Effects
Legal Status

“Your name, network names, and profile picture thumbnail will be available in search results across the Facebook network and those limited pieces of information may be made available to third party search engines. This is primarily so your friends can find you and send a friend request.”

-Facebook Privacy Policy
Legal Status

Much More Info Now Included...
One year ago today, the Fair Copyright for Canada Facebook group was launched. The past twelve months have been remarkable - thousands of Canadians have spoken out on copyright reform with the issue capturing political and public attention as never before. While the issue is quiet politically at the moment (copyright reform was in the Speech from the Throne but economic concerns are understandably taking priority), there is little doubt that it will return to the legislative agenda.
Obvious Attack

• Initially returned new friend set on refresh

• Can find all n friends in $O(n \cdot \log n)$ queries
 – The Coupon Collector's Problem
 – For 100 Friends, need 65 page refreshes

• As of Jan 2009, friends fixed per IP address
Fun with Tor

UK
- David Cottingham
- Eirik George Tsarpalis
- Emma Alden
- Luke Church
- Stella Nordhagen
- David J Hornsby
- Justin Palfreyman
- Jillian Sullivan

Germany
- Shoshana Freisinger
- Lauren Duffey
- Conor Loftus-Sweetland
- Will Cordingley
- Srilakshmi Raj
- Sarita Kristina Sylvester
- Brian Brown
- Gary Champagne

USA
- Melanie Kannokada
- Shoshana Freisinger
- Russ Heddeston
- Conor Loftus-Sweetland
- Gustav Rydstedt
- Seth Ort
- Cameron Lochte
- Ben Skolnik

Australia
- Shoshana Freisinger
- Federico Baradello
- Lauren Duffey
- Adrian Boscolo-Hightower
- Justin David Carl
- Katie Gunderson
- Ankit Garg
- Srilakshmi Raj
Attack Scenario

• Spider all public listings
 – Our experiments crawled 250 k users daily
 – Implies ~800 CPU-days to recover all users

• Compute functions on sampled graph
Abstraction

• Take a graph $G = <V,E>$

• Randomly select k out-edges from each node

• Result is a sampled graph $G_k = <V,E_k>$

• Try to approximate $f(G) \approx f_{\text{approx}}(G_k)$
Approximable Functions

- Node Degree
- Dominating Set
- Betweenness Centrality
- Path Length
- Community Structure
Our Data Set

- Only have sampled graph from public crawls
- Need a complete network for testing
- Solution: Facebook Developer's API
Facebook Query Language

You can experiment with functions and responses, and see what content Facebook Platform makes available. Select the method you wish to call and the format of the return values.
Facebook Query Language

- Easy to get (name, UID) pairs:

  ```sql
  SELECT uid, name FROM user
  WHERE uid IN (0, 1, 2, ... N);
  ```

- Can query for $N \approx 1k$ without timeouts
Facebook Query Language

ID Query:

210130-210150
SELECT uid, name, affiliations FROM user WHERE uid in (210130, 210131, 210132, 210133, 210134, 210135, 210136, 210137, 210138, 210139, 210140, 210141, 210142, 210143, 210144, 210145, 210146, 210147, 210148, 210149)

Results

Found 13 users
210131 Shirin Rahmanian (Stanford)
210132 Joseph Bonneau (Cambridge Stanford San Francisco, CA)
210137 Jen Cowman (Minneapolis/St. Paul, MN Stanford Northwestern 3M)
210139 Francis Ring (Stanford San Diego, CA)
210140 Robert Negrete (Stanford)
210141 Nicholas Love (Stanford Microsoft)
210143 Lisa Feng Yung Chen (Stanford Cornerstone Research)
210145 Weisheng Lee (Stanford)
210147 Pomo Micha (Stanford)
210148 Sheela Dharmarajan (Stanford)
210149 Matt Green (Stanford New York, NY)

11 named users

Crawled Stanford ID spaces in 1 hour (30 k UIDs)
Facebook Query Language

- Given UID list, extract friendship links:

  ```sql
  SELECT uid1, uid2 FROM friend
  WHERE uid1 IN (0, 1, 2, ... N);
  AND uid2 IN (0, 1, 2, ... N);
  ```

- Can query for $N \approx 1k$ without timeouts
Facebook Query Language

Link Query:

Executed Query

```
select uid1, uid2 from friend where (uid1=1036 OR uid1=1037 OR uid1=1038 OR uid1=1039 OR uid1=1040 OR uid1=1041 OR uid1=1042 OR uid1=1044 OR uid1=1045 OR uid1=1046 OR uid1=1047 OR uid1=1048 OR uid1=1049) AND (uid2=1050 OR uid2=1052 OR uid2=1053 OR uid2=1054 OR uid2=1056 OR uid2=1057 OR uid2=1058 OR uid2=1059 OR uid2=1060 OR uid2=1061 OR uid2=1062 OR uid2=1063)
```

Results

Found 8 links

1038 1050
1038 1052
1038 1053
1038 1060
1042 1050
1045 1058
1048 1050
1049 1050

Saved 8 links

Extracted Friendship Links in < 6 hours
FQL Advantages

- Extracted all users not opted-out of FB platform (~99% of users)
- Crawling method doesn't scale—$O(n^2)$ queries
Experimental Data

- Crawled original Stanford, Harvard networks
 - From era when UIDs assigned sequentially

- Representative sub-networks

<table>
<thead>
<tr>
<th></th>
<th># Users</th>
<th>Mean d</th>
<th>Median d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanford</td>
<td>15043</td>
<td>125</td>
<td>90</td>
</tr>
<tr>
<td>Harvard</td>
<td>18273</td>
<td>116</td>
<td>76</td>
</tr>
</tbody>
</table>
Stanford Histogram

Degree Distribution

- data
- (1-1000): $y = 0.7 \times x^{-1.27}$

Proportion of Network vs. Degree
Harvard Histogram

Degree Distribution

- **data**
- \((1-1000): y = 0.92 \times x^{-1.34}\)
Comparison

Stanford

Harvard

Networks have very similar structure
Stanford Log-Log plot

Degree Distribution

Apparent discontinuity at $d = 200$. Dunbar's number?
Harvard Log-Log plot

Apparent discontinuity at $d = 200$. Dunbar's number?
Back To Our Abstraction

- Take a graph $G = <V,E>$

- Randomly select k out-edges from each node

- Result is a sampled graph $G_k = <V,E_k>$

- Try to approximate $f(G) \approx f_{\text{approx}}(G_k)$
Estimating Degrees

• Convert sampled graph into a directed graph
 – Edges originate at the node where they were seen

• Learn exact degree for nodes with degree < \(k \)
 – Less than \(k \) out-edges

• Get random sample for nodes with degree \(\geq k \)
 – Many have more than \(k \) in-edges
Estimating Degrees

Average Degree: 3.5
Estimating Degrees

Sampled with $k=2$
Estimating Degrees

Degree known exactly for one node
Naïve approach: Multiply in-degree by average degree / k
Estimating Degrees

Raise estimates which are less than k
Estimating Degrees

- Nodes with high-degree neighbors underestimated
- Iterative approach: Scale by current estimate / k in each step
- Basically, running PageRank
Estimating Degrees

Refined estimate
Estimating Degrees

After 1 iteration
Estimating Degrees

Normalise to estimated total degree
Estimating Degrees

Convergence after $n > 10$ iterations
Estimating Degrees

- Converges fast, typically after 10 iterations
- Absolute error is high—38% average
 - Reduced to 23% for nodes with $d \geq 50$
- Still accurately can pick high degree nodes
Estimating Degrees

\[D(x) = \text{Aggregate degree of } x \text{ highest-degree nodes} \]
Estimating Degrees

\[D(x) = \text{Aggregate degree of } x \text{ highest-degree nodes} \]
Dominating Sets

• Set of Nodes $D \subseteq V$ such that

$D \cup \text{Neighbors}(D) = V$

• Set which allows viewing entire network

• Also useful for maximal marketing coverage
Dominating Sets

Trivial Algorithm: Select High-Degree Nodes in Order
Dominating Sets

Trivial Algorithm: Select High-Degree Nodes in Order
Dominating Sets

Trivial Algorithm: Select High-Degree Nodes in Order
Dominating Sets

Trivial Algorithm: Select High-Degree Nodes in Order
Trivial Algorithm: Select High-Degree Nodes in Order
In fact, finding minimal dominating set is NP-complete
Dominating Sets

Greedy Algorithm: select node which adds maximal coverage
Dominating Sets

Greedy Algorithm: select node which adds maximal coverage
Dominating Sets

Shown to perform adequately in practice
Dominating Sets

Works well on sampled graph with no modification!
Dominating Sets

Surprising: Even $k = 1$ performs quite well
Shortest Paths

- Social networks shown to be “small world”
- Short paths should exist, even for large graphs
- Short paths can be used for social engineering
Floyd-Warshall Algorithm

- Finds shortest distance between all \((V,V)\) pairs
- Dynamic programming – \(O(V^3)\) over \(V^2\) nodes
- Think Dijkstra, but for all vertices
Floyd-Warshall Algorithm

1 2 3 4 5 6 7 8 9 10
1 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞ ∞
8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0
Floyd-Warshall Algorithm

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 2 ∞ ∞ ∞ ∞ ∞
2 1 0 1 ∞ 1 ∞ ∞ ∞ ∞ ∞
3 1 1 0 1 1 1 ∞ ∞ ∞ ∞ ∞
4 1 ∞ 1 0 ∞ 1 ∞ ∞ ∞ ∞ ∞
5 2 1 1 ∞ 0 1 1 ∞ ∞ ∞ ∞
6 ∞ ∞ 1 1 1 0 1 ∞ ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ 1 1 0 1 ∞ 1
8 ∞ ∞ ∞ ∞ ∞ ∞ 1 0 1 1
9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0 ∞
10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞ 0
Floyd-Warshall Algorithm
Floyd-Warshall Algorithm

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 2 2 3 ∞ ∞ ∞
2 1 0 1 ∞ 1 ∞ ∞ ∞ ∞ ∞
3 1 1 0 1 1 1 ∞ ∞ ∞ ∞ ∞
4 1 ∞ 1 0 ∞ 1 ∞ ∞ ∞ ∞ ∞
5 2 1 1 ∞ 0 1 1 ∞ ∞ ∞ ∞ ∞
6 2 ∞ 1 1 1 0 1 ∞ ∞ ∞ ∞ ∞
7 3 ∞ ∞ ∞ ∞ 1 1 0 1 ∞ 1
8 ∞ ∞ ∞ ∞ ∞ ∞ 1 0 1 1
9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0 ∞
10 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 1 ∞ 0
Shortest Paths

1 For $k=8$, paths are ~1 hop longer
2 All nodes reachable with $k=2$
Centrality

- A measure of a node's importance
- *Betweenness centrality:*

\[C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}} \]

- Measures the shortest paths in the graph that a particular vertex is part of
Centrality

$C_B(v_7) =$
Centrality

\[C_B(v_7) = \frac{0}{1} + \]
Centrality

\[C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \]
Centrality

\[C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \frac{0}{1} + \]
Centrality

\[C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \frac{0}{1} + \frac{0}{2} + \]
Centrality

$C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \frac{0}{1} + \frac{0}{2} + \frac{0}{2} + \frac{0}{2} + \frac{0}{2} + \frac{0}{2}$
Centrality

\[C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \frac{0}{2} + \frac{0}{2} + \frac{4}{4} + \]
\[C_B(v_7) = \frac{0}{1} + \frac{0}{1} + \frac{0}{1} \frac{0}{2} + \frac{0}{2} + \frac{4}{4} + \frac{4}{4} + \ldots \]
Message Interception Scenario

- Messages sent via shortest (least-cost) paths
- Adversary can compromise N nodes
- How much traffic can s/he intercept?

$$p_{\text{intercept}}(v_s, v_d) = \frac{C_B(v)}{|V|^2}$$
Message Interception

$K = 1$ is still twice as good as random selection
Community Detection

- Goal: Find highly-connected sub-groups
- Measure success by high *modularity*:

\[
Q = \frac{1}{2m} \sum_{v,w} \left[A_{vw} - \frac{d(v)d(w)}{2m} \right]
\]

- Ratio of intra-community edges to random
- Normalised to be between -1 and 1
Community Detection

• Clausen et. al 2004 – find maximal modularity in $O(n \lg^2 n)$
• Only track marginal modularity for edges
• Merging communities only affects adjacent edges
Community Detection

Q=0.04
Community Detection

Q = 0.08
Community Detection

Q=0.14
Community Detection

Q=0.175
Community Detection

Q=0.2125
Community Detection

Q = 0.2225
Community Detection

Works fairly well, much better for larger communities
Conclusions

• Social graph is fragile to partial disclosure
 • Consistent with Danezis/Wittneben, Nagaraja results

• Public Listings Leak Too Much
 • Dominating sets, centrality, communities in particular

• SNS's need a dedicated privacy review team
 • Comparable to security audit & penetration testing
Questions?

jcb82@cl.cam.ac.uk

jra40@cl.cam.ac.uk