
Byzantine Mirroring System
Piotr Zieliński

A fault-tolerant system that guarantees

the consistency of mirrored data even if some servers cheat

Computer Laboratory
Security Group

We aim to design a new reliable mirroring
system. Unlike many currently available tech-
niques, which use a single primary server to
handle all incoming updates, our system will
consist of many such servers (called “writers”).
Besides these writers, the system will contain
many additional servers (readers) from which
data can only be downloaded.

In contrast to the Usenet news protocol, our
system will ensure full consistency of mirrored
data. For example, the order of applying up-
dates will be the same on all servers, even if up-
dates were originally sent to different writers.
Moreover, the system will be fault-tolerant and
be able to operate in malicious environments,
even where many primary servers (writers) col-
laborate in cheating.

High Availability

The system is composed of
many servers. Both readers
and writers can be contacted
to download data, but only
writers can accept updates.

“Gossip” Communication

Each update is broadcast epi-
demically; once every while
each host connects to a ran-
domly chosen neighbour and
exchanges updates.

Modular Construction

The broadcast mechanism,
network protocol, and mes-
sage acceptance algorithm are
all independent and might be
developed by different people.

Maintaining Consistency

The system not only detects
failures. Its message accep-
tance algorithm maintains the
consistency of data among the
correct replicas when those
failures (even malicious ones)
occur.

Protocol Design

The protocol is very uniform
and simple. It uses the
hosts’ computational power
rather than network band-
width. This makes cheat-
ing much harder and writing
compatible clients easier.

Decision Autonomy

Servers may have different
failure-detection mechanisms.
In the case of strong disagree-
ment the group may split into
two disjoint sets of mutually
compatible hosts. Each host
is free to choose which frac-
tion to follow.

What is the challenge?
Each server can either be online, offline or corrupt. Servers
have opinions about each other. Possible opinions and transi-
tions are listed in the box. The figures below show examples
of situations that need to be resolved. Irrelevant messages or
opinions are not shown.

Offline

Online

Corrupt











Does not suspect = OK

Suspects = Probably failed

Considers dead = Failed

OK S

D

1. Hosts A and D received
two messages: green from B

and blue from C. However,
A considers the green mes-
sage as the first one, whereas
for D the blue one is first.
The system must ensure that
all processes agree on a total
order of all messages.

A

B

C

D

4. Here cheating comes into play.
Process B sent two different mes-
sages with the same ID. Since each
message is broadcast, both A and
C echoed received messages and fi-
nally found out that B was cheat-
ing. However, this was too late
because they had already accepted
two different messages with the
same ID.

A

B

C

2. After some time has passed
since A and B received the
latest message from C, they
both begin to suspect that
C failed. The next mes-
sage from C made B con-
sider C being available again.
However, A decided already
that C is dead before it re-
ceived the message and can
not change its mind any more
at that point.

A

B

C

5. Waiting for confirmation from
all alive hosts does not help either.
In this case C and D suspects A

of having failed, and B is cheating.
Host C learnt that B was corrupt
and did not accept its message, but
D had received all necessary con-
firmations and accepted the mes-
sage. It had not waited for a mes-
sage from A because D considered
A dead.

A

B

C

D

3. Almost the same situation
as above, but A and B some-
how managed to coordinate
their opinions about C. Nev-
ertheless, A accepted both
messages from C, but B ac-
cepted only the blue one, be-
cause the green message ar-
rived when B had already
considered C dead.

A

B

C

6. It seems that in the previous
example D should have waited
longer. But how much longer?
For host D, this case (where A

really failed) is indistinguishable
from the previous one. Yet if D

had decided to wait for a confir-
mation from A even after starting
considering it to be dead, it would
have waited forever.

A

B

C

D

Contact details: Email: Piotr.Zielinski@cl.cam.ac.uk WWW: http://www.cl.cam.ac.uk/~pz215/

July 2002


