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Abstract— Memory safety issues are a persistent source of security vulnerabilities, with conventional 
architectures and the C/C++ codebase chronically prone to exploitable errors.  The CHERI research 
project has explored a novel architectural approach to ameliorate such issues using unforgeable 
hardware capabilities to implement pointers. 
 
Morello is an Arm experimental platform for evaluation of CHERI in the Arm architecture context, to 
explore its potential for mass-market adoption. This paper describes the Morello Evaluation Platform; 
covering the motivation; the functionality of the Morello architectural hardware extensions, their 
potential for fine-grained memory safety and software compartmentalization; their formally proven 
security properties; their impact on the micro-architecture of the high-performance out-of-order 
multi-processor Arm Morello processor; and the software enablement program by Arm, University of 
Cambridge, and Linaro. Together, this allows a wide range of researchers in both industry and 
academia to explore and assess the Morello platform. 1 
 

Introduction 
 
Arm believes that security is the greatest challenge that computing needs to address to meet its full 
potential.  Arm technology is used in products that are transforming every industry by enabling 
access to data and communications, and by extracting information and meaning from that data.  This 
transformation continues in our society wherever the application of computing resources can make 
people's lives easier and more connected. Unfortunately, this increasing reliance on computing has 
created unprecedented opportunities for criminals, as can be seen in the ever-growing cost of 
cybercrime. In addition, the growing reliance of national infrastructure on technology means that 
computer security is part of National Security. Given this context, seems likely that the boundaries of 
the computing revolution will be determined by the security of our computing systems. 
 
There is ample evidence that memory safety issues such as buffer overflows and use-after-free have 
been a persistent source of vulnerabilities for many years, and this continues in many ecosystems 
1,2. While languages such as Rust offer the prospect of more inherent memory safety, the reality is 
that there is a huge body of C and C++ code being used, written, and adapted every day, and there 
are many  undetected vulnerabilities waiting to be exploited. Arm has introduced the Memory 
Tagging Extensions in recent years to provide a mechanism to help identify memory safety issues, 
and these have demonstrated that ordinary code has a great number of latent memory safety errors. 
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CHERI Architecture 
 
The University of Cambridge and SRI International, supported by DARPA, have been developing 
CHERI4, a novel architectural approach to addressing memory safety issues, since 2010. Arm began 
collaborating with the CHERI project in 2014 to understand and develop this technology with a view 
to potentially incorporating it into the Arm Architecture in the future to be a foundation for 
improved security.   
 
The fundamental CHERI concepts are independent of the underlying architecture and are designed 
to extend existing functionality.  The original CHERI prototype extended MIPS, and later work 
extended RISC-V. This paper describes an experimental prototype extension to the 64-bit Arm 
architecture, as part of the Morello program. 

Overview of CHERI capabilities 
 
The basic premise behind CHERI-based architectures is to introduce a new architectural concept, 
called a “capability” alongside the existing architectural concepts of data and addresses. A capability 
is designed primarily to hold an address and to atomically combine that with the permissible address 
range that can be accessed, along with a set of permissions such as read, write, and execute.  The 
architecture defines these as a single 128-bit concept that is distinct from the normal data and 
address concepts of the architecture. Capabilities are distinguished from other addresses and data by 
the use of an additional meta-data bit, usually referred to simply as a tag. The architecture requires 
that general-purpose memory can hold both capabilities and other data, and therefore each 128-bit 
quantity (aligned to 128 bits) held in memory has a meta-data tag associated with it. Mechanisms for 
storing the meta-data are described later in this paper.  In keeping with a RISC philosophy, 
capabilities can be held and acted upon in 128-bit registers in the processor architecture, and the 
register file holds a meta-data tag bit for each register entry.  
 
This fundamental distinction between capabilities and other data is an essential property of the 
CHERI approach, and is used to enforce the architectural principle that capabilities are unforgeable 
for most software. This lets software constrain the execution of code in fine-grained and scalable 
ways.   
 
Unlike most other hardware capability systems, CHERI capabilities are design to be used alongside 
traditional memory protection mechanisms, including virtual memory. 
 
CHERI-based architectures add various classes of instructions using capabilities, which can be broadly 
categorized as follows:   
 
• A set of load and store instructions that use capabilities for the base address and can apply an 

offset to them, and which check that their memory accesses are performed within the allowed 
range of the capability and with its permissions. A failure to adhere to permissions causes a 
precise data abort in a similar way to traditional memory management data aborts.  

• A set of specialized arithmetic and logical instructions that operate on capabilities for use by later 
loads or stores. These new instructions obey certain rules, for example, the address can be 
adjusted within limits defined by the bounds of the capability and cannot be taken arbitrarily out 
of range. The instructions allow the bounds or permissions of an capability to be decreased to 
allow the creation of sub-objects from an original object – but the bounds or permissions of a 
capability cannot be increased without a capability that gives you that right. This gives a 
monotonicity of privilege that is the essence of the compartmentalization that can be built using 



CHERI. Attempting to manipulate a capability outside these limits results in it being transformed 
into ordinary data, with tag cleared.  

• The program counter is enhanced to become a capability, so applying permission and range 
checks to direct branches.  Indirect branches now take a capability as an argument, to update the 
program counter capability bounds and permissions. 

• Traditional loads and stores that take integer addresses held in normal data registers are also  
supported to enable easier porting of legacy code to systems that use capabilities; the 
architecture introduces an additional register, the Default Data Capability, to apply permissions 
and access bounds to these, and also potentially an offset to the register-held address. This 
allows the creation of sandboxes for legacy software that has not been recompiled.  

Various more specialist instructions working with capabilities are also added to support a range of 
different models – these are not discussed in this paper, but can be found in the CHERI ISAv83 and  
Morello specifications. 

Software models for using CHERI capabilities 
 
These new architectural primitives can be used in two ways, which are not mutually exclusive. 
 
The first is to enforce programming-language-level fine-grained memory safety properties. The 
encapsulation of the bounds of an object with its address in a capability makes the enforcement of 
spatial memory safety straightforward – for example, recompiling and linking for CHERI will 
implement every address in the code with a capability, with appropriate bounds for stack and heap 
allocations. This can be achieved with minimal porting effort for software, and significant work has 
gone into supporting the de-facto uses of the C language and the relationship to the ISO standard.5  
 
CHERI can also be used as the basis for efficient temporal memory safety, as the metadata that 
distinguishes capabilities from other data allows a quarantine and garbage collection-like revocation 
approach when freeing memory.5 
 
The main cost of using the CHERI technology this way comes from the larger cache and memory 
footprint of 128-bit capabilities, which various benchmarks have shown to be in the range of 0-5%, 
though on some very pointer heavy workloads, it can be more than that.6 
 
Microsoft Security Research Centre did a survey of Microsoft’s 2019 critical vulnerabilities that 
required a software update, analyzing which would have been deterministically mitigated by using 
CHERI memory safety. They found that CHERI, when combined with allocation initialization and 
capability revocation, would have deterministically mitigated at least two-thirds of those issues.7 This 
not only greatly exceeds the mitigation rate that has been seen from other technologies, but does so 
in a deterministic and secrets-free manner, making it more robust against attacks than many other 
mitigation technologies.  
 
The second way to use a CHERI-based architecture is to use CHERI capabilities to construct much 
more fine-grained software compartmentalization than can be achieved with traditional MMU-based 
approaches (where software is compartmentalized by using different processes), as seen for example 
in content separation in a browser.  With more fine-grained compartmentalization, software can be 
built to be more robust by limiting the damage that can be done by a single exploited vulnerability, 
and so increase the overall security of the system. Prototyping has shown that CHERI can reduce the 
overhead of switching between compartments by orders of magnitude compared with a traditional 
process switch.8 CHERI’s primitives are flexible, and potential models include accelerating current 
domain-switching costs (e.g., between processes) and also new models (e.g., sandboxing libraries). 
 



Using fine-grained compartmentalization to increase security will take more work for software 
developers than recompiling and porting to use CHERI memory safety, as programmers are not used 
to having the ability to create fine-grained compartments, the traditional process-based approach 
being too expensive. While small-scale studies have shown that significant benefits can be achieved 
in research environments, it is an open question whether this scales to industrial-scale production 
workloads, in a way that provides a sufficiently compelling benefit to software to justify the 
commercial deployment of a CHERI-based architecture. The benefit from such a technology can be 
measured in terms of either a substantial increase in security as a reason to prefer using this product, 
or in terms of a performance improvement for the same level of compartmentalization as is achieved 
today, due to the far faster switching times from avoiding full process switches.  
 

The Morello Prototype System  
 
To enable software prototyping and evaluation for CHERI technology at large scale, Arm has 
developed the Morello prototype system – this was done in close collaboration with its partners: the 
Universities of Cambridge and Edinburgh, and Linaro, and with funding support from UKRI under the 
Digital Security by Design program.  
 
Morello includes a prototype version of the Armv8.2 architecture, capable of running standard Arm 
software, with a full set of capability extensions. Because this architecture was designed to enable a 
wide range of prototyping, various experimental features were added to the architecture whose 
value needs to be assessed. For example, multiple viable capability-based domain-transition 
mechanisms are included in the prototype, for comparison, but fewer such mechanisms would be 
expected in a production architecture. The presence of these features allows comparison between 
code using those features, and code not using them. The full Morello architecture is published by 
Arm.10 
 
This prototype architecture has been built, in a new experimental high performance out-of-order 
CPU based on the Neoverse-N1 processors that are shipping today. The original Neoverse-N1 
processors are 4-way decode, 8-way issue, 11 stage pipeline systems with a 128-entry re-order buffer 
and three levels of cache, and these parameters remained the same in the experimental Morello 
CPUs with capabilities added.  The Morello CPU runs at 2.5GHz in the SoC which was fabricated on a 
TSMC N7 process, and the overall SoC has an area of 109.9mm2. 
 
The system-on-chip designed as part of the Morello program has four of these CPUs together with a 
Mali G76 GPU and PCIe, CCIX and PCIe interfaces, in an SoC that is compliant with the Base System 
Architecture suitable for either Server or Client workloads.  
 
The demonstrator board of this SoC includes 16GByte of RAM and a host of additional features for 
prototyping, as shown in Figure 1. 



 
 

Figure 1: The features of the Morello demonstrator board 
 
All the other standard documentation and support deliverables have also been produced to allow 
people to experiment with these systems. We are making these available to a variety of partners, 
including Microsoft, Google, and a number of universities, research labs, and smaller companies, 
under the guidance of UKRI and the UK Digital catapult.  
 
The UK Digital Security by Design program has also provided funding for universities and smaller 
companies to experiment with the Morello systems, while larger companies have committed to do 
their own Morello research. Only a small number of Morello boards have been built, as this is a 
prototyping system, not a commercial product. Around 450 boards have been delivered to a 
community of around 50 institutions at the time of writing.  
 

Implications of Capabilities on the CPU micro-architecture  
 
The CPU microarchitecture has to be extended to support a register file with a set of capabilities as 
an alternative to the normal 64-bit general-purpose integer registers. In the Morello architecture, the 
capability registers overlap with the general-purpose registers, such that the same architectural state 
could be viewed as a 128-bit register designed to hold capabilities or as a 64-bit general-purpose 
data value, along with the meta-data tag bit associated with each 128-bit register to indicate 
whether it holds a capability or other data. The choice to overlap the register files was made because 
there was not sufficient value in having separate architectural registers to hold capabilities to justify 
the additional hardware complexity, and having a single register file simplifies the implications to 
software ABIs. The Morello prototype architecture made all 31 architectural registers (and the stack 
pointers) able to hold capabilities to allow most flexibility in prototyping and would avoid 
constraining compiler register allocation. A commercial implementation might choose to have fewer 
registers able to hold capabilities, and the implications of this can be measured using the Morello 
prototype architecture.  
 
All of the physical registers in the design that are used by the renaming system to map to the 
architectural registers were expanded to 129 bits wide (including the meta-data tag bit), and much of 
the micro-architecture was enhanced to have the 129-bit capability as a first-class concept. However, 
in the Morello prototype, the datapaths to memory were not doubled in width, so instead multiple 
cycles were taken to move capabilities – this ensured that performance and area comparisons would 



be realistic in terms of the amount of physical bandwidth available. This choice reduced the impact 
on much of the memory system, reducing the development time and cost of the prototype CPU. This 
decision would need to be revisited for a commercial implementation.  
The CPU caches were enhanced so that alongside every 128 bits of data there is also a meta-data 
tag, and the system buses were expanded to carry the tag alongside the data.  
 
One of the experimental capability features included in the Morello architecture is that the Default 
Data Capability (DDC) can apply an offset to the general-purpose register-based address calculations. 
The usage model behind this is to allow the compartmentalization of several instances of the same 
legacy code in a set of different sandboxes, where only one instance is used at a time by a given CPU. 
The base address held in the DDC at any moment in time is therefore the base address of the 
sandbox, and all other addresses within the sandbox are relative to this base address. Moving 
between sandboxes involves some executive software changing the DDC.  
 
While this is an architecturally interesting concept, it has a significant impact on an implementation’s 
address generation stage, as it changes the normal two-way addition of base address and offset for 
each memory calculation into a three-way addition of DDC, register base address, and offset. In 
many microarchitectures, the address generation path, and its subsequent lookup into the first level 
of TLB, is a very sensitive timing path, and so the expansion of this to include another addition, albeit 
done in a carry-save format, is a controversial issue. The Morello prototype included this 
functionality to allow evaluation of this feature and usage model, and measurement of the execution 
cycle-count, compared with generating the address using multiple instructions.  
 
The main change to the load store unit is that loads and stores need to check that the memory 
accesses are in range and have the right permissions.  Most of those checks are address-based and 
run in parallel to the normal memory-management function of the TLB and have similar timing, so 
the determination that the access is permissible is available slightly earlier in the micro-architecture 
than the result of the normal TLB-based permission checks. It is not acceptable to speculate using 
data from loads that fail the capability checks to avoid speculation issues similar to those seen in 
Meltdown. 
 
However, the Morello architecture defines a particular capability-based permission check that 
generates a memory fault if a 128-bit value that is tagged as a capability is stored to a memory 
location that does not permit capabilities to be stored to it. This permission fault is dependent on the 
value of the meta-data tag of the data being stored, a micro-architecturally novel concept that added 
complexity and performance cost. The mechanisms for using capabilities for temporal memory safety 
are reliant on the ability to generate this fault, so it was included as part of the Morello prototype.  
 
The Morello architecture also added a requirement for atomic load-store instructions, that are 
typically used on a pair of addresses, to support pairs of capabilities. The architecture requires that 
the implementation can perform an atomic compare-and-swap of a 256-bit quantity and the two 
additional meta-data tags. This was a new requirement in terms of the atomic access support of the 
design.  
 
A key innovation in the CHERI architecture is that the base, bounds, and permission information of a 
capability is compressed into only 64 bits of additional state, which means that when the address 
checks are performed, the base and bounds need to be uncompressed to allow them to be 
compared with the result of the address calculation. Much work has gone into developing a scheme 
that can be quickly decompressed when necessary, so as not to impact any critical paths on the 
device10. In the memory access path, the decompression of the base and bounds is done as a pair of 



expansions in parallel with the address generation arithmetic, and that means that the bounds check 
is timed in a very similar way to the normal TLB hit case. 
 
The details of the expansion are in Figure 2, based on the format of the capability described in the 
Morello architecture documentation9. This requires two shifters, an adder, and three comparators for 
each of the base and limit. Fortunately, it was possible to implement it in the full cycle of the Morello 
CPU without impacting the overall critical timing path of the design.  

  
Figure 2: capability expansion logic 

 
A consequence of the compression scheme is that not all combinations of an address, base, and 
bounds are representable11, which means that if the address part of a capability is taken too far out 
of range as part of arithmetic operations, the bounds cannot be represented. Fortunately, doing that 
on a C pointer is illegal. When any arithmetic is performed on a capability, a hardware 
representability check clears the tag if the address has been pushed too far out of range, and the 
bounds become meaningless. 
 
The compression scheme design ensures that this check can be done without decompressing 
capabilities to avoid hitting the critical path for arithmetic. There are a small number of integer 
operations on capabilities that need to have the capability decompressed, but these occur 
sufficiently infrequently that they can take multiple cycles. 
 
The fact that the PC becomes a capability in the Morello architecture introduces questions about 
how to handle the indirect prediction of PC capabilities. The highest performance solution would be 
to expand the indirect branch prediction targets to hold 129-bit capabilities, allowing changes to the 
base/bounds of the PC to be predicted, although this has a non-trivial area cost. Two other options 
exist: one is to predict that the base/bounds do not change (relying on the fact that most indirect 
branches do not change the PC base/bounds), and the other is to simply stall until the new bounds 
are known. The Morello implementation stalls in some circumstances until the new bounds are 
known, and this has led to undesirable performance issues that have had to be worked around in the 
compiler. A commercial implementation of a capability architecture will need to use one of the other 
approaches, though the issue can be worked around in a prototyping environment such as Morello. 
The Morello prototype did not address Spectre-type speculation attacks, where predictors would 
need to be tagged with context information.  
 



The Morello prototype implements two ways of holding the meta-data tags in memory, to allow 
performance comparison between them as part of the prototyping.  The first approach is to carve 
out a <1% area of the DRAM to hold the tags and to split all cache misses into two memory accesses, 
one for the data and the other for the tag.  In the Morello system, this is augmented with a caching 
structure to minimize the number of meta-data accesses to memory. The second is to have the meta-
data explicitly held alongside the memory by repurposing the bits normally used for ECC. For an 
experimental platform like Morello, the ECC information is not used as the systems will not be 
deployed in an environment with high RAS requirements. Repurposing the ECC data to hold tags 
makes it possible to directly measure the performance overhead that comes from the other 
mechanism for holding tags.  

Morello software infrastructure and experiments 
 
Hardware is only part of the Morello system. The CHERI LLVM compiler, adapted to Morello by Arm, 
implements the CHERI C and C++ variants of these popular memory-unsafe programming languages. 
They support the protection of language-level resources such as stack and heap allocations, and also 
of sub-language structures such as dynamic program linkage and global variable access. 
 
The CheriBSD operating system, a heavily CHERI-adapted version of the open-source FreeBSD UNIX, 
provides a rich demonstration of how extensive CHERI integration can enable kernel and user-level 
memory safety, and scalable software compartmentalisation, while still supporting legacy 64-bit Arm 
applications. Arm has embarked on a port of the gcc compiler and Linux operating system to Morello, 
and is integrating research features into these software stacks as they mature. 
 
The X11 KDE-based desktop environment was ported in 3 months by a single engineer having to 
make changes in less than 0.03% of the 6 million lines of code - these changes give an assessed 
vulnerability mitigation rate of 73.8%11. The system is capable of running a complete suite of legacy 
FreeBSD applications, and has been used to give presentations about the Morello system. 

Formal proofs of the Morello security properties 
 
CHERI aims to provide strong deterministic guarantees of certain architectural security properties, to 
provide a solid foundation for software to use in constructing more secure systems.  It is thus 
important to establish high assurance that the detailed Morello architecture design provides the 
intended security (as otherwise any conforming hardware implementation would build in 
vulnerabilities), but this cannot be done by conventional testing. 
 
Accordingly, a major strand of work of the Morello program was to develop and use formal methods.  
Teams at the Universities of Cambridge and Edinburgh took the description of the Morello 
architecture (62K lines of specification), translated it into a mathematical definition (via the Sail 
language), precisely stated the fundamental intended security property (reachable capability 
monotonicity, i.e. that the available capabilities cannot be increased during normal execution of 
arbitrary code), and proved that this holds of the full sequential architecture specification, using the 
Isabelle Proof Assistant.  The formal semantics was also used for high-coverage test generation. 
 
This gives us machine-checked mathematical proofs of security properties of a full-scale industry 
architecture, at design-time. To the best of our knowledge, this is the first demonstration that that is 
feasible, and it significantly increases confidence in Morello.  Moreover, in doing the proof, three 
security issues were found before tapeout.12 
 



Conclusion 
 
The creation of the Morello platform is an important step of the Digital Security by Design program 
to investigate the applicability of CHERI capabilities in an industrial context. The platform will allow 
software developers to experiment with the concepts of CHERI for software that is commonly used 
for the Arm architecture – while also building extensive practical experience in CHERI 
microarchitecture applied to a high-performance industrial-scale hardware design. This provides a 
valuable opportunity to understand this new technology and will help refine the details of an 
architecture that we would make commercially available in future products. It also provides a real 
vehicle to allow red teams to evaluate the technology and to allow a wider range of software users to 
try using the technology. For example, the existence of Morello has created excitement in the Rust 
community, and has inspired academic projects looking at its use in Java and JavaScript runtimes. 
 
The essential CHERI technologies are not patented, and it is recognized by the authors that adoption 
of the CHERI concepts by many software ecosystems will require adoption of the CHERI technology in 
multiple architectures. One of the aims of the Morello program is to act as a showcase for the 
technology, so that where compelling benefits can be demonstrated in the Arm ecosystem, this can 
encourage the adoption of the technology by other architectures. This is an explicit aim of the 
program.  
 
It is expected that the software evaluations and prototyping using the Morello platform, which have 
already started, will continue over the next years, as it will take time to develop the compelling 
arguments for the use of this technology. If we have such compelling arguments then Arm 
anticipates that a form of this technology will be made available in future versions of the Arm 
architecture.  The investigation phase made possible by Morello is an essential part of the process 
that is necessary to properly explore this very promising new approach to the vital area of security.  
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