
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-
10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249 (“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR001122C0110 (“ETC”) . The views, opinions, and/or findings
contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Ricardo de Oliveira Almeida, Jonathan Anderson, Alasdair Armstrong, Rosie Baish, Peter Blandford-Baker,

John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brian Campbell, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Ivan Gomes-Ribeiro, Khilan Gudka, Brett Gutstein,

Angus Hammond, Graeme Jenkinson, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A.Theo Markettos,
J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil,

Kyndylan Nienhuis, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe,
Colin Rothwell, Peter Rugg, Hassen Saidi, Thomas Sewell, Stacey Son, Ian Stark, Domagoj Stolfa, Andrew Turner, MunrajVadera,

Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, Vadim Zaliva, and Bjoern A. Zeeb

University of Cambridge and SRI International
Web Slide Deck – 12 October 2022

Approved for public release; distribution is unlimited.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

This work was also supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), FA8650-18-C-7809 (“CIFV”), and HR001122C0110 (“ETC”) as part of the
DARPA CRASH, MRC, and SSITH research programs. The views, opinions, and/or findings contained in this report are
those of the authors and should not be interpreted as representing the official views or policies of the Department of
Defense or the U.S. Government.

We further acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108),
the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research
Cambridge, Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

CHERI introduction
• CHERI is a new processor technology that

mitigates software security vulnerabilities

• Developed by the University of Cambridge and SRI
International starting in 2010, supported by DARPA

• Arm collaboration from 2014

• Arm Morello CPU, SoC, and board announced 2019,
with support from UKRI; shipping as of Jan 2022

• Today’s talk:

• What is CHERI, how does it work, and is it any good?

• What is a Morello board, and what can I do with one?

• http://www.cheri-cpu.org/

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013.

3

High-performance Arm
Morello chip able to run a full
CHERI software stack,
Cambridge, 2022

http://www.cheri-cpu.org/

Introduction
• An introduction to capabilities and the CHERI architecture

• Ongoing CHERI research and transition

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, UCAM-CL-TR-941, September 2019.

• Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

• Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947, June 2020.

• Watson, et al. DSbD CHERI and Morello Capability Essential IP (Version 1)
UCAM-CL-TR-953, December 2020.

4

http://www.cheri-cpu.org/

Capability systems
• The capability system is a design pattern for how CPUs, languages,

OSes, … can control access to resources

• Capabilities are communicable, unforgeable tokens of authority

• In capability-based systems, resources are reachable only via capabilities

• Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

• They do this by making it natural and efficient to implement, in
software, two security design principles:

• The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

• The principle of intentional use dictates that when software holds multiple
privileges, it must explicitly select which to exercise

5

The CAP computer project ran from
1970-1977 at the University of
Cambridge, led by R. Needham, M.
Wilkes, and D. Wheeler.

What is CHERI?
• CHERI is a processor architectural protection model

• Composes a capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU and SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection deterministically closes many arbitrary code
execution attacks, and directly impedes common exploit-chain tools

• Scalable compartmentalization mitigates many vulnerability classes .. even unknown
future classes .. by extending the idea of software sandboxing

• CHERI-RISC-V research architecture and prototype FPGA implementations

• Arm Morello industrial quality demonstrator CPU, SoC, board6

Morello chip – quad-core multi-GHz
Arm processor and SoC with CHERI
extensions, Arm, 2022.

Architectural primitives for software security

7

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

An Introduction to CHERI

• Watson, et al. An Introduction to CHERI,
UCAM-CL-TR-941, September 2019
• Architectural capabilities and the CHERI ISA

• CHERI microarchitecture

• ISA formal modeling and proof

• Software construction with CHERI

• Language and compiler extensions

• OS extensions

• Application-level adaptations

NB: Predates public announcement of Morello

8

String
buffer

Malicious
data

$pc

$ra

(Lack of) architectural least privilege
• Classical buffer-overflow attack

1. Buggy code overruns a buffer, overwrites return address
with attacker-provided value

2. Overwritten return address is loaded and jumped to,
allowing the attacker to manipulate control flow

• These privileges were not required by the C
language; why allow code the ability to:
• Write outside the target buffer?
• Corrupt or inject a code pointer?
• Execute data as code / re-use code?

• Limiting privilege doesn’t fix bugs – but
does provide vulnerability mitigation

Ø Memory Management Units (MMUs) do not enable
efficient, fine-grained privilege reduction9

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Application-level least privilege

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

Potential compartmentalization
boundaries matching reasonable
user expectations for least privilege
can be found in many user-facing apps.

E.g., a malicious email attachment
should not be able to gain access to
other attachments, messages, folders,
accounts, or the system as a whole.

11

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

• Potential decompositions occupy a compartmentalization space:

• Points trade off security against performance, program complexity

• Increasing compartmentalization granularity better approximates
the principle of least privilege …

• … but MMU-based architectures do not scale to many processes:

• Poor spatial protection granularity

• Limited simultaneous-process scalability

• Multi-address-space programming model

HARDWARE-SOFTWARE
CO-DESIGN FOR CHERI

12

Hardware-software-semantics co-design
• University of Cambridge and SRI International from 2010 supported by DARPA

• Architectural mitigation for C/C++ TCB vulnerabilities

• Tagged memory, new hardware capability data type

• Model hybridizes cleanly with contemporary hardware and software designs

• New hardware enables incremental software deployment

• Hardware-software-semantics co-design + concrete prototyping:

• CHERI abstract protection model; concrete ISA instantiations in 64-bit MIPS,
32/64-bit RISC-V, 64-bit Armv8-a (Morello)

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes

• Formal proofs that ISA security properties are met, automatic testing

• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

• Repeated iteration to improve {performance, security, compatibility, ..}
13

Instruction
Fetch

Register
Fetch Decode Execute Writeback

Capability Coprocessor

Instruction Cache MMU: TLB Data Cache

Memory

Memory
Access

L2 Cache

Tag Controller

Implementation on FPGA

CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-12: RISC-V, temporal safety, proof,
Arm Morello, Microsoft CHERI Ibex14

CHERI ISA refinement over 10 years

15

Year Version Description

2010-2012 ISAv1
RISC capability-system model w/64-bit MIPS
Capability registers, tagged memory
Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers
Capability-aware exception handling
Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4

MMU-CHERI integration (TLB permissions)
ISA support for compressed 128-bit capabilities
HW-accelerated domain switching
Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6

Mature kernel privilege limitations
Further generated code efficiency
Architectural portability: CHERI-x86, CHERI-RISC-V sketches
Exception-free domain transition

2019 ISAv7

Architectural performance optimization for C++ applications
Microarchitectural side-channel resistance features
Architecture-neutral CHERI protection model
All instruction pseudocode from a formal model
CHERI Concentrate capability compression
Improved C-language support, dynamic linking, sentry capabilities
Elaborated CHERI-RISC-V ISA
64-bit capabilities for 32-bit architectures
Accelerated tag operations for temporal memory safety

2020 ISAv8

MMU temporal memory-safety assist; e.g., capability dirty bit
Optimizations for sentry capabilities
CHERI-RISC-V privileged support, general maturity
Further C-language semantics improvements

C
apabilities + RISC

C
/C

++ and capabilities

C
om

partm
entalization

128-bit, code efficiency

N
on-M

IPS ISA
s:

A
RM

v8-A
, A

RM
v8-M

, RISC
-V, x86-64

Tem
poral m

em
ory safety

In-kernel use
M

ulticore

Arm Morello architecture
synchronization point

Watson, et al. Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8), UCAM-CL-TR-951, October 2020.

CHERI ISAv7 – June 2019
• First CHERI ISA spec release in two years

• Key features:

• Architecture-neutral CHERI model

• Elaborated CHERI-RISC-V ISA

• CHERI Concentrate capability compression (IEEE TC 2019)

• Side-channel resistance features

• Improved C-language compatibility, dynamic linkage,
performance optimizations (ASPLOS 2019)

• Experimental features including 64-bit capabilities for 32-bit
architectures (ICCD 2018), temporal safety
(IEEE Micro 2019, IEEE SSP 2020)

• All instruction pseudocode derived from Sail formal models,
formally proven properties (IEEE SSP 2020)

16

CHERI ISAv8 (October 2020)
• 590 pages specifying CHERI-MIPS, CHERI-RISC-V

• Key changes

• Capability compression is now part of the abstract
protection model

• Both 32-bit and 64-bit architectural address sizes
are supported

• Various experimental features are now mature:
Sentry capabilities, CHERI-RISC-V

• New MMU temporal memory-safety mechanisms
based on load-side barrier model

• CHERI microarchitecture chapter

• Synchronized with Arm Morello
17

CHERI ISAv9 (2022 Q4?)

• Increasing CHERI-RISC-V maturity

• Control-flow improvements to reduce function call bloat

• Compressed instruction support

• Shift away from exception generation to tag clearing

• Sundry clarifications

• CHERI-MIPS removed

• Substantially more detailed CHERI-x86 sketch

• Further information on CHERI microarchitecture

18

CHERI PROTECTION MODEL
AND ARCHITECTURE

19

Architectural primitives for software security

20

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

CHERI design goals and approach
• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protects existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new architectural
table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization
(confined objects for in-address-space isolation, …)

21

virtual address (64 bits)

Pointers today

22

64
-b

it
po

in
te

r

Allocation

Virtual
address
space

• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Ø Attacks on data and code pointers are highly effective, often
achieving arbitrary code execution

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization

23

Globals

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

CHERI 128-bit capabilities

• Capabilities extend integer memory addresses

• Metadata (bounds, permissions, …) control how they may be used

• Guarded manipulation controls how capabilities may be manipulated;
e.g., provenance validity and monotonicity

• Tags protect capability integrity/derivation in registers + memory

Virtual address space
12

8-
bi

t
ca

pa
bi

lit
y

v

1-
bi

t
ta

g

permissions Bounds compressed relative to addressotype

64-bit virtual address

Upper bound

Lower bound

Pointer address
Memory
allocation

24

CHERI 128-bit capabilities
• CHERI capabilities are a new architectural data type extending integer addresses

• Capability metadata (bounds, permissions, …) control how a capability may be used

• Capability tags protect the integrity + safe derivation of capabilities in registers and memory

Capability-extended integer registers

$pcc

$c4
$c3

$c31

v

v

-
v

GPRs extended to 129 bits →

$ra

$a1
$a0

$pc

Tagged physical memory

dd

vCapability

Capability width

-

1-bit tags
added to
DRAM

Virtual address space

12
8-

bi
t

ca
pa

bi
lit

y

v

1-
bi

t
ta

g

permissions Bounds compressed relative to addressotype

64-bit virtual address

Upper bound

Lower bound

Pointer address
Memory
allocation

CHERI 128-bit capabilities

26

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v

1-
bi

t
ta

g
permissions

Bounds compressed
relative to address

otype

Virtual address (64 bits)

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Floating-point compressed 64-bit lower and upper bounds

• Strengthens larger allocation alignment requirements

• Out-of-bounds pointer support essential to C-language compatibility

• Permissions limit operations – e.g., load, store, fetch

• Sealing: immutable, non-dereferenceable capabilities – used for non-monotonic transitions

$pcc

$c4
$c3

$c31

v

v

-
v

GPRs extended to 129 bits

Merged capability register file + tagged memory
(as found in Morello and CHERI-RISC-V; MIPS used a split register file)

• 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)

27

General-purpose register file (GPRs)

$ra

$a1
$a0

$pc

vDDC

vEPCC

Control and
status registers

(CSRs)
Physical memory

dd

vCapability

Capability width

-

1-bit tags
added to
DRAM

CHERI-RISC-V formal ISA model
• CHERI RISC-V ISA model extends RISC-V formal ISA specification, in Sail

• Sail RISC-V ISA specification developed by UCam + SRI

• Selected as official RISC-V spec by the Foundation

• Sail is a custom first-order imperative language for expressing ISA specifications, usable by
engineers but with static type checking of bitvector lengths etc.

• The Sail spec is inlined in versions of the unprivileged and privileged RISC-V manuals

• Sail auto-generates a C emulator, theorem-prover definitions, and SMT definitions

• Machinery for configuring model WRT YAML from compliance group

• Readable, precise definition of ISA behavior, usable as test oracle for testing hardware
against and for software bring-up, and providing prover definitions if you want more
rigorous reasoning

• Paper on earlier CHERI-MIPS L3 modelling and proof work at IEEE SSP 2020

• Most recently completed monotonicity proofs for the Arm Morello architecture
28

ISA formal modelling and verification

• Formal ISA models CHERI-MIPS, CHERI-RISC-V, and Morello
• Formal proof of compartmentalization for CHERI-MIPS, Morello

Rigorous engineering for hardware security:
Formal modelling and proof in the CHERI design

and implementation process

Kyndylan Nienhuis⇤, Alexandre Joannou⇤, Thomas Bauereiss⇤, Anthony Fox†, Michael Roe⇤, Brian Campbell‡,
Matthew Naylor⇤, Robert M. Norton⇤, Simon W. Moore⇤, Peter G. Neumann§, Ian Stark‡, Robert N. M. Watson⇤,

and Peter Sewell⇤
⇤University of Cambridge †ARM Limited ‡University of Edinburgh §SRI International

Abstract—The root causes of many security vulnerabilities

include a pernicious combination of two problems, often regarded

as inescapable aspects of computing. First, the protection mech-

anisms provided by the mainstream processor architecture and

C/C++ language abstractions, dating back to the 1970s and be-

fore, provide only coarse-grain virtual-memory-based protection.

Second, mainstream system engineering relies almost exclusively

on test-and-debug methods, with (at best) prose specifications.

These methods have historically sufficed commercially for much

of the computer industry, but they fail to prevent large numbers

of exploitable bugs, and the security problems that this causes

are becoming ever more acute.

In this paper we show how more rigorous engineering methods

can be applied to the development of a new security-enhanced

processor architecture, with its accompanying hardware im-

plementation and software stack. We use formal models of

the complete instruction-set architecture (ISA) at the heart of

the design and engineering process, both in lightweight ways

that support and improve normal engineering practice – as

documentation, in emulators used as a test oracle for hardware

and for running software, and for test generation – and for formal

verification. We formalise key intended security properties of the

design, and establish that these hold with mechanised proof. This

is for the same complete ISA models (complete enough to boot

operating systems), without idealisation.

We do this for CHERI, an architecture with hardware capabil-
ities that supports fine-grained memory protection and scalable

secure compartmentalisation, while offering a smooth adoption

path for existing software. CHERI is a maturing research

architecture, developed since 2010, with work now underway

on an Arm industrial prototype to explore its possible adoption

in mass-market commercial processors. The rigorous engineering

work described here has been an integral part of its development

to date, enabling more rapid and confident experimentation, and

boosting confidence in the design.

I. INTRODUCTION

Despite decades of research, memory safety bugs are still
responsible for many security vulnerabilities [1]. Microsoft
estimates that 70% of the vulnerabilities they have patched be-
tween 2006 and 2018 are caused by memory safety issues [2],
MITRE considers classic buffer overflows as the third most
dangerous software error [3], and high-profile memory-safety
bugs such as Heartbleed [4] have become common.

There are two fundamental problems here. First, mainstream
hardware architectures and C/C++ language abstractions pro-

vide only coarse-grained memory protection, via the memory
management unit (MMU). This is hard to change: the mass of
legacy C/C++ code makes it infeasible to migrate everything
to a type-safe language, or to radically change hardware
architectures, but introducing fine-grained memory protection
in software, e.g. with bounds-checking, is often too inefficient.

Second, mainstream systems are typically developed using
test-and-debug engineering methods. While this often suffices
to build systems that are sufficiently functionally correct under
normal use, it fails to build secure systems: it is easy to miss
a small mistake that manifests itself only in a corner case, but
attackers will actively try to find these, and one small bug can
compromise the entire system.

CHERI is an ongoing research project that addresses the
first problem with hardware support for fine-grained memory
protection and scalable software compartmentalisation, aiming
to provide practically deployable performance and compati-
bility [5]–[7]. CHERI achieves this by extending commodity
architectures with new security mechanisms, and adapting a
conventional software stack to make use of these.

This paper addresses the second problem: we show how
more rigorous engineering methods can be used to improve as-
surance and complement traditional methods, using the CHERI
project as a whole as a testbench for this. These include
both lightweight methods – formal specification and testing
methods that provide engineering and assurance benefits for
hardware and software engineering without the challenges of
full formal verification – and more heavyweight machine-
checked proof, establishing very high confidence that the
architecture design provides specific security properties.

A. The CHERI Context
The CHERI design is based on two principles. The principle

of least privilege [8] says that each part of a program should
run only with the permissions it needs to function. For exam-
ple, a conventional C/C++ program implicitly uses permission
to its entire memory region for accesses via a pointer, making
it vulnerable to buffer overflows, but in CHERI it can be
limited to the permission to access the pointed-to object. On
a larger scale, the JavaScript execution engine of a browser

IEEE SSP 2020

ESOP 2022

CHERI MICROARCHITECTURE AND
PROTOTYPES

30

Architectural primitives for software security

31

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

CHERI hardware prototypes
• Original research based on our home-grown pipelined BERI MIPS core (CHERI-MIPS)

• We have transitioned our CHERI research to extended versions of open-source off-
the-shelf BSV RISC-V cores (CHERI-RISC-V)

• CHERI-Piccolo 3-stage pipeline, 32-bit, no MMU

• CHERI-Flute 5-stage pipeline, 32- or 64-bit, MMU

• CHERI-Toooba Superscalar, 64-bit, MMU

• Novel microarchitectural contributions include capability compression model,
tagged memory implementation techniques

• All of our CPU designs are open source

• We also provide a Qemu full-system and userlevel simulators for CHERI-RISC-V

• Arm Morello and Microsoft CHERI Ibex (later slides)

32

Example microarchitecture: CHERI-Piccolo microcontroller

33

merged integer &
capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:
PCC, DDC, CSRs

CHERI-Piccolo core

Changes to the Piccolo core (RISC-V 3-stage pipeline):
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• merged integer & capability register file

Memory subsystem:
• AXI user-field added to transport tag bits & data width

doubled
• caches extended to include tags

DRAM changes:
• New tag controller uses a hierarchical tag table to

efficiently store tag bits backed by top of DRAM

L1 D-cache

Microarchitectural tag storage for off-the-shelf DRAM

• Published in the IEEE International Conference on Computer Design
(ICCD) 2017

• Shift from flat to hierarchal tag table to hold tags in DRAM
• Exploit inconsistent density of tags in physical memory
• Reduces DRAM access overhead for a variety of workloads

Efficient Tagged Memory
Alexandre Joannou⇤, Jonathan Woodruff⇤, Robert Kovacsics⇤, Simon W. Moore⇤, Alex Bradbury⇤, Hongyan Xia⇤,

Robert N. M. Watson⇤, David Chisnall⇤, Michael Roe⇤, Brooks Davis†, Edward Napierala⇤,
John Baldwin†, Khilan Gudka⇤, Peter G. Neumann†, Alfredo Mazzinghi⇤,

Alex Richardson⇤, Stacey Son†, A. Theodore Markettos⇤

⇤Computer Laboratory, University of Cambridge, Cambridge, UK †SRI International, Menlo Park, CA, USA
Website: www.cl.cam.ac.uk/research/comparch Website: www.sri.com

Abstract—We characterize the cache behavior of an in-memory
tag table and demonstrate that an optimized implementation
can typically achieve a near-zero memory traffic overhead. Both
industry and academia have repeatedly demonstrated tagged
memory as a key mechanism to enable enforcement of power-
ful security invariants, including capabilities, pointer integrity,
watchpoints, and information-flow tracking. A single-bit tag
shadowspace is the most commonly proposed requirement, as
one bit is the minimum metadata needed to distinguish between
an untyped data word and any number of new hardware-
enforced types. We survey various tag shadowspace approaches
and identify their common requirements and positive features of
their implementations. To avoid non-standard memory widths,
we identify the most practical implementation for tag storage to
be an in-memory table managed next to the DRAM controller.
We characterize the caching performance of such a tag table
and demonstrate a DRAM traffic overhead below 5% for the
vast majority of applications. We identify spatial locality on a
page scale as the primary factor that enables surprisingly high
table cache-ability. We then demonstrate tag-table compression
for a set of common applications. A hierarchical structure with
elegantly simple optimizations reduces DRAM traffic overhead to
below 1% for most applications. These insights and optimizations
pave the way for commercial applications making use of single-bit
tags stored in commodity memory.

I. INTRODUCTION

Hardware support for tagged memory has been implemented
from early days of computer architecture [1], [2], and tagged
memory is used by many research systems to enforce security
invariants in nearly unmodified programs, including track-
ing pointer integrity [3], [4], enabling unforgeable capabil-
ity tokens [2], [5]–[8], tracking programmable information-
flow [9]–[11], and even general-purpose watchpoint systems
to support both debugging and software-defined security in-
variants [12], [13]. However, the costs associated with tagged
memory have been unclear. Tag-storage access patterns are
unique, with each bit potentially representing many bits of data
memory. Although some research projects have recommended
tag storage in standard memory, and a few have developed
implementations, none have characterized single-bit tag access

This work is part of the CTSRD project sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions,
and/or findings contained in this paper are those of the authors and should not
be interpreted as representing the official views or policies, either expressed
or implied, of the Department of Defense or the U.S. Government. We
also acknowledge the EPSRC REMS Programme Grant [EP/K008528/1],
the EPSRC Impact Acceleration Account [EP/K503757/1], an ARM iCASE
award and Google, Inc.

patterns sufficiently to inform implementations or further
optimizations.

For simplicity, we identify three points in the tagging design
space: no tag, a single-bit tag (SBT), or a multi-bit tag (MBT)
per word. This paper demonstrates that SBT systems can be
nearly as efficient as untagged memory. We do not attempt
to optimize MBTs, although some of the principles here will
also apply to small MBT systems.

The contributions of this paper include:
• A survey of proposed implementations of SBT systems

identifying a practical approach: an in-DRAM tag table
with a tag cache next to the DRAM controller, including
tags with metadata in data caches.

• A characterization of the dynamic workload of tag-
table caches whose hit rates can be surprisingly high,
considering that we are below the last-level cache so most
temporal and spatial locality has already been exploited.
We sweep parameter spaces and evaluate against a range
of benchmarks with diverse characteristics.

• A characterization of an elegantly simple and highly
effective compression scheme for three tag use cases,
finding that it reduces overhead for tag-memory traffic
to nearly zero for most applications.

Benchmarks run on our FPGA implementation confirm the
simulation results, and demonstrate that an SBT memory
can be implemented using commodity memory at near-zero
performance cost.

II. SINGLE-BIT TAGGED MEMORY

Tags are often stored in a shadowspace that holds M-
bits of metadata in a hidden memory for every N-bytes of
conventional visible memory. Tags in a shadowspace can pro-
vide integrity (popular for security) because the shadowspace
cannot be named by instructions from the host architecture and
is therefore naturally protected from tampering without imped-
ing program execution. Tagged memory enables a number of
ambitious and useful functions that solve difficult problems
in computer systems with high performance. We might divide
tag use cases into information flow [3], [9], [11], [14]–[16],
memory safety [4], [17]–[19], capability protection [6]–[8],
instrumentation [12], [13], and general-purpose [20]–[25].

Various tagged architectures share the requirement of a
single-bit tag (SBT) shadowspace [6]–[8], [11], [14], [16].
SBT shadowspace designs either require exactly two hardware
types (and therefore interpret the tag bit directly [11], [12]), or
use the tag bit to indicate a complex typed word (i.e., a word

Compressing capability bounds

• Published in IEEE Transactions on Computers, April 2019
• Efficient compressed capabilities for 32-bit and 64-bit processors

• Reduces size of capabilities from 4x machine word size to 2x
• Large reduction in cache overheads
• Efficiently fits into a RISC pipeline with negligible impact on clock frequency
• Maintains all security and software compatibility properties

1

CHERI Concentrate:
Practical Compressed Capabilities

Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony Fox, Robert Norton, Thomas Bauereiss,
David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel W. Filardo, A. Theodore Markettos, Michael Roe,

Peter G. Neumann, Robert N. M. Watson, Simon W. Moore

Abstract—We present CHERI Concentrate, a new fat-pointer compression scheme applied to CHERI, the most developed
capability-pointer system at present. Capability fat pointers are a primary candidate to enforce fine-grained and non-bypassable
security properties in future computer systems, although increased pointer size can severely affect performance. Thus, several
proposals for capability compression have been suggested elsewhere that do not support legacy instruction sets, ignore features
critical to the existing software base, and also introduce design inefficiencies to RISC-style processor pipelines. CHERI Concentrate
improves on the state-of-the-art region-encoding efficiency, solves important pipeline problems, and eases semantic restrictions of
compressed encoding, allowing it to protect a full legacy software stack. We present the first quantitative analysis of compiled capability
code, which we use to guide the design of the encoding format. We analyze and extend logic from the open-source CHERI prototype
processor design on FPGA to demonstrate encoding efficiency, minimize delay of pointer arithmetic, and eliminate additional
load-to-use delay. To verify correctness of our proposed high-performance logic, we present a HOL4 machine-checked proof of the
decode and pointer-modify operations. Finally, we measure a 50% to 75% reduction in L2 misses for many compiled C-language
benchmarks running under a commodity operating system using compressed 128-bit and 64-bit formats, demonstrating both
compatibility with and increased performance over the uncompressed, 256-bit format.

Index Terms—Capabilities, Fat Pointers, Compression, Memory Safety, Computer Architecture

F

1 INTRODUCTION

INTEL Memory Protection Extensions (MPX) and Software
Guard Extensions (SGX), as well as Oracle Silicon Secured

Memory (SSM), signal an unprecedented industrial willing-
ness to implement hardware mechanisms for memory safety
and security. As industry looks to the next generation, capa-
bility pointers have become a primary candidate to conclu-
sively solve memory safety problems. Capability pointers
are stronger than fault detection schemes such as MPX and
SSM, and are able to achieve provable containment at the
granularity of program-defined objects that is as strong as
address-space separation.

The greatest cost for capability pointers involves the
object bounds encoded with each pointer to enforce memory
safety. Encoding both upper and lower bounds as well as
a pointer address requires either larger capabilities [1] or

• Jonathan Woodruff, Alexandre Joannou, Hongyan Xia, Anthony
Fox, Robert Norton, Thomas Bauereiss, David Chisnall, Khilan
Gudka, Nathaniel Filardo, Theo Markettos, Michael Roe, Robert
Watson, Simon Moore are with the Department of Computer Sci-
ence and Technology, University of Cambridge, England. Email is
{firstname.lastname}@cl.cam.ac.uk.

• Brooks Davis and Peter Neumann are with SRI International. Email is
{firstname.lastname}@sri.com.

This work is part of the CTSRD, ECATS, and CIFV projects sponsored by
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contracts FA8750-10-C-0237, HR0011-
18-C-0016, and FA8650-18-C-7809. The views, opinions, and/or findings
contained in this paper are those of the authors and should not be interpreted
as representing the official views or policies, either expressed or implied, of
the Department of Defense or the U.S. Government. Approved for Public
Release, Distribution Unlimited. We also acknowledge the EPSRC REMS
Programme Grant [EP/K008528/1], the EPSRC Impact Acceleration Account
[EP/K503757/1], Arm Limited, and Google, Inc.

restrictions on region properties, semantics, and address
space [2], [3].

This paper presents CHERI Concentrate (CC), a com-
pression scheme applied to CHERI, the most developed
capability-pointer system at present. CC achieves the best
published region encoding efficiency, solves important
pipeline problems caused by a decompressed register file,
and eases semantic restrictions due to the compressed en-
coding. The contributions of this paper are:

• A floating-point bounds encoding with an Internal
Exponent that provides maximum precision for small
objects, spending bits to encode an exponent only for
larger and less common objects.

• The first quantitative characterization of capability op-
erations in compiled programs to inform capability
instruction optimization.

• A power-of-two Representable Region beyond object
bounds to allow temporarily out-of-bounds pointers,
enabling compatibility with a broad legacy code base.

• A Representability Check for pointer arithmetic with de-
lay comparable to a pointer add, enabling integration
with standard processor designs.

CC improves efficiency over Low-Fat Pointers, the pre-
vious best capability bounds format, by inferring the most
significant bit of the Top field and by encoding the exponent
within the bounds. CC also improves both semantics and
timing by allowiny out-of-bounds pointer manipulations,
which simplifies the pointer arithmatic check allowing it to
be performed directly on the compressed format.

Submitted for review to IEEE Transactions on Computers

HOW SOFTWARE WORKS ON CHERI

36

Architectural primitives for software security

37

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

38

What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q: Where do pointers come from?

Integrity: Q: How do pointers move in practice?

Bounds, permissions: Q: What rights should pointers carry?

Monotonicity: Q: Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q: Can we construct isolation and controlled communication
using integrity, provenance, bounds, permissions, and monotonicity?

Q: Can sealed capabilities, controlled non-monotonicity, and
capability-based sharing enable safe, efficient compartmentalization?

39

CHERI C/C++ MEMORY PROTECTION

40

Memory-safe CHERI C/C++
• Capabilities used to implement all pointers

Implied – Control-flow pointers, stack pointers, GOTs, PLTs, …

Explicit – All C/C++-level pointers and references

• Strong referential, spatial, and heap temporal safety

• Minor changes to C/C++ semantics; e.g.,

• All pointers must have well defined single provenance

• Increased pointer size and alignment

• Care required with integer-pointer casts and types

• Memory-copy implementations may need to preserve tags

• Watson, et al. CHERI C/C++ Programming Guide,
UCAM-CL-TR-947, June 2020

41

Memory protection for the language and the language runtime
• Capabilities are refined by the kernel, run-time linker,

compiler-generated code, heap allocator, …

• Protection mechanisms:

• Referential memory safety

• Spatial memory safety + privilege minimization

• Temporal memory safety

• Applied automatically at two levels:

• Language-level pointers point explicitly at stack and
heap allocations, global variables, …

• Sub-language pointers used to implement control flow,
linkage, etc.

• Sub-language protection mitigates bugs in the language
runtime and generated code, as well as attacks that cannot be
mitigated by higher-level memory safety

• (e.g., union type confusion)
42

Language-level memory safety

Pointers to heap
allocations

Pointers to stack
allocations

Pointers to
global variables

Pointers to TLS
variables

Function
pointers Pointers to

memory mappings

Pointers to sub-
objects

Sub-language memory safety

GOT
pointersReturn

addresses

PLT entry
pointers

ELF aux arg
pointersStack

pointers

C++ v-table
pointers

Vararg array
pointers

CHERI-based pure-capability process memory

43

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread
register

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL

struct timezone tz;

time_t get_unix_time(void)
{

struct timeval tv;

gettimeofday(&tv, &tz);
return tv.tv_sec;

}

get_unix_time_riscv:
addi sp, sp, -32
sd ra, 24(sp)
addi a0, sp, 8
.LBB0_1:
auipc a1, %pcrel_hi(tz)
addi a1, a1, %pcrel_lo(.LBB0_1)
call gettimeofday
(expands to auipc, possibly cld, cjalr)
ld a0, 8(sp)
ld ra, 24(sp)
addi sp, sp, 32
ret

RISC-V vs. CHERI-RISC-V generated code

• The general code structure is unchanged except that:

• The integer stack pointer becomes a capability stack pointer

• The pointer to a local stack allocation becomes capability

• Compiler-specified bounds are set on the local variable pointer before use

• The loaded jump target is a capability rather than an integer address
44

get_unix_time_cheririscv:
cincoffset csp, csp, -32
csc cra, 16(csp)
cincoffset ca0, csp, 0
csetbounds ca0, ca0, 16
.LBB0_1:
auipcc ca1, %captab_pcrel_hi(tz)
clcca1, %pcrel_lo(.LBB0_1)(ca1)
.LBB0_2:
auipcc ca2, %captab_pcrel_hi(gettimeofday)
clcca2, %pcrel_lo(.LBB0_2)(ca2)
cjalr cra, ca2
cld a0, 0(csp)
clc cra, 16(csp)
cincoffset csp, csp, 32
cret

1. Adjust stack address/capability
2. Save return address/capability
3. Create address/capability to local ‘tv’

4. Generate address/capability to global ‘tz’

5. Call gettimeofday()

6. Load return value from ‘tv’
7. Load return address/capability
8. Restore stack address/capability
9. Return

CheriBSD: A pure-capability operating system
• Complete memory- and pointer-safe FreeBSD C/C++ kernel + userspace

• OS kernel: Core OS kernel, filesystems, networking, device drivers, …

• System libraries: crt/csu, ld-elf.so, libc, zlib, libxml, libssl, …

• System tools and daemons: echo, sh, ls, openssl, ssh, sshd, …

• Applications: PostgreSQL, nginx, WebKit (C++)

• Valid provenance, minimized privilege for pointers, implied VAs

• Userspace capabilities originate in kernel-provided roots

• Compiler, allocators, run-time linker, etc., refine bounds and perms

• Trading off privilege minimization, monotonicity, API conformance

• Typically in memory management – realloc(), mmap() + mprotect()
45

CHERI C compatibility: CheriBSD Code Changes
Area Files total Files modified %

files
LoC

total
LoC

changed
%

LoC

Kernel 11,861 896 7.6 6,095k 6,961 0.18

• Core 7,867 705 9.0 3,195k 5,787 0.18

• Drivers 3,994 191 4.8 2,900k 1,174 0.04

Userspace 16,968 649 3.8 5,393k 2,149 0.04

• Runtimes (excl. libc++) 1,493 233 15.6 207k 989 0.48

• libc++ 227 17 7.5 114k 133 0.12

• Programs and libraries 15,475 416 2.7 5,186k 1,160 0.02

Notes:
§ Numbers from cloc counting modified files and lines for identifiable C, C++, and assembly files
§ Kernel includes changes to be a hybrid program and most changes to be a pure-capability program

• Also includes most of support for CHERI-MIPS, CHERI-RISC-V, Morello
• Count includes partial support for 32 and 64-bit FreeBSD and Linux binaries.
• 67 files and 25k LoC added to core in addition to modifications
• Most generated code excluded, some existing code could likely be generated

C/C++ compatibility: WebKit - JSC Code Changes

Area Files total Files
modified

% Files LoC
total

LoC
changed

%
LoC

JSC-C 3368 148 4.4 550k 2217 0.40

JSC-JIT 3368 339 10.1 550k 7581 1.38

Notes:
§ JSC-C is a port of the C-language JavaScriptCore interpreter backend
§ JSC-JIT includes support for a meta-assembly language interpreter and JIT compiler
§ Runs SunSpider JavaScript benchmarks to completion
§ Language runtimes represent worst-case in compatibility for CHERI

• Porting assembly interpreter and JIT compiler requires targeting new encodings
§ Changes reported here did not target diff minimization

• Prioritized debugging and multiple configurations (including integer offsets into bounded JS heap) for performance and
security evaluation

• Some changes may not be required with modern CHERI compiler

Pure-capability UNIX process environment

• Received best paper award at ASPLOS, April 2019
• Complete pure-capability UNIX OS userspace with spatial memory safety

• Usable for daily development tasks
• Almost vast majority of FreeBSD tests pass
• Management interfaces (e.g. ioctl), debugging, etc., work
• Large, real-world applications have been ported: PostgreSQL and WebKit

CheriABI: Enforcing Valid Pointer Provenance and
Minimizing Pointer Privilege in the POSIX C

Run-time Environment

Brooks Davis∗
brooks.davis@sri.com

Robert N. M. Watson†
robert.watson@cl.cam.ac.uk

Alexander Richardson†
alexander.richardson@cl.cam.ac.uk

Peter G. Neumann∗
peter.neumann@sri.com

Simon W. Moore†
simon.moore@cl.cam.ac.uk

John Baldwin‡
john@araratriver.co

David Chisnall§
David.Chisnall@microso�.com

Jessica Clarke†
jessica.clarke@cl.cam.ac.uk

Nathaniel Wesley Filardo†
nwf20@cam.ac.uk

Khilan Gudka†
khilan.gudka@cl.cam.ac.uk

Alexandre Joannou†
alexandre.joannou@cl.cam.ac.uk

Ben Laurie�
benl@google.com

A. Theodore Markettos†
theo.marke�os@cl.cam.ac.uk

J. Edward Maste†
emaste@freebsd.org

Alfredo Mazzinghi†
am2419@cam.ac.uk

Edward Tomasz Napierala†
trasz@freebsd.org

Robert M. Norton†
robert.norton@cl.cam.ac.uk

Michael Roe†
michael.roe@cl.cam.ac.uk

Peter Sewell†
peter.sewell@cl.cam.ac.uk

Stacey Son†
sson@me.com

Jonathan Woodru�†
jonwoodru�@gmail.com

∗SRI International, Menlo Park, CA, United States †University of Cambridge, Cambridge, UK
‡Ararat River Consulting, Walnut Creek, CA, United States §Microsoft Research, Cambridge, UK

�Google Inc., London, UK

Abstract
The CHERI architecture allows pointers to be implemented
as capabilities (rather than integer virtual addresses) in a
manner that is compatible with, and strengthens, the seman-
tics of the C language. In addition to the spatial protections
o�ered by conventional fat pointers, CHERI capabilities o�er
strong integrity, enforced provenance validity, and access
monotonicity. The stronger guarantees of these architec-
tural capabilities must be reconciled with the real-world

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN ISBN 978-1-4503-6240-5/19/04. . . $15.00
h�ps://doi.org/10.1145/3297858.3304042

behavior of operating systems, run-time environments, and
applications. When the process model, user-kernel interac-
tions, dynamic linking, and memory management are all
considered, we observe that simple derivation of architec-
tural capabilities is insu�cient to describe appropriate access
to memory. We bridge this conceptual gap with a notional
abstract capability that describes the accesses that should be
allowed at a given point in execution, whether in the kernel
or userspace. To investigate this notion at scale, we describe
the �rst adaptation of a full C-language operating system
(FreeBSD) with an enterprise database (PostgreSQL) for com-
plete spatial and referential memory safety. We show that
awareness of abstract capabilities, coupled with CHERI archi-
tectural capabilities, can provide more complete protection,
strong compatibility, and acceptable performance overhead
compared with the pre-CHERI baseline and software-only
approaches. Our observations also have potentially signi�-
cant implications for other mitigation techniques.

Heap temporal memory safety

• IEEE Symposium on Security and Privacy (“Oakland”), May 2020
• Hardware and software support for deterministic temporal memory

safety for C/C++-language heaps using capability revocation
• Hardware enables fast tag searching using MMU-assisted tracking of

tagged values, tag controller and cache

+RaNn,RUC�- i3LURa�I b�83jw 8Ra +?2`B ?3�Uc
M�j@�NC3I r3cI3w 7CI�a0R.⇤ #a3jj 7Y ;njcj3CN.⇤ DRN�j@�N rRR0an{.⇤ b�L �CNcsRaj@.⇤ Hn,C�N T�nIAiaC8n.⇤

#aRRGc /�qCc.† ?RN<w�N tC�.⇤ 20s�a0 iRL�cy M�UC3a�I�.⇤ �I3u�N03a `C,@�a0cRN.⇤ DR@N #�I0sCN.‡
/�qC0 +@CcN�II.§ D3ccC,� +I�aG3.⇤ F@CI�N ;n0G�.⇤ �I3u�N0a3 DR�NNRn.⇤ �Y i@3R0Ra3 K�aG3jjRc.⇤

�I8a30R K�yyCN<@C.⇤ `R$3aj KY MRajRN.⇤ KC,@�3I `R3.⇤ T3j3a b3s3II.⇤ bj�,3w bRN.⇤
iCLRj@w KY DRN3c.⇤ bCLRN rY KRRa3.⇤ T3j3a ;Y M3nL�NN.† `R$3aj MY KY r�jcRN⇤
⇤mNCq3acCjw R8 +�L$aC0<3. +�L$aC0<3. mFd †b`B BNj3aN�jCRN�I. K3NIR T�aG. +�. mb�d

§KC,aRcR8j `3c3�a,@. +�L$aC0<3. mFd ‡�a�a�j `Cq3a +RNcnIjCN<. r�INnj +a33G. +�. mb�

�$cja�,jġmc3A�8j3aA8a33 qCRI�jCRNc R8 j3LURa�I L3LRaw c�83jw
,RNjCNn3 jR UI�<n3 cR8js�a3 cwcj3Lc. nN03aUCNNCN< L�Nw @C<@A
CLU�,j 3uUIRCjcY i@3 +?2`B ,�U�$CICjw cwcj3L c@Rsc <a3�j
UaRLCc3 CN �,@C3qCN< + �N0 +ZZ I�N<n�<3 cU�jC�I L3LRaw c�83jw.
Ua3q3NjCN< RnjAR8A$RnN0c �,,3cc3cY 2N8Ra,CN< I�N<n�<3AI3q3I j3LA
URa�I c�83jw RN +?2`B a3\nCa3c ,�U�$CICjw a3qR,�jCRN. ja�0CjCRN�IIw
�,@C3q30 3Cj@3a qC� j�$I3 IRRGnUc V�qRC030 8Ra U3a8RaL�N,3 CN
j@3 +?2`B 03cC<NW Ra $w C03NjC8wCN< ,�U�$CICjC3c CN L3LRaw jR
a3qRG3 j@3L VcCLCI�a jR � <�a$�<3A,RII3,jRa cs33UWY +?2`BqRG3.
� UaCRa 83�cC$CICjw cjn0w. cn<<3cj30 j@�j +?2`Bȕc j�<<30 ,�U�A
$CICjC3c ,RnI0 L�G3 j@Cc I�jj3a cja�j3<w qC�$I3. $nj LR03I30 RNIw
�a,@Cj3,jna�I ICLCjc �N0 0C0 NRj ,RNcC03a j@3 8nII CLUI3L3Nj�jCRN
Ra 3q�In�jCRN R8 j@3 �UUaR�,@Y

+RaNn,RUC� Cc � IC<@js3C<@j ,�U�$CICjw a3qR,�jCRN cwcj3L 8Ra
+?2`B j@�j CLUI3L3Njc NRNAUaR$�$CICcjC, +g+ZZ j3LURa�I L3LA
Raw c�83jw 8Ra cj�N0�a0 @3�U �IIR,�jCRNcY Bj 3uj3N0c j@3 +@3aC#b/
qCajn�IAL3LRaw cn$cwcj3L jR ja�,G ,�U�$CICjw �Rs j@aRn<@ L3LA
Raw �N0 UaRqC03c � ,RN,naa3Nj G3aN3IAa3cC03Nj a3qR,�jCRN c3aqC,3
j@�j Cc �L3N�$I3 jR LnIjCAUaR,3ccRa �N0 @�a0s�a3 �,,3I3a�jCRNY
r3 03LRNcja�j3 �N �q3a�<3 Rq3a@3�0 R8 I3cc j@�N lX �N0 � sRacjA
,�c3 R8 4YOX 8Ra ,RN,naa3Nj a3qR,�jCRN RN ,RLU�jC$I3 bT2+
+Tmlzzf $3N,@L�aGc RN � LnIjCA,Ra3 +?2`B +Tm RN 7T;�.
�N0 s3 q�IC0�j3 +RaNn,RUC� �<�CNcj j@3 DnIC3j j3cj cnCj3ȕc ,RaUnc
R8 j3LURa�IIw nNc�83 UaR<a�LcY r3 j3cj Cjc ,RLU�jC$CICjw sCj@ �
I�a<3 ,RaUnc R8 + UaR<a�Lc $w ncCN< � a3qRGCN< �IIR,�jRa �c j@3
cwcj3L �IIR,�jRa s@CI3 $RRjCN< LnIjCAnc3a +@3aC#b/Y +RaNn,RUC�
Cc � qC�$I3 cja�j3<w 8Ra �Is�wcARN j3LURa�I @3�U L3LRaw c�83jw.
cnCj�$I3 8Ra UaR0n,jCRN 3NqCaRNL3NjcY

BY BϩАЁϱβЛΫАϔϱϩ

K3LRaw �IIR,�jRac @RI0 � cU3,C�I URcCjCRN sCj@CN cR8js�a3
cwcj3Lc- j@3w <Rq3aN j@3 R$E3,j �$cja�,jCRN Rq3a L3LRawY
bU3,C~,�IIw. j@3w �IIR,�j3 a3<CRNc R8 @3�U L3LRaw jR cjRa3
I�N<n�<3AI3q3I R$E3,jc Vcn,@ �c +AI�N<n�<3 cjan,jcW. URccC$Iw
a3ncCN< �00a3cc cU�,3 Ua3qCRncIw R,,nUC30 $w R$E3,jc NR IRN<3a
CN nc3Y 2uUIC,CjIw L�N�<30 L3LRaw �IIR,�jRac Ģ j@Rc3 a3\nCaCN<
,�IIc jR 7`22UV a�j@3a j@�N njCICyCN< j3,@NC\n3c cn,@ �c <�a$�<3
,RII3,jCRN Ģ RU3N j@3 0RRa jR UaR<a�LL3aACNjaR0n,30 $n<c j@�j
qCRI�j3 @3�U j3LURa�I c�83jw. $w �IIRsCN< @3�U R$E3,jc jR �IC�cY
BN UaR<a�Lc sCj@ j@3c3 Ȓnc3A�8j3aA8a33ȓ ��sc. LRa3 �,,na�j3Iw
j3aL30 nc3A�8j3aAa3�IIR,�jCRN. � @3�U R$E3,j ,�N $3 �,,3cc30
3aaRN3RncIw �8j3a Cj @�c $33N 7`22UVA0 �N0 Cjc nN03aIwCN<
L3LRaw @�c $33N a3nc30 8Ra cRL3 Rj@3a UnaURc3. cn,@ �c
cjRaCN< � 0C{3a3Nj R$E3,j Ra �IIR,�jRa L3j�0�j�Y i@3c3 �IC�c30
�,,3cc3c L�w I3�G CN8RaL�jCRN. 0�L�<3 �IIR,�jRa L3j�0�j�. Ra
,RaanUj �UUIC,�jCRN 0�j�Y mc3A�8j3aA8a33 ��sc �a3 UaRIC~, CN
+ �N0 +ZZ UaR<a�Lc �N0 @�q3 $33N 3uUIRCj30 3uj3NcCq3Iw CN
a3�IAsRaI0 cwcj3Lc)SS. :f*Y

r@CI3 nc3A�8j3aA8a33 @3�U qnIN3a�$CICjC3c �a3 nIjCL�j3Iw 0n3
jR �UUIC,�jCRN LCcnc3 R8 j@3 K�HHQ+UV �N0 7`22UV CNj3a8�,3.
,RLUI3j3 c�NCjCy�jCRN R8 j@3 q�cj I3<�,w + ,R03 $�c3. Ra 3q3N
R8 @C<@Iw L�CNj�CN30 c3,naCjwA,aCjC,�I UaR<a�Lc. @�c UaRq30
CN83�cC$I3Y BNcj3�0. s3 jnaN Rna �jj3NjCRN jR j@3 �IIR,�jRa
Cjc3I8. �N0 c33G jR aR$ncjIw LCjC<�j3 j3LURa�IAc�83jw $n<cY
K�Nw �jj3LUjc @�q3 $33N L�03 jR LCjC<�j3 j3LURa�IAc�83jw
qnIN3a�$CICjC3c CN 3uCcjCN< �a,@Cj3,jna3c V0Cc,ncc30 CN ȽBtW. �N0
j@3w @�q3 03LRNcja�j30 j@�j j3LURa�I c�83jw Cc NRj URccC$I3 8Ra
jR0�wȕc ,RLUnj3ac sCj@Rnj Rq3a@3�0c �$Rq3 9X. � j@a3c@RI0 j@�j
@�c $33N C03NjC~30 �c N3,3cc�aw 8Ra nNCq3ac�I 03UIRwL3Nj):f*Y

+?2`B VȽBBA#W Cc � UaRLCcCN< 3uj3NcCRN 8Ra <3N3a�IAUnaURc3
�a,@Cj3,jna3c j@�j ,�N a3UI�,3 CNj3<3a URCNj3ac sCj@ nN8Ra<3�$I3
,�U�$CICjw URCNj3acY Bj @�c a3,3NjIw $33N �0RUj30 $w �aL
8Ra j@3Ca KRa3IIR UaRjRjwU3 UaR,3ccRa. bR+. �N0 $R�a0)lz*Y
i@3c3 ,�U�$CICjw URCNj3ac 3N8Ra,3 cU�jC�I c�83jw �N0 �a3 j�<<30.
�IIRsCN< j@3L jR $3 a3IC�$Iw C03NjC~30 CN L3LRaw. ,RNc3\n3NjIw
cRIqCN< RN3 R8 j@3 L�ERa ,@�II3N<3c jR + j3LURa�IAc�83jw
cwcj3LcY +?2`BqRG3)9l* VȽBBA+ �N0 ȽBBA/W UaRURc30 �N
�I<RaCj@L 8Ra j3LURa�I c�83jw CN +?2`B + �N0 +ZZ ncCN<
cs33UCN< a3qR,�jCRN. �N0 LR03I30 G3w �cU3,jc RN u4f L�,@CN3c
jR ,@�a�,j3aCy3 Cjc U3a8RaL�N,3Y

r3 Ua3c3Nj +RaNn,RUC�. � Ua�,jC,�I 03cC<N �N0 CLUI3L3NA
j�jCRN R8 j@3 �I<RaCj@L 8Ra cs33UCN< ,�U�$CICjw a3qR,�jCRN
j@�j s�c UaRURc30 �N0 LR03I30 CN j@3 +?2`BqRG3 U�U3aY
+RaNn,RUC� Cc CLUI3L3Nj30 CN +@3aC#b/. � +?2`BA�s�a3
8RaG R8 7a33#b/ cnUURajCN< j@3 +@3aC�#B)Sk* cU�jC�IIw �N0
a383a3NjC�IIw c�83 UaR,3cc 3NqCaRNL3NjY +RaNn,RUC� ,RNcCcjc R8
�N CNAG3aN3I c3aqC,3 VȽBpA�W. ,RNjaRII30 qC� c@�a30 L3LRaw
VȽBpA#W �N0 N3s cwcj3L ,�IIc VȽBpA+W. j@�j nc3c �a,@Cj3,jna�I
�ccCcj�N,3 VȽBpA/W jR CNcj�NjC�j3 j@3 +?2`BqRG3 cs33U VȽBpA2Wd
�N0 R8 ,@�N<3c jR @3�U �IIR,�jRac 8Ra 3uUa3ccCN< a3qR,�jCRN
a3\n3cjc jR j@3 G3aN3I VȽpWY +RaNn,RUC� �IcR 3uj3N0c j@3 CNCjC�I
+?2`BqRG3 �I<RaCj@L $w CNjaR0n,CN< ,RN,naa3Nj a3qR,�jCRN.
a3cnIjCN< CN IRs3a s�IIA,IR,G Rq3a@3�0cY
�Y +RNjaC$njCRNc
BN j@Cc U�U3a. s3-
• /3LRNcja�j3 @Rs j@3 +?2`B �a,@Cj3,jna3. +@3aC#b/ RU3a�jA

CN< cwcj3L. �N0 +?2`B +g+ZZ jRRI,@�CN ,RLURc3 jR 3Ncna3
j@�j I�N<n�<3AI3q3I URCNj3ac. CLUI3L3Nj30 �c ,�U�$CICjC3c.
,�N $3 C03NjC~30 3u�,jIw qC� cs33UCN<Y i@Cc C03NjC~,�jCRN
8�,CICj�j3c NRNAUaR$�$CICcjC, j3LURa�I c�83jw 8Ra j@3 @3�U
VȽBBA#. ȽBBA+. �N0 ȽBBA/WY

MSRC: Security analysis of CHERI C/C++
• Study analyzed all 2019 critical security vulnerabilities

• Metric: “Poses a risk to customers → requires a
software update”

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to build CHERI
experience

• Potential adversarial techniques post-CHERI

• Recently shifted from CHERI-MIPS to
CHERI-RISC-V and Arm Morello

50

1 | P a g e

Microsoft Security Response Center (MSRC)

SECURITY ANALYSIS OF CHERI ISA
Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited

vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI’s hybrid mode

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as

it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing

is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

x Pure-capability vs hybrid mode

x Chosen heap allocator’s resilience

x Sub-allocation bounds compilation flag

x Linkage model (PC-relative, PLT, and per-function .captable)

x Extensions for additional protections on execute capabilities

x Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,

but this combination means CHERI looks very promising in its early stages.

Microsoft security analysis of CHERI C/C++
• Microsoft Security Research Center (MSRC) study analyzed all

2019 Microsoft critical memory-safety security vulnerabilities

• Metric: “Poses a risk to customers → requires a software
update”

• Vulnerability mitigated if no security update required

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to gain experience

• CHERI, “in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

1 | P a g e

Microsoft Security Response Center (MSRC)

SECURITY ANALYSIS OF CHERI ISA
Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited

vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI’s hybrid mode

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as

it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing

is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

x Pure-capability vs hybrid mode

x Chosen heap allocator’s resilience

x Sub-allocation bounds compilation flag

x Linkage model (PC-relative, PLT, and per-function .captable)

x Extensions for additional protections on execute capabilities

x Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,

but this combination means CHERI looks very promising in its early stages.

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
51

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

52

Security Analysis of CHERI ISA

Security Research & Defense / By MSRC Team / October 14, 2020 /
Memory Corruption, Memory Safety, Secure Development, Security Research

Is it possible to get to a state where memory safety issues would be deterministically mitigated? Our quest to mitigate memory
corruption vulnerabilities led us to examine CHERI (Capability Hardware Enhanced RISC Instructions), which provides memory
protection features against many exploited vulnerabilities, or in other words, an architectural solution that breaks exploits. We’ve
looked at how CHERI would break class-specific categories of vulnerabilities and considered additional mitigations to put in place to
get to a comprehensive solution. We’ve assessed the theoretical impact of CHERI on all the memory safety vulnerabilities we
received in 2019, and concluded that in its current state, and combined with other mitigations, it would have
deterministically mitigated at least two thirds of all those issues.

We’ve reviewed revision 7 and used CheriBSD running under QEMU as a test environment. In this research, we’ve also looked for
weaknesses in the model and ended up developing exploits for various security issues using CheriBSD and qtwebkit. We’ve
highlighted several areas that warrant improvements, such as vulnerability classes that CHERI doesn’t mitigate at the architectural
level, the importance of using reliable and CHERI compliant memory management mechanisms, and multiple exploitation primitives
that would still allow memory corruption issues to be exploited. While CHERI does a fantastic job at breaking spatial safety
issues, more is needed to tackle temporal and type safety issues.

Your feedback is extremely important to us as there’s certainly much more to discover and mitigate. We’re looking forward to your
comments on our paper.

Nicolas Joly, Saif ElSherei, Saar Amar – Microsoft Security Response Center (MSRC)

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

CHERI SOFTWARE
COMPARTMENTALISATION

53

What is software compartmentalization?
• Fine-grained decomposition of a larger

software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

54

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment.

Software compartmentalization at scale

• Current CPUs limit:

• The number of compartments and rate of their creation/destruction

• The frequency of switching between them, especially as compartment count grows

• The nature and performance of memory sharing between compartments

• CHERI is intended to improve each of these – by at least an order of magnitude

55

...

CHERI contains attack within compartment,
preventing access to other data

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

56

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

Compartmentalization scalability

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent and faster domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image in a
web browser, processing each message in a mail application

• Unlike memory protection, software compartmentalization requires
careful software refactoring to support strong encapsulation, and
affects the software operational model

Early benchmarks show a 1-to-2
order of magnitude performance
inter-compartment
communication improvement
compared to conventional
designs

57

Operational models for CHERI compartmentalization

• An architectural protection model enabling new software behavior

• As with virtual memory, multiple operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message
passing? Signaling, debugging, …?

• We have explored multiple viable CHERI-based models to date, including:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello
58

Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

• New API loads libraries into in-process sandboxes.
• Calling functions in isolated libraries performs a domain transition, with

overheads comparable to function calls.
• Simple model eschews asynchrony, independent debugging, etc.

UNIX co-processes

• Multiple processes share a single virtual address space, separated using
independent CHERI capability graphs.

• CHERI capabilities enable efficient sharing, domain transition.
• Rich model associates UNIX process with each compartment.

• Active area of research; early prototype available for co-processes

59

Prototype
to appear in
CheriBSD
22.10

Prototype
to appear in
future
CheriBSD
release

Kernel

User process X

Sandbox Sandbox

Userspace domain switcher

Process X rights

Example: Robust shared libraries

• User compartments exist within individual UNIX processes (“robust shared libraries”):

• CHERI isolates compartments within each address spaces

• Compartment switcher is itself a trusted userspace library

• Compartments have strict subset of OS rights of the process

• Intra-process domain switches take no architectural exceptions and do not enter the kernel
• Multiple processes + IPC required if differing OS right sets needed

60

Jump-based
intra-address-space

CHERI domain switch

User process Y

Process Y rights

Exception-based
inter-address-space

MMU context switch

Kernel

Example: CHERI co-process model

• CHERI isolates multiple processes within a single virtual address space

• Kernel-provided trusted compartment switcher runs in userspace (actually a microkernel)

• CHERI-based inter-process memory sharing + domain switching

• A compartment’s OS rights correspond to the owning process

• Inter-process context switches take no architectural exceptions and do not enter the kernel
• CHERI can be pitched as improving IPC performance while retaining a (largely)

conventional process model 61

User processes X and Y with shared virtual address space

Sandbox
(process X)

Sandbox
(process Y)

Userspace domain switcher

Jump-based intra-address-
space CHERI domain

switch also switches kernel
notion of active process

Process X rights Process Y rights

CHERI TRANSITION

62

Morello and CHERI-RISC-V
• We are pursing two CHERI adaptations to post-MIPS ISAs:

• 2014 Joint with Arm, an experimental adaptation of 64-bit ARMv8-A
Arm Morello multicore SoC, development board, etc.
(announced Oct. 2019; experimental SoC shipped 2022)

• 2017 An experimental adaptation of 32/64-bit RISC-V
(open-source research processors on FPGA)

• Complete elaborations of the full hardware-software stack for each ISA:

• All aspects of the architectures (e.g., ARMv8-A VM features, etc.)

• Formal models + proofs, hardware implementations, compilers, OSes

• Potential for transition through both paths

63

CHERI target architectures

64

Architecture Features CHERI challenges
64-bit MIPS 1990s RISC architecture

(CHERI baseline)
Our legacy research architecture.
Poor code density and addressing modes:
harder to differentiate ‘essential’ CHERI costs;
few transition opportunities with MIPS

64-bit ARMv8-A Mature and widely
deployed load-store
architecture

Feature-rich; exception-adverse; rich address
modes; constrained opcode space; hardware
page tables; virtualization features; ecosystem

32-bit and
64-bit RISC-V

Open RISC ISA in active
development
(MIPS + 10 years?)

Limited addressing modes (expects micro-op
fusion); hardware page tables; only partially
standardized; features missing (e.g., hypervisor);
immature software stack

What’s the smallest variety of CHERI?
• Production-quality CHERI-RISC-V-

extended Ibex core

• Small-scale microcontroller used in
OpenTitan and other use cases

• Clean-slate memory-safe, compartmentalized
OS

• Will be open-source hardware and software

• CHERI-RISC-V tuned for small
microcontrollers

• RISC-V embedded standardization candidate

• Collaboration across Microsoft Research,
MSRC, Azure Silicon, and Azure Edge +
Platform

65
https://msrc-blog.microsoft.com/2022/09/06/whats-the-smallest-variety-of-cheri/

RISC-V CHERI Special Interest Group (SIG)
• Created in early October 2022

• SIG acting chair is Alex Richardson (Google)

• Intention to build interest and consensus around CHERI-RISC-V
standardization

• Likely at least two closely coupled standardization efforts:

• Microcontroller CHERI building on Microsoft’s recent work

• 64-bit CHERI-RISC-V building on SRI/Cambridge’s ISA

• Lots of open questions -- e.g., do we need multiple working groups, how to we
best capture the commonalities of the two ISA encodings, etc.

• SRI and Cambridge have recently joined RISC-V International to factilitate this

66

CHERI-ARM research since 2014
• Since 2014, in collaboration with Arm, we have been pursuing joint research to

experimentally incorporate CHERI into ARMv8-A:

• Develop CHERI as an architecture-neutral and portable protection model
implemented in multiple concrete architectures

• Refine and extend the CHERI architecture – e.g., capability compression, tagging
µarch, domain transition, and temporal safety

• Apply concept of architecture neutrality to the CHERI-enabled software stack,
including compiler, OS, and applications

• Expand software: large-scale application experiments, OS use, debuggers, …

• Extend work in formal modeling and proofs to an industrial-scale architecture

• Solve arising practical {hardware, software, …} problems as part of the research

• Build evidence, demonstrations, SW templates to support potential CHERI adoption

67

ISCF: Digital Security by Design (UKRI)
• 5-year Digital Security by Design UKRI program: £70M UK gov.

funding, £117M UK industrial match, to create CHERI-ARM
demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture difficult
– in particular, validation of concepts in microarchitecture,
architecture, and software “at scale”

• Support industrial and academic R&D (EPSRC, ESRC, InnovateUK)

• Baseline CPU is Neoverse N1; reuses existing SoC/board designs

• Collaborative review distillation of CHERI ISAv8; experimental
additions relating to temporal safety, compartmentalization

• Science designed allowed: Multiple architectural +
microarchitectural design choices for software-based evaluation

• 2020 emulation models; 2022 Morello board shipped!

68

Digital Security by
Design

Richard Grisenthwaite

SVP Chief Architect and Fellow

Richard.Grisenthwaite@arm.com

70 2019 Arm Limited

UK Research
and Innovation

Challenges with creating substantially new architecture

New
Hardware

New
Software
Models

Required to justify

Required to develop

71 2019 Arm Limited

UK Research
and Innovation

Why is Arm interested in the CHERI architecture
• Arm had been working with UoCambridge on CHERI for some 4-5 years
• Big step to addressing security based on strong fundamental principles
• Addresses spatial memory safety robustly and some ideas for temporal safety

• Memory safety issues reported to be involved with ~70% of vulnerabilities (Matt Miller, BlueHat IL, 2019)

• Has scope to be the foundation of a new mechanism for compartmentalisation
• Potentially far cheaper than using translation tables

• Interesting scope to address temporal safety issues as well as spatial ones….
• Many of the Arm software vendors are similarly interested in the possibilities of CHERI

• Microsoft, Google and others have expressed strong interest in exploring the concept…
• … but lots of questions about the real-world performance costs and usage models
• …understanding the intended usage models is important to refine the architectural features

• But is a novel thing to do with additional costs to the system and software
• Adding a 129th tag bit has a lot of impacts to the memory system
• it is an ABI change, so non-trivial costs for compatibility for some uses

72 2019 Arm Limited

UK Research
and Innovation

IP Position
• Today’s CPU architectures have largely the same basic functionality

• “Similar but different” approaches to most aspects of system architecture
• Small scale optimisations exist

• This position very beneficial for the porting of system software
• Anything that fundamentally changes the system software architecture is likely to be ignored

• Arm believes that this reality needs to continue with capabilities
• Implication is that we’d like the world’s leading architectures to adopt capabilities
• The Digital Security by Design program

73 2019 Arm Limited

UK Research
and Innovation

Arm Morello specification

• Experimental application of CHERI ISAv8 to ARMv8-A
• Much richer base ISA .. Much longer spec - 2,155

pages excluding additional material!
• Describes ISA as implemented in Arm Morello FVP

and processor/SoC
• Includes recent features such as sentry and load-side

barrier support

73

74 2019 Arm Limited

UK Research
and Innovation

The Morello Board
• An Industrial Demonstrator of a Capability architecture
• Uses a prototype capability extension to the Arm Architecture

• Prototype is a “superset” of what could be adopted into the Arm architecture

• Use of a superset of the architecture is very unusual
• Also unrealistic as a commercial product – there will be some frequency effects
• However, there are tight timescales so architecture is nearly complete now

• The superset of the architecture will allow a lot of software experimentation
• Various different mechanisms for compartmentalisation
• Collection of features for which the justification is unclear
• Techniques for holding the capability tag bit

• Architecture will have formally proved security properties (with UoC and UoE)
• Morello Board will be the ONLY physical implementation of this prototype architecture

• Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
• NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE

– But successful concepts are expected to be carried forward into the architecture and can be reused there

75 2019 Arm Limited

UK Research
and Innovation

Morello Board overview (subject to change)

• Quad core bespoke high-end CPU with prototype capability extensions
• Backwards compatibility with v8.2 AArch64-only
• Based on Neoverse N1 core

– Multi-issue out-of-order superscalar core with 3 levels of cache
• Build in 7nm process
• Targeting clock frequency around 2GHz

• Reasonable performance GPU and Display controller
• Standard Mali architecture core – not extended with capability
• Supports Android

• PCIe and CCIx interfaces including to FPGA based accelerators
• FPGA for peripheral expansion
• SBSA compliant system
• 16GB of System Memory (expandable to 32GB – tbc)

76 2019 Arm Limited

UK Research
and Innovation

Morello Board: Capability Hardware Prototype Platform

• Silicon implementation of a Capability Hardware CPU Instruction Set Architecture
• Implements Morello Profile for A-class

Prototype Architecture
• Two clusters each of two Rainier CPUs
• Interconnect and Memory Controller

support for tagged memory
• Two channel DDR4 DRAM interface
• PCIe Gen3 and Gen4 x16 interface
• CCIX (Cache Coherent Interconnect

for Accelerators) interface
• Mid-range GPU, display processor

and HDMI output
• On standard uATX form factor board

Co
re

Si
gh

tS
oC

-6
00

CMN-Skeena (CoreLink CMN-600 based)

CoreLink GIC-600

CoreLink NIC-400

IOFPGA

SCP
Cortex-M7

MCP
Cortex-M7DDR4-2667

DMC-Bing
(DMC-620 based)

CCIXPCIe

MMU-600
Rainier

EL
A

-5
00

Rainier

EL
A

-5
00

DMC-Bing
(DMC-620 based)

HDMI

Mali-D35

Mali-G76

UEFI boot, SCP/MCP FirmwareTrusted Firmware-A

Linux Kernel

Supporting Arm system IP: GIC-600 (Generic Interrupt Controller), MMU-600 (IO MMU), Dynamic
Memory Controller derived from DMC-620, SoC-600 (SoC Debug and Trace), Coherent Mesh Network
derived from CMN-600, NIC-400 (Non-coherent interconnect)
Supporting 3rd party system IP/hardware: PCIe/CCIX Root Complex (PHY and controller), DDR4/3 PHY,
DDR4 memory, IO FPGA
Open-source software stack

UK EPSRC DSbD research program 2020-2023

• 9 EPSRC projects
funded across 10 UK
universities

• Several InnovateUK
industrial projects
supporting
exploration,
evaluation,
demonstration

77

CHERI REFERENCE SOFTWARE STACK

78

Why port the CHERI stack to Morello?
• Validate the Morello architecture (functional, sufficient)

• Evaluate the Morello implementation (performance, energy use, …)

• Provide reference software semantics (spatial and temporal safety,
compartmentalization, POSIX integration, OS kernel use, …) that will be applicable to
other adaptations

• Act as a template and prototyping platform for at-scale industrial and academic
demonstration, including providing adaptations of common software dependencies
(e.g., widely used libraries)

• Provide a platform for future software research, asking questions about what
we can use CHERI for in {operating systems, compilers, language runtimes,
applications, …}

• Enable a growing academic and industrial community around CHERI and
Morello, including dozens of UK universities and companies associated with DSbD

79

Caution: Research software!
• The baseline compiler toolchain and OS stack are themselves research

• This means unknown risks, hard-to-predict schedules, and inevitable direction changes

• Application Binary Interface (ABI) stability

• ABIs are a key research area; there are 2x Morello ABIs, and there will be [many?] more

• This limits long-term binary compatibility guarantees for compiled software (for example)

• Software performance optimization with a limited corpus

• Right now, we’re just happy things are working, but we will get beyond that soon!

• Supporting a large and diverse audience of consumers with different objectives

• Engineering constraints limit objectives and support (e.g., software updates)

• Software adaptation workload

• Some code ports trivially (e.g., Qt/KDE stack) and other code doesn’t (e.g., JITs)

80

CHERI prototype software stack on Morello
• Complete open-source software stack from bare metal up: compilers,

toolchain, debuggers, hypervisor, OS, applications – all demonstrating CHERI
• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
(Morello and CHERI-RISC-V)

• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Linker-based compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, X11, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello
adaptation by
Arm + Linaro

81

Some of our in-flight software R&D efforts
Feature Status Availability

3rd-party packages (Hybrid) 23K software packages with strong
functionality expectations

Since May 2022 (22.05 release)

3rd-party packages (CheriABI) 9K software packages with mixed functionality
expectations

Since May 2022 (22.05 release)

Morello GPU device drivers Hybrid + pure-capability kernel driver
Hybrid + pure-capability user driver
Hybrid + pure-capability applications

Autumn 2022

Linker-based
compartmentalization

Prototype runs some UNIX
applications; limited debugger support

Autumn 2022 as (highly)
experimental feature

Userlevel heap temporal safety Prototype runs SPEC benchmarks Autumn 2022 (development branch),
but “plug-in” to release

bhyve (Type-2) hypervisor Prototype boots pure-capability guest OS, but
much more testing + review required

Autumn (development branch)

Co-process
compartmentalization

Prototype runs some compartmentalized
software (e.g., OpenSSL); API co-design

Early 2023 (development branch)

82

(At least) two code generation / ABI targets
• Hybrid code is primarily aarch64 but with

selected capability use:
• Kernel: Mostly aarch64 with

capability use for system-call arguments,
context switching, virtual memory, signals

• Userspace: Runs off-the-shelf arm64
programs without modification

• Pure-capability code implements all data
and control-flow pointers with capabilities:
• Kernel and userspace both spatially and

referentially space
• In the future userspace temporally safe

83

Pure-capability or Hybrid kernel

CheriABI

aarch64c userspace with
ubiquitous capability use

Hybrid

aarch64 + selected
capability use

userspace

More capability use

FreeBSD base, ports/packages

Base Base FreeBSD OS including kernel and key
libraries, shells, daemons, and command-line tools

Ports Build infrastructure + FreeBSD adaptation patches
– roughly 30,000 mainstream open-source
libraries, runtimes, and application

Packages Prebuilt binary packages built from ports, installed and
managed using the pkg(8) package manager

We provide a full set of ~20K-30K aarch64 (non-CHERI) packages to run on
CheriBSD/Morello to use while the CheriABI collection matures.

84

Well
adapted to

CHERI

Early
prototype

Early
prototype

Getting Started with CheriBSD

• Introduces CheriBSD

• Steps you through installation on a
Morello board using a USB stick
image that you can download

• Describes third-party package
system and pkg64/pkg64c

• Illustrates “hello world” compilation
and debugging

• Describes some known issues

• Explains how to get support

85https://ctsrd-cheri.github.io/cheribsd-getting-started/

https://ctsrd-cheri.github.io/cheribsd-getting-started/

Adversarial CHERI Exercises and Missions
• CHERI training exercises for developers,

red teams, and bug bounties

• Adversarial missions where we want to
understand exploitation better

• CHERI software adaptation

• Assume a strong level of knowledge about
C, code generation, exploitation

• (E.g., GOTs, PLTs, ROP, and JOP)

• Targets Morello and CHERI-RISC-V

https://ctsrd-cheri.github.io/cheri-exercises/
86

CHERI software stack support channels
• cheri-cpu.slack.com Slack

• Visit the CHERI website to request an invitation email/link

• Forthcoming mailing lists (not yet live)

• cl-cheribsd-announce Low-traffic announcement

• cl-cheribsd-discuss General discussion and support

• cl-cheribsd-security Report security issues

• Sundry issue trackers in the github.com/CTSRD-CHERI organization

• Not just “How do I get the software to work”, but also to assist with
experimental design, interpreting results, and seeking
improvements

87

How to obtain and install the CHERI software stack
• One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

• Builds, installs, and/or runs:

• QEMU CHERI-RISC-V and Morello, Morello FVP

• CheriBSD/CHERI-RISC-V and Morello disk images

• Small suite of adapted third-party applications

• Up and running with one command (CHERI-RISC-V):

./cheribuild.py --include-dependencies run-riscv64-purecap

88

https://github.com/CTSRD-CHERI/cheribuild

CHERI/MORELLO DESKTOP STUDY

89

3-month CHERI Desktop UKRI pilot study
InnovateUK-funded project at Capabilities Limited to assess the viability of
a CHERI/Morello open-source desktop software stack (on QEMU model):

• Selected slice of open-source desktop stack: X11, Qt, KDE, applications

• Implemented CHERI C/C++ referential and spatial memory protection

• Whiteboarded possible software compartmentalizations

• Evaluated software change as %LoC changed

• Evaluated security via 5-year retrospective vulnerability analysis

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-
version1-FINAL.pdf

90

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

CHERI desktop ecosystem study: Key outcomes

Developed:

• 6 million lines of C/C++ code
compiled for memory safety; modest
dynamic testing

• Three compartmentalization
case studies in Qt/KDE

Evaluation results:

• 0.026% LoC modification rate
across full corpus for memory safety

• 73.8% mitigation rate across full
corpus, using memory safety and
compartmentalization

91

Memory-safe Morello desktop environment

• Single FTE project over one calendar year developed:

• Pure-capability CheriBSD kernel GPU device drivers

• Pure-capability CheriBSD userspace including Mesa, Wayland, KDE

92

Now on to the grand challenges
• We are now within reach of an exciting – and historically highly vulnerable –

application corpus to which we can apply CHERI protections

• Memory-safe desktop applications at scale – especially those that contain one
or more language runtimes:

• Web browsers

• Mail readers

• Office suites

• Extending this to fine-grained compartmentalization as software prototypes
mature – library compartmentalization, coprocesses, further models, …

• For example: UKRI- and Google-funded efforts around the Chromium web
browser at CapLtd, Kings College London, Arm, and Cambridge

93

CONCLUSION

94

Some potential software research areas
• Clean-slate OSes and languages

Current research has focused on incremental CHERI adoption
within current software and languages. How would we design new
OSes, languages, etc., assuming CHERI as an ISA baseline?

• Compilers, language runtimes, and JITs

How can we mitigate the performance overheads of more
pointer-dense executions, such as with language runtimes? Are
vulnerabilities in code generated by compilers and JIT susceptible
to mitigation using CHERI? How does CHERI break or potentially
improve current compiler analyses and optimization?

• Further C/C++ protections with CHERI

We have focused on spatial, referential, and temporal memory
safety for C/C++. But the CHERI primitives could assist with
data-oriented protections, garbage collection, type checking, etc.
Could these improve security, and at what performance cost?

• Safe and managed languages

Languages such as Java, Rust, C#, OCaml, etc., offer strong safety
properties, but frequently depend on C/C++ runtimes and FFI-
linked native code. Can CHERI provide stronger foundations for
higher-level language stacks?

• Virtualization

Can memory protection usefully harden hypervisors? Can we
compartmentalize hypervisors? Can CHERI offer a better
mechanism for virtualizing code than an MMU?

• Debuggers and tracing

Debugging/tracing tools rely on high levels of privilege to
operate. How can we reduce their privilege to mitigate
vulnerabilities in these tools? With stronger architectural
semantics, is new dynamic analysis possible?

• Software compartmentalization tools

Granular software compartmentalization offers vulnerability
mitigation through privilege reduction and strong encapsulation.
How should current applications be refactored, and new
applications be designed, to accomplish maintainable and more
secure software?

• Security evaluation and adversarial research

What is the impact of CHERI on known vulnerabilities and
attack techniques? How does a CHERI-aware attacker change
their behavior? Could formal models and proofs support
stronger security arguments for CHERI?

95

Conclusion
• New architectural primitives require rich HW and SW evaluation:

• Primitives support many potential usage patterns, use cases

• Applicable uses depend on compatibility, performance, effectiveness

• Best validation approach: full hardware-software prototype

• Co-design methodology: hardware ↔ architecture ↔ software

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, Technical Report UCAM-CL-
TR-941, Computer Laboratory, September 2019.

• Watson, et al. Capability Hardware Enhanced RISC Instructions:
CHERI Instruction-Set Architecture (Version 8), UCAM-CL-TR-951,
October 2020.

• Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-TR-947,
June 2020. 96

https://www.cheri-cpu.org/

97

Lessons learned: Split vs. merged register files

• CHERI-MIPS has split register files following coprocessor conventions

• … but new register files add control logic, increasing area overhead

• Instead merge register files along the lines of 32-bit → 64-bit extension

• Key design choice in CHERI-RISC-V: Implement both approaches, evaluate
98

vDDC

vEPCC

Merged register file

$ra

$a1
$a0

$pc $pcc v

$c31 v

$c4 v
$c3 v

Merge
register

files
Special registers

Integer register file Capability register file

$ra

$a1
$a0

vddcpc $pcc v

v$c4

v

-

$c31

$c3

pointers

Hybrid-capability
userspace

From hybrid-capability code to pure-capability code
• n64 MIPS ABI: hybrid-capability code
• Early investigation – manual

annotation and C semantics

• Many pointers are integers (including
syscall arguments, most implied VAs)

• CheriABI: pure-capability code
• More recently – fully automatic use

of capabilities wherever possible

• All pointers, implied virtual addresses
are capabilities (inc. syscall arguments)

• Now investigating pure-capability kernel
99

MIPS code

Pure-capability code

` Hybrid-capability code

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

Hybrid-capability CheriABI shim

Pure-capability
userspace

OS changes required for CheriABI
(A grand tour of low-level OS behavior)

100

Hybrid ABI = MIPS ABI + …
• Kernel support for tagged memory,

capability context switching, etc.
• Tag-preserving libc: memory copy, memory

move, sort, …
• Bounds-aware malloc(), realloc(), free(), …
• setjmp(), longjmp(), sigcontext / signal

delivery, pthreads updates for capabilities
• Run-time linkage for capability-based

references to globals, code, vtables, etc.
(bounds, permissions, …)

• Debugging APIs such as ptrace()

CheriABI = Hybrid ABI + …

• Kernel support for pure-capability userspace

• C start-up/runtime (CSU/CRT) changes

• Initial process state: reduced initial capability
registers, ELF aux args, sigcode, etc.

• Pointer arguments/return values for syscalls
are now capabilities, …

• Review and fix tag preservation,
integer/pointer provenance and casts

• Run-time linkage for globals, code, vtables, etc.
(bounds, permissions, …)

Evaluating memory-protection compatibility
Approach: Prototype (1) “pure-capability” CHERI C/C++ compiler (Clang/LLVM) and
(2) full OS (FreeBSD) that use capabilities for all explicit or implied userspace pointers

Goal: Little or no software modification (BSD base system + utilities)
Small changes to source files for 34 of 824 programs, 28 of 130 libraries.
Overall: modified ~200 of ~20,000 user-space C files/header

Goal: Software that works (BSD base + utilities test suites)

101

Pointer + integer
integrity, prov.

Pointer size
& alignment

Monotonicity Calling
conventions

Unsupported
features

BSD headers 11 6 0 2 0

BSD libraries 83 36 4 41 22

BSD programs 24 9 1 11 2

Pass Fail* Skip Total

MIPS 3501 (91%) 90 244 3835

Pure capability 3301 (90%) 122 246 3669

* Test failure investigation remains a work-in
progress; we believe these can be resolved

Evaluating memory-protection impact
• Adversarial / historical vulnerability analysis

üPointer integrity, provenance validity prevent ROP, JOP

üBuffer overflows: Heartbleed (2014), Cloudbleed (2017)

üPointer provenance: Stack Clash (2017)

• Existing test suites – e.g., BOdiagsuite (buffer overflows)

• Davis, et al. CheriABI: Enforcing Valid Pointer Provenance and Minimizing
Pointer Privilege in the POSIX C Run-time Environment, ASPLOS 2019.

• Key evaluation concern: reasoning about a CHERI-aware adversary
102

OK min med large

mips64 0 4 8 175

CheriABI 0 279 289 291

LLVM Address Sanitizer (asan) on x86 0 276 286 286

