

1

Assessing the Viability of an Open-
Source CHERI Desktop Software

Ecosystem

PUBLIC FINAL REPORT

Version 1

Robert N. M. Watson, Ben Laurie, and Alex Richardson

Capabilities Limited

17 September 2021

InnovateUK PROJECT NO: 107145

Supported by UKRI’s Digital Security by Design Research Programme.

Copyright 2021 Capabilities Limited

2

This page intentionally blank

3

Abstract 5

1. Introduction 7

2. Team 8

3. Background 8

CHERI C and C++ 9

CheriBSD and CheriABI 9

Adapting software to CHERI C and C++ 9

Challenge: Idiomatic C code confusing pointers and integers 10

Challenge: Language runtimes 10

4. Approach 10

5. Prototype CHERI-enabled desktop stack 12

Build and emulation environments 12

Baseline operating-system stack 13

Display server 13

Display and UI-facing software libraries 14

Desktop 14

Applications 15

Excluded software packages 15

6. CHERI C/C++ compilation 17

Initial GUI prototype: Qt applications via X11 SSH forwarding 17

Porting complexity 17

Summary 18

Full-screen GUI using remote-desktop solutions (XVNC) 19

XVNC 19

IceWM minimal desktop on top of XVNC 20

Summary 21

Full KDE Plasma desktop on top of XVNC 22

Qt frameworks 23

4

KDE frameworks 24

Plasma desktop and applications 25

Summary 26

Complete changes summary 27

7. Compiler improvements 28

-Wshorten-cap-to-int 28

CHERI UndefinedBehaviorSanitizer 29

8. Compartmentalization whiteboarding 29

Compartmentalization example 1: QImageReader 31

Compartmentalization example 2: Okular's document renderer 31

Compartmentalization example 3: KFileMetadata 32

9. Security evaluation 33

Information sources 33

Advisory and vulnerability descriptions 34

Severities 34

Threat model 34

Privilege escalation due to arbitrary code execution or file modification 35

Private data disclosure 35

Undesired data modification 35

Denial of service 35

Mitigation 36

Memory safety 36

Compartmentalization 36

Depth of analysis 37

X.org 37

Qt 40

KDE 41

Other libraries 45

10. Desktop demonstration narrative 48

11. Constructive plan 49

Memory safety 49

5

Compartmentalization 50

12. Limitations of this study 51

Software stack 51

Software adaptations 51

Compartmentalization sketches 52

Vulnerability information 52

Vulnerability analysis 53

13. Reproducing our results 53

14. Recommendations for future research 54

15. Related work 55

16. Acknowledgments 56

17. Conclusion 57

18. References 57

Appendix A: full list of build targets for the desktop 60

6

Abstract
This report describes a three-month pilot study to assess the feasibility and value of
deploying CHERI memory protection and CHERI software compartmentalization in an open-
source desktop software stack. The context for this work is Arm’s forthcoming Morello
processor, SoC, and board, which is the first industrial grade implementation of CHERI, and
has the hardware facilities and performance to be suitable for desktop use.

We experimentally compile a significant open-source stack using memory-safe CHERI
C/C++, validating the work in emulation, and perform a series of whiteboarding exercises to
explore potential applications of software compartmentalization. We evaluate the results with
respect to source-code disruption and a retrospective study of the vulnerability of selected
components in that stack. We measure a 0.026% Lines-of-Code (LoC) change rate in
approximately 6 million lines of C and C++ code to introduce CHERI memory safety. In our
review of past vulnerabilities, we see likely mitigation rates of 91% for X11, 82% for Qt, 43%
for KDE, and 100% for other supporting libraries (typically image processing).

Despite a number of limitations to this study, for example as relates to limited dynamic
testing, we conclude that deploying CHERI protection in a contemporary, open-source
desktop stack is feasible and offers significant value in terms of practical security. We
recommend a number of avenues for future research and development.

7

1. Introduction
In this three-month pilot research study, part of UKRI’s Digital Security by Design (DSbD)
research programme, we investigated and assessed the applicability of CHERI [1, 2]
memory protection and compartmentalization to an open-source desktop software stack. We
adapted portions of X11, Qt, and KDE for memory-safe CHERI C/C++ compilation [3],
reviewed a larger body of open-source code and its vulnerability history, and sketched a
number of trial compartmentalizations of key libraries and applications. We conducted this
exploration using the open-source CHERI-RISC-V and DSbD prototype Arm Morello
architectures implemented on the QEMU ISA-level emulator. The forthcoming Arm Morello
[4, 5] board will have both the hardware facilities and performance to enable security-critical
desktop use. To date, desktop software has not been a focus of CHERI-related research,
however. We used CheriBSD’s CheriABI [6] pure-capability (memory-safe) process
environment, with the further assumption of heap temporal memory safety via a technique
such as Cornucopia [7], but the results of our work should have broad applicability as other
operating systems (e.g., Linux) gain improved CHERI support. We have sought a high level
of reproducibility, and include instructions in this report to build and run the resulting
memory-safe software stack.

We demonstrated clear applicability of CHERI protection in hardening this open-source
desktop environment, and we describe a potential implementation strategy for a larger-scale
future project. We also identified minor improvements to the compiler toolchain making
software adaptation easier, and gaps in understanding around software
compartmentalization that may motivate future research. Our CHERI-specific changes
required modifying 0.026% of 6 million C and C++ Lines-of-Code (LoC). In our review of past
vulnerabilities in selected portions of the software stack, we saw likely mitigation rates of
91% for X11, 82% for Qt, 43% for KDE, and 100% for other supporting libraries (typically
image processing). We describe a potential narrative for combined deployment of memory
protection and compartmentalization across a broader desktop software corpus, especially
with respect to larger desktop applications that are frequently built using large library stacks.

Overall, our conclusion is that CHERI and Morello have the potential to support a
significantly more secure desktop ecosystem, with relatively low developer burden in
adapting most existing software. This is especially true for CHERI memory protection, which
appears to address a large proportion of past vulnerabilities, while requiring relatively little
code change. Compartmentalization also contributes substantially to resolving vulnerabilities
key to vendor threat models, especially with respect to potential denial of service and higher-
level logical bugs in applications. However, there remain important research challenges,
including improving systems software (and especially operating systems) to provide easy-to-
use and well-documented facilities for compartmentalization, and in terms of tooling support
for compartmentalization to reduce the potential developer burden in performing that work. It
is also clear that this work, given additional time, could have been taken substantially further
to provide greater certainty of results; for example, there is the opportunity to take a more
concrete adversarial approach in further analyzing vulnerabilities and their potential
mitigations. We attempt to document limitations of the study in some detail.

8

2. Team
Capabilities Limited is a UK-based consultancy providing technical expertise and software
development services relating to open-source software and security:

Dr Robert Watson is a Director of Capabilities Limited, and also Reader in Systems,
Security, and Architecture and the Principal Investigator (PI) leading development of CHERI
at the University of Cambridge and SRI International. He is a strong advocate of, and
contributor to, open-source software, including being a FreeBSD developer, and board
member (and past President) of the FreeBSD Foundation.

Ben Laurie is a Director of Capabilities Limited, and also technical lead in security in Google
Research. He has played a significant role in creating a number of key open-source projects
including the Apache Software Foundation and OpenSSL, and has been involved in the
creation of the CHERI ISA.

Dr Alex Richardson is a technical staff member at Capabilities Limited, and also a Senior
Research Software Engineer (SRSE) at the University of Cambridge. His PhD dissertation
developed key ideas and prototypes for the CHERI C/C++ programming language and
linkage models. He is also a contributor to the FreeBSD, LLVM, and KDE projects.

The Capabilities Limited project team collaborated over a three-month period in mid-2021, at
approximately one full-time equivalent (FTE) level of effort collectively (totaling three staff
months), to investigate and analyse an open-source graphics and application stack to
assess the viability of applying CHERI protections to it.

3. Background
Developed by SRI International and the University of Cambridge, CHERI (Capability
Hardware Enhanced RISC Instructions) is a computer processor architecture protection
technology supporting the implementation of fine-grained referential, spatial, and temporal
memory protection, as well as enabling scalable software compartmentalization [1]. The
CHERI protection model has been applied to multiple Instruction-Set Architectures (ISAs)
including 64-bit MIPS, 32- and 64-bit RISC-V, and 64-bit ARMv8-A, known respectively as
CHERI-MIPS, CHERI-RISC-V, and Arm Morello.

The Arm Morello board, processor, and System-on-Chip (SoC), a Digital Security by
Design technology, ships in early 2022. The Morello SoC is an experimental high-
performance, multi-core, multi-GHz design that includes a GPU, and will be the first platform
suitable to use as a CHERI-extended desktop system. Although the Morello board was not
yet available at the time this work was done, the architecture specification, emulator, and
software stack are usable and they offer reasonable confidence that results from our work
will apply to production boards. Lessons learned from the Morello project are expected to
influence subsequent editions of the ARM architecture.

9

CHERI C and C++
The CHERI C and CHERI C++ programming languages utilize CHERI’s architectural
capabilities to implement and protect language-level pointers and the data to which they
refer, as well as sub-language data structures such as the stack, GOTs (Global Offset
Tables, used to access global variables), and other portions of the language runtime [3]. This
is referred to as pure-capability code, as all pointers, explicit and implied, are represented
as capabilities rather than integers. CHERI C and C++ are implemented by the CHERI-
extended CHERI Clang/LLVM compiler suite [8]. This provides strong referential safety
(protecting pointers), spatial safety, and, with the addition of Cornucopia [7] or related
techniques, heap temporal safety, which we take for granted in our retrospective vulnerability
analysis. Stack temporal safety is not provided by current CHERI hardware and software
prototypes, and is not assumed in this work.

The degree to which off-the-shelf C and C++ software can simply be recompiled to achieve
higher levels of memory safety is an ongoing topic of research, as CHERI C and C++ have
evolved substantially since earlier studies were completed, and compatibility is sensitive to
idiomatic programming styles. For example, code that makes correct use of uintptr_t or
primarily relies on C++ programming idioms will tend to adapt to CHERI without substantial
(or any) modification. On the other hand, language runtimes using pointer compression
techniques, or older source bases using the long data type to hold pointers, may require
more invasive modifications.

CheriBSD and CheriABI
CheriBSD [9], a CHERI-extended version of the open-source FreeBSD operating system,
implements a pure-capability CheriABI process environment able to execute CHERI C/C++
code [6]. Under CheriABI, the kernel, run-time linker, and system libraries cooperate to
support the compiler in implementing strong and fine-grained memory protection. To date,
the primary software adaptation focus has been low-level systems software such as the
FreeBSD userspace, OpenSSH daemon, PostgreSQL database, nginx web server, and so
on. CheriBSD contains experimental support for CHERI temporal memory safety via
Cornucopia, and also for software compartmentalization, although that remains an active
area of research [10]. It is also possible to compile the CheriBSD kernel itself as CHERI C,
providing strong spatial memory safety for the kernel.

Adapting software to CHERI C and C++
In general, adaptation of contemporary C and C++ source code to CHERI C and C++ is
straightforward, requiring occasional minor improvements in C type use (e.g., to deconflate
integer and pointer values) detected by the compiler, or sometimes dynamic issues such as
insufficiently strong alignment in custom memory allocators. Adaptation will often turn up
minor memory-safety issues, such as buffer overflows missed by other debugging tools for
various reasons. However, some types of software may require substantial work to adapt.

10

Challenge: Idiomatic C code confusing pointers and integers
Low-level C code often embeds assumptions about the interchangeability of pointers and
integers. Such use often dates from the late 1990s or earlier, prior to standardization of the
intptr_t type -- an integer type able to hold a pointer value (which is implemented as a
capability in CHERI C/C++). This is a generally well understood area in CHERI research,
and examples include some low-level systems software as well as some language runtimes.
Improvements to use the more appropriate type can be some work to develop and test, but
can often be readily upstreamed to open-source projects even without the specific motivation
of CHERI. We selected a broad corpus of C and C++ code to evaluate against, including
low-level (and generally older) C-language libraries such as giflib and libpng, as well as
higher-level (and generally more recent) C++ library and application code such as Qt and
KDE.

Challenge: Language runtimes
Language runtimes can present a more serious adaptation to CHERI C/C++ if they:

● Are highly aware of, and specifically target, machine code on current architectures,
such as Just-In-Time (JIT) compilers, which will require a new architecture target to
be developed;

● Employ pointer compression techniques to minimize existing pointer-size overheads
(common with highly optimized runtimes), which interact poorly with CHERI pointers
and also may limit the use of CHERI pointers due to their size; or

● Are fundamentally structured around enabling arbitrary code execution and flexible
use of C types and memory, and hence may require some adaptation to run with
CHERI, and further work to harden it using CHERI features.

Due to the complexity of extending language runtimes for CHERI support, we have limited
our work in this project to a single instance: the QML language runtime used by Qt for user
interface description and component interconnection. There has been other work on
adapting language runtimes to CHERI, including Apple’s WebKit; however, the size and
scope of this project did not permit exploring CHERI adaptation to, for example, the
QtWebEngine JavaScript interpreter. We consider the adaptation of additional language
runtimes to CHERI an essential area for future research, given their security criticality and
frequent vulnerabilities.

4. Approach
Our objective was to assess the viability of extending an existing open-source desktop
software environment to make extensive use of CHERI C/C++ memory protection and
CHERI software compartmentalization for the purposes of vulnerability mitigation. We
explored the potential impact of CHERI via two approaches:

1. We pursued selected prototyping case studies in CHERI C/C++ adaptation of
software components at each layer in the stack, including the X11 window server and
Qt/KDE desktop environment.

11

2. We manually inspected selected software for potential compartmentalization
opportunities, exploring (on a whiteboard) the impact on software structure and
security.

In both cases, the aim was to gather evidence required to plan a larger project to more
completely implement a CHERI-enabled desktop environment suitable for the Morello board.
We therefore considered several evaluation criteria to help us understand the potential costs
of adaptation, and also the potential benefits:

1. Ease of software adaptation -- identifying less easily adapted idiomatic C use (e.g.,
in older software or in language runtimes), architectural awareness (e.g., in JITs or
other highly optimized software packages requiring non-trivial change), and the
extent of natural encapsulation opportunities for compartmentalization. A key concern
was the extent to which changes to C and C++ were CHERI-specific or not -- and if
not, whether they could be upstreamed to the underlying open-source project as
acceptable improvements in source-code quality.

2. Security impact -- as judged with respect to potential mitigation of past software
vulnerabilities for the target software stacks, relating to both memory safety and
compartmentalization. This requires characterizing software threat models, which are
often not documented explicitly; we instead look to past vulnerability announcements
to understand the de facto threat model for each piece of software. Here,
whiteboarding exercises (based primarily on vendor security analyses) are used, due
to the limit on available time.

3. Potential for performance overhead -- QEMU and the Arm Morello FVP are not
suitable for performance studies. However, memory protection can have measurable
overhead, especially in pointer-dense workloads (e.g., language runtimes). Further,
potential placement of compartmentalization boundaries is a performance-sensitive
activity. We must therefore estimate the acceptability of introducing
compartmentalization boundaries.

One technical challenge lay in scaling our work to a very large open-source software corpus.
Anywhere manual inspection or prototyping is required, we were necessarily resource
constrained. Modest enhancements to compiler warnings and dynamic checking, described
later in this report, assisted substantially in our work, and have now been upstreamed to the
CHERI LLVM project, or submitted for review for future inclusion.

Another technical challenge lies in the difference between the software techniques used in
low-level systems software, where CHERI experience is strong, versus in higher-level
desktop applications, where there is limited experience. Extensive use of C++, embedding of
language runtimes, and IPC-linked components limit the scope of our experiments given
constrained time. It is likely that there will be the opportunities for significant wins from
CHERI deployment in that software (e.g., CHERI IPC performance improvements), and also
new challenges (e.g., understanding how CHERI can protect language runtimes for which a
key design goal is controlled arbitrary code execution), which we are not able to fully explore
in this project.

Where we made changes to open-source software stacks that were not CHERI-specific --
e.g., making better use of C integer and pointer types, or to correct memory-safety violations

12

-- we attempted to upstream those changes. This offers us some measure of the
acceptability of CHERI-motivated (but not CHERI-specific) changes in these open-source
communities. We did not attempt to upstream any CHERI-specific changes (e.g., setting
capability bounds in custom memory allocators, etc.), as CHERI remains a research
technology. Prior CHERI adaptation efforts, especially those involving low-level C/C++
runtime software, have sometimes benefited from a middle category of changes -- e.g.,
restructurings to ease adoption of CHERI while neither being CHERI-specific nor correcting
adherence to language specifications. However, the comparatively high-level software
components studied here did not generally require changes along these lines. Where we
have successfully upstreamed patches, we have indicated them in the tables and/or
footnotes below; this was the vast majority of patches other than those avoiding
dependencies not yet available on CheriBSD.

5. Prototype CHERI-enabled desktop stack
The open-source community has developed a number of complete GUI software stacks
consisting of window servers, class libraries, and application stacks. For the purposes of this
research, we have selected a specific vertical stack including the X.org window system and
Qt/KDE-based desktop environment, along with dependent libraries. We selected this stack
for multiple reasons, including its accessibility as a stack, spread of functionality, and use of
C and C++ across various layers in the stack. In this section, we elaborate our choice of
baseline stack, as well as the supporting build, emulation, and OS environments we used in
our experimentation. Appendix A contains a complete list of adapted software packages.

Build and emulation environments
All software and demonstrations were built using the cheribuild build framework,1 and
compiled with CHERI Clang/LLVM for CHERI-RISC-V2 and Morello.3 We developed our
software adaptations on CHERI-RISC-V, and also tested them with Arm Morello. For
emulation of both architectures, we used the QEMU-CHERI emulator developed by the
University of Cambridge [11]. We used versions of these tools from their respective
development trunks as of July 2021.

The host environment for our experiments was macOS, used with the XQuartz X11 display
server 2.8.1 (for X11 SSH-forwarding of individual applications) and TigerVNC VNC client
1.11.0 (for full-screen desktop display). However, none of this project depends on a macOS
host environment, and we also tested cross-compilation from Linux systems.

Software module(s) Description

CHERI and Morello
Clang/LLVM toolchain

 Existing macOS-/Linux-/FreeBSD-hosted cross-
compiler for CHERI C/C++

cheribuild Existing tool to simplify and automate building and

1 https://github.com/CTSRD-CHERI/cheribuild
2 https://github.com/CTSRD-CHERI/llvm-project
3 https://git.morello-project.org/morello/llvm-project

13

testing (cross-compiled) projects. We have
extended it as part of this project to support
building and testing of the CHERI desktop stack.

QEMU-Morello Existing macOS-hosted emulator

QEMU-CHERI-RISC-V Existing macOS-hosted emulator

Baseline operating-system stack
All work was targeted at the CheriBSD operating system (OS) developed by SRI
International and the University of Cambridge. We used the CheriABI pure-capability
process environment on CheriBSD [6], and also utilized a pure-capability CheriBSD kernel
configuration, with the aim of achieving full-stack C/C++ memory safety. CheriBSD includes
a full suite of low-level system libraries and utilities compiled as pure-capability CHERI
C/C++ code for the CheriABI process environment; these did not require extension for our
work. The CheriBSD development trunk as of July 2021 was used for this project.

Software module(s) Description

CheriBSD libraries Existing pure-capability libraries (C/C++)

CheriBSD kernel Existing pure-capability OS kernel (C)

CheriBSD currently offers the most mature execution environment for pure-capability CHERI
C/C++ code, having a cross-development toolkit, unified build system, tightly integrated
CHERI support including the CheriABI process environment, and also a large suite of CHERI
adapted libraries. However, it is our expectation that the vast majority (if not all) of the
adaptation we performed on higher-level application components, from the display server
through to KDE itself, is applicable to a future mature CHERI adaptation of the Linux
operating system (e.g., with CheriABI support).

Display server
Display servers are programs that allow applications to render output to the user display,
and accept input via devices such as keyboards and mice. To test desktop applications, we
made use of the XVNC display server, which creates a virtual X Windows (X11) display for
the virtual machine hosted within QEMU. The output of the display is forwarded over a
socket to a VNC client running on the host system (in this case the macOS version of
TigerVNC 1.11.0). We adapted the XVNC display server for CHERI C/C++ compilation; we
used the XVNC development trunk as of July 2021 and compiled it against the X11 XServer
1.20 stable branch as of July 2021.

Software module(s) Description

XVNC (TigerVNC server) Newly adapted pure-capability remote display
server (mostly C, some C++)

14

XServer (common code
used by XVNC)

 Newly adapted pure-capability remote display
server (C)

TigerVNC client Unmodified VNC client to display the QEMU output
under macOS

Display and UI-facing software libraries
Contemporary desktop applications rely on an extensive library stack to communicate with
the display server, render output, accept input, compute, interact with other applications via
shared services such as copy-and-paste, and use I/O services such as networking and
storage. We adapted the K Desktop Environment (KDE) and its library dependencies,
including Qt and X11, for CHERI C/C++ compilation, as well as investigating them for
compartmentalization opportunities. For the Qt libraries, we compiled the 5.15 LTS stable
branch and for all other libraries and programs we used the latest git snapshot as of 30th
July 2021.

Software module(s) Description

KDE frameworks libraries Newly adapted pure-capability libraries (C++)

Qt class libraries Newly adapted pure-capability libraries (C++)

X11 libraries Newly adapted pure-capability libraries (C)

Other supporting libraries
(e.g. libjpeg-turbo, poppler,
fontconfig, freetype2).

 Newly adapted pure-capability libraries (C/C++)

Desktop
A typical open-source UNIX desktop environment consists of a window manager/compositor
providing features such as window decorations, as well as a desktop shell that provides
interactive elements such as the start menu, desktop background, and system tray. For our
demonstrator system we initially adapted the minimal IceWM desktop due to the low number
of dependencies. We then expanded our scope to include the full KDE software stack
including the feature-rich Plasma desktop shell. As with the KDE frameworks, we use the
latest git snapshots from July 2021.

Software module(s) Description

KWin window manager Newly adapted pure-capability application (C++)

IceWM minimal desktop Newly adapted pure-capability application (C++)

Plasma desktop shell Newly adapted pure-capability application (C++)

15

Applications
We adapted a number of Qt and KDE applications for CHERI C/C++ compilation, as well as
investigating them for compartmentalization opportunities. As the scope of this project does
not allow for porting and testing the entire KDE application stack (over 200 applications) [12],
we selected a few applications that should be representative of commonly used desktop
software (e.g., a file manager and viewers/editors for various file formats). Many of these
applications are also interesting from a security point of view, because they often interact
with content received from untrustworthy (and potentially malicious) sources. We used the
latest git snapshots from July 2021.

Software module(s) Description

Dolphin Newly adapted pure-capability file manager (C++)

Gwenview Newly adapted pure-capability image viewer and
minimal editor (C++)

Plasma system settings Newly adapted pure-capability application (C++)

Okular Newly adapted pure-capability document viewer
with support for many file formats such as PDF or
EPub (C++)

Excluded software packages
Due to limited time and scope for this effort, we did not include a number of key software
modules in this work, which would be required to implement a fully elaborated desktop
environment. In the X11/Qt/KDE ecosystem, we excluded:

Software module(s) Description

D-Bus IPC middleware used in KDE and Gnome (C) (omitted
due to project timeline)

Kate Advanced text editor with syntax highlighting and code
completion for many programming languages (C++)
(omitted due to project timeline)

KMail and KOrganizer Email client and Calendar applications (C++)
(omitted due to project timeline)

Calligra and Krita Office suite and advanced painting program (C++)
(omitted due to project timeline; LibreOffice is the more
commonly-used open-source office suite, but was
beyond the scope of this project.)

Also, we were not able to include a number of other display and desktop-focused open-
source software packages of interest beyond the X11/Qt/KDE desktop ecosystem:

16

Software module(s) Description

OpenGL Graphics rendering and acceleration framework
(required for GPU acceleration) (C and C++)

X11 Panfrost userspace
device driver

 Userspace device driver required for Arm Mali GPUs (C)

KMS, DRM, and Panfrost
kernel device drivers

 Kernel device drivers required for Arm Mali GPUs (C)

Wayland4 Contemporary userspace display server intended to
replace X11 (C)

Gnome Desktop
Environment

 Alternative open-source desktop stack to the KDE
ecosystem (C,C++, and Vala)

LibreOffice Open-source office package including word processor,
spreadsheet, and other tools (C, C++, Java, and other
languages, and also comes with a number of challenges,
including using Java and its own Foreign Function
Interface (FFI) mechanism that might require
adaptation.)

VLC media player Open-source media player with support for many
different audio and video formats (C, C++)

Gimp Open-source graphics package (C)

Thunderbird Open-source mail reader (C, C++)

Chromium, Firefox Open-source web browsers (C, C++). The CHERI
project has previously created an experimental CHERI
(and Morello) WebKit adaptation, although there was not
yet a writeup analyzing the results of that work at the
time this report was published.5

It is reasonable to assume that several of these uninvestigated software packages would
present substantial engineering challenges due to their inclusion of language runtimes,
including Just-in-Time (JIT) compilers.

Finally, we were unable to analyse or experimentally adapt proprietary desktop software
packages available for FreeBSD and/or Linux, including the following indicative examples:

Software module(s) Description

Zoom Desktop video conferencing software

Skype Desktop video conferencing server

4 As an initial scoping exercise, we ported the base Wayland libraries to CHERI C without any
problems; however, all Wayland display servers required significant dependencies that we could not
have realistically ported within the project timeline.
5 https://github.com/CTSRD-CHERI/webkit/

17

Morello-enabled operating systems such as CheriBSD and Morello Linux are able to run
unmodified Arm64 applications distributed as binaries -- but are not able to offer them strong
internal memory safety, since that requires, at minimum, recompilation.

6. CHERI C/C++ compilation
For all projects we report the total number of source lines6 (counted using cloc version 1.90
[13]), as well as the number of changes made in order to support CHERI C/C++ compilation.
We also show the changes that we made that were unrelated to CHERI. However, most of
those are related to cross-compilation and will therefore no longer be required once Morello
boards are available. The scripts we used to perform the analysis of change percentages
have been made available as open-source and are available at [14].

Initial GUI prototype: Qt applications via X11 SSH forwarding
For the initial exploration of graphical applications on top of a CHERI-based operating
system we decided to run X11 QtBase example applications via SSH X11 forwarding. We
chose this as a first step since X11 forwarding over SSH avoids dependencies on graphics
drivers and we had a pre-existing CHERI port of Qt 5.10 dating back to 2017, so the only
missing pieces for this initial proof-of-concept were the X11 client libraries.

Porting complexity
Most of the X11 libraries worked out-of-the box when compiled for CHERI C, but we did
have to make two changes to tell the libX11 and libXt libraries that pure-capability CHERI-
RISC-V has a 64-bit long (due to a hardcoded list of architectures),7 one change to allow for
cross-compilation from macOS8 and finally two kinds of changes that affect only CHERI C.

The first type of change to support CHERI involved replacing various uses of long with
uintptr_t in libXt code that predates the C99 standard9. Most of these changes were
straightforward, as the compiler flagged them with warnings. However, two of them only
showed up at run time. The first was caused by the assumption that two structures have
identical layouts if one of them uses pointer members and the other one unsigned long.
This assumption does not hold for CHERI; as part of the upstreaming effort we also added
compile-time assertions to catch this problem. The second issue was a SIGBUS caused by
an under-aligned structure access, due to a memory buffer being aligned to only 64 bits
instead of the size of a pointer (128 bits for Morello).

6 We report "source" lines of code, i.e., lines of code ignoring comments and whitespace since
counting whitespace and comments would represent the percentage of change as being
unrealistically small.
7 libXt: Define LONG64 if SIZEOF_LONG indicates 64-bit long and
 xorgproto: Define LONG64 if SIZEOF_LONG indicates 64-bit long
8 libX11: Fix macOS cross-compilation
9 libXt: Support architectures where pointers are bigger than long

18

Additionally, we discovered incorrect uses of realloc() that happen to work on most
architectures, but create invalid or out-of-bounds pointers in CHERI C. libX11 includes at
least two dynamically allocated data structures that contain pointers to the same memory
allocation. These data structures can be resized using the realloc() function, which can
result in the underlying memory being copied to another region. The existing libX11 attempts
to correct the pointer values after reallocation by adding the offset between the old and new
allocation to each of the contained pointers. However, this is undefined behaviour according
to the C standard and with CHERI C results in a pointer that has the address of the new
allocation but the bounds of the old one10, and therefore will trigger a CHERI exception when
dereferenced. The solution for this is to update pointers by deriving from the new allocation,
instead of adding an offset to the old pointer. We have submitted this change upstream and
it has since been accepted upstream.11

Qt calculator and Tetris demo running via X11 SSH forwarding on CheriBSD

Summary
Overall, it took about 8 hours to port the X11 client libraries to CHERI C/C++ and run
example applications via X11 forwarding. Most of the required changes were straightforward
(and partially suggested by the compiler), and therefore should not require much prior
CHERI experience. However, the incompatibilities caused by realloc() are more subtle
and would have taken developers without prior CHERI experience significantly longer to
debug. A more detailed description of the debugging process to resolve these issues can be
found at [16]. In later stages of this project we discovered that misuse of realloc() and
similar problems that cause pointers to go out-of-bounds are relatively common in legacy C

10 In general, these pointers will be so far out-of-bounds that they are no longer representable with the
CHERI capability encoding scheme [15], so they will become untagged after this pointer arithmetic.
11 libX11: Fix undefined behaviour after realloc()

19

codebases, so we added CHERI Clang/LLVM compiler instrumentation to diagnose them
earlier (when creating an unrepresentable capability rather than on dereference). See the
next section for more details.

Component Lines of code Language Required adaptations

xorgproto 29 K C 5 LoC changed (0.017%) to make the library
aware that long is 64 bits.

libX11 114K C 4 LoC changed (0.004%) to fix undefined
behaviour after realloc and a macOS cross-
compilation fix.

LibXt 34 K C 47 LoC changed (0.138%) to make the library
aware that long is 64 bits long and various
changes replacing long with intptr_t.

Additional X11
libraries12

43K +
102K generated

C Completely unmodified existing C code, the
majority of it being generated code in libxcb
(created from XML protocol descriptions).

QtBase (version
5.10)

1,504 K +
505K tests +

74K examples

C++ 530 LoC changed in the library (0.04%) and
42 LoC changed in the test (0.008%).
No changes to the examples.
See [17] for the nature of changes.

Full-screen GUI using remote-desktop solutions (XVNC)
After successfully running graphical applications using X11 SSH forwarding, we moved on to
running a full desktop environment on top of an XServer. As we do not yet have a usable
graphics driver, we chose XVNC, an XServer implementation that sends the framebuffer
contents over the network to a VNC viewer on the host. Many open-source minimal desktop
solutions exist, but after an initial investigation we chose to port IceWM due to the low
number of dependencies (a working XServer and X11 libraries) and the ability to run it
without OpenGL and D-Bus. Running a window manager and XVNC XServer also required
porting additional X11 libraries and further dependencies such as a JPEG and PNG
decoder/encoder libraries and font-rendering libraries.

XVNC
When porting the newly required libraries, most incompatibilities were flagged at compile
time. Firstly, we made changes to cast via uintptr_t instead of long in fontconfig,13
freetype,14 and libjpeg-turbo15 to retain capability metadata. Additionally, we updated
freetype2 to use C11 atomics instead of GCC's __sync_* builtins that do not work with

12This includes the following ten libraries: libXau, libxcb, libXTrans, libXext, libXFixes, libXi,
libXRender, libICE, libSM, libXmu
13 https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/190 (merged)
14 https://gitlab.freedesktop.org/freetype/freetype/-/merge_requests/52 (merged)
15 https://github.com/libjpeg-turbo/libjpeg-turbo/pull/538 (merged)

20

CHERI capabilities in all cases.16 Finally, we also submitted fixes to address compiler
warnings that are errors by default in our toolchain17 and support cross-compilation for
FreeBSD18. However, some issues only showed up when we tried to start the XVNC server.
The fontconfig library contained incorrect uses of realloc() (as described in the previous
subsection) and, separately, created pointers by adding offsets to a different allocation.19
Both of these are C undefined behaviour and will create out-of-bounds capabilities with
CHERI that result in run-time crashes. Fixing these issues would have been significantly
harder without our newly added CHERI Clang/LLVM checks (see the next section for
details). These changes were sufficient to run X11 applications over XVNC.

IceWM minimal desktop on top of XVNC
Running IceWM on top of XVNC required only some minor build-system fixes to support
cross-compilation, which have now been merged upstream.20 As can be seen on the figure
below, this minimal desktop provides a start menu, desktop background, application list
(pager), and a window manager that is responsible for the window decorations. It is also
possible to change the appearance of the desktop using a theming system. While testing the
functionality of the desktop, we noticed that selecting one of the default themes (NanoBlue)
resulted in IceWM crashing due to a CHERI capability bounds violation. As of writing this
report, we have not attempted to fix this issue -- as the IceWM desktop was only an
intermediate step on the way to running the full KDE desktop stack.

16 Due to compiler implementation details it is not possible to use these builtins with a capability
argument, so we have to use the newer __atomic_* builtins or C11 atomics instead. Fix submitted as
https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/192 (merged).
17 https://gitlab.freedesktop.org/pixman/pixman/-/merge_requests/48 (under review)
18 https://gitlab.freedesktop.org/freetype/freetype/-/merge_requests/48 (merged)
19 realloc() fix submitted as https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/193
(under review), but the fix for the second issue has not yet been sent upstream at time of writing.
20 https://github.com/bbidulock/icewm/pull/601 (merged) and
https://github.com/bbidulock/icewm/pull/603 (merged)

21

Minimal IceWM desktop running on QEMU and displayed on the host over VNC

Summary
Overall, porting XVNC and a minimal desktop was mostly straightforward, with the notable
exception being fontconfig. Fontconfig's serialization code heavily relied on being able to
create pointers from arbitrary pointer arithmetic, and this is not compatible with CHERI.
Attempting to find the sources of invalid pointer arithmetic by setting breakpoints and looking
at crashes due to invalid capabilities was a very challenging undertaking, so after fixing the
first case, we investigated compiler instrumentation to find similar issues earlier (see the next
section). Otherwise, the overall amount of changes to software was always well below 0.1%
of lines changed and many projects required no changes (or only cross-compilation fixes). A
summary of the changes can be seen in the table below.

Component Lines of code Language Required adaptations

IceWM 68 K C++ No changes required for CHERI, only build
system fixes for cross-compilation.

XServer 200 K +
174K

unused21

C 6 LoC changed (0.003%) to fix an incorrect use
of realloc()22 and to fix the -Werror build.23

libXFont 21K C 4 LoC changed (0.02%) to fix a read one byte

21 This includes code for various XServer implementations such as XQuartz that were not compiled.
22 https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/721 (under review)
23 https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/720 (merged)

22

before the start of a string.24

Additional X11
libraries25

75K C Unmodified

Additional X11
programs26

36K C Unmodified.

Freetype 125K C 5 LoC changed to use uintptr_t instead of
unsigned long

Fontconfig 28K C 118 LoC changed (0.424%) to add support for
C11 atomics and fix provenance issues after
realloc() and when reading serialized data.

libjpeg-turbo 88K C 10 LoC changed (0.011%) to cast via uintptr_t
when adjusting alignment

libpng 57K C 3 LoC (0.005%) changed to use intptr_t
instead of long when casting.

TigerVNC 55 K 85% C++
15% C

No changes required for CHERI, only build
system fixes for cross-compilation.27

Full KDE Plasma desktop on top of XVNC
Compared to the initial minimal IceWM, the KDE Plasma desktop has many more features
and, to provide those features, depends on a large number of libraries and additional
applications. The underlying foundations of the Plasma desktop are the Qt frameworks [18]
(including declarative user-interface descriptions requiring the QtQML language runtime), the
majority of the KDE frameworks, and further libraries providing access to, e.g., hardware
sensors or plug-and-play device notifications. After porting Qt and the KDE frameworks, we
ran individual applications (e.g. Gwenview, see figure below) over SSH to verify that they
worked as expected. After this was confirmed working, we moved on to porting the window
manager (KWin) and the full desktop running on XVnc.

24 https://gitlab.freedesktop.org/xorg/lib/libxfont/-/merge_requests/10 (merged)
25 libfontenc, libxcb-cursor, libxcb-image, libxcb-keysyms, libxcb-render-util, libxcb-util, libxcb-wm,
libxcomposite, libxcursor, libxdamage, libxft, libxkbcommon, libxkbfile, libxpm, libxrandr, libxtst,
xbitmaps, xcbproto, xkeyboard-config, xorg-font-util, xorg-macros, xorg-pthread-stubs
26 twm, xauth, xev, xeyes, xkbcomp, xprop, xsetroot
27 https://github.com/TigerVNC/tigervnc/pull/1290, https://github.com/TigerVNC/tigervnc/pull/1289,
https://github.com/TigerVNC/tigervnc/pull/1291 (all merged)

23

Rotating an image in Gwenview (running on CheriBSD displayed via X11 SSH forwarding)

Qt frameworks
As part of this project we also updated the Qt 5.10 port to the latest LTS release at the time
(5.15), as the KDE frameworks depend on this version,28 and ported additional modules
such as QtDeclarative and QtSvg. For QtDeclarative we also had a pre-existing port of
version 5.10. However, much of the QML language runtime was changed so significantly
for version 5.15 that updating to 5.15 was almost equivalent to starting from scratch.

Inside QtBase, the majority of changes were related to QByteArray::fromRawData(). This
function creates a new QByteArray that references the passed argument instead of making
a deep copy.If the size of the buffer is not passed explicitly this function uses strlen() to
compute the size of the array. For CHERI this means that the trailing zero byte will not be
included in the capability bounds when converting this QByteArray to a zero-terminated C

28 The initial code update was undertaken at the University of Cambridge just prior to the start of this
project, however, as part of this work we had to fix various issues in code paths that had not been
exercised in previous experiments. Furthermore, this previous work was limited to the QtBase library
and did not include components such as the QML language runtime.

24

string29, so this can result in a bounds error at runtime. To fix this issue, we introduced a new
function, QByteArray::fromNulTerminatedRawData(), that sets the size of the array to
the length of the string but ensures that the trailing zero byte is included in the capability
bounds.

The other library that required non-trivial changes was QtDeclarative, as this contains a
language runtime for the QML language that is used e.g., for most of the Plasma desktop
user interface. The majority of the language runtime is essentially a JavaScript engine with a
few additional features. Moreover, it is quite similar to, and (as far as we can tell) partially
based on, the WebKit JavaScript engine. As we have prior experience with adapting WebKit
for CHERI, we were able to leverage this knowledge to port QtDeclarative to CHERI C++
within about one week rather than the much longer timeframe originally required for WebKit.
During this porting effort, we encountered multiple instances of capability metadata being
lost due to implicit casts to uint64_t. Debugging such an issue at run time can be rather
difficult since the problem usually occurred a long time before the crash happens. Therefore,
we developed a new compiler diagnostic, -Wshorten-cap-to-int, to diagnose these
issues at compile time rather than through a run-time crash (see Compiler improvements).

Unlike our approach for other projects, we did not attempt to upstream our Qt changes while
undertaking this project, as the Qt frameworks have moved to a new major version (6.2 at
the time of writing), and many of our changes no longer apply due to major refactorings (e.g.,
the QString data storage implementation was almost completely rewritten) and investigating
which patches can still be upstreamed was not possible due to the project timeline.

KDE frameworks
Out of the 83 KDE frameworks [19], we compiled 55 for CHERI C/C++. The remaining
frameworks were not used as a dependency of either Plasma desktop or of the applications
that we chose as demonstrators, so we omitted them due to the project timeline.

In terms of changes required due to CHERI, we had to make only a single one-line change
to avoid a one-byte out-of-bounds read.30 Other than this single-line change, the other
changes that we made were mostly related to fixing cross-compilation issues as most KDE
users only compile the software for their respective machines (the exception being cross-
compilation for Android, which has slightly different restrictions compared to compiling on
macOS for FreeBSD).31 We also submitted a few changes that make certain dependencies
optional (e.g., the KDocTools for documentation or OpenGL for hardware-accelerated

29 This is only a problem when the raw data is accessed directly, since any modification of the
QByteArray will result in a deep copy which always appends a zero byte.
30 The code in question was using strlen() to read up to a terminating zero byte, but the
QByteArray that was being passed had bounds that did not include the zero byte. We fixed this by
using the .size() member instead of strlen() (https://invent.kde.org/frameworks/kio/-
/merge_requests/493).
31 https://invent.kde.org/frameworks/solid/-/merge_requests/44 (merged),
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/109 (merged),
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/110 (merged),
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/117 (under review),
https://invent.kde.org/frameworks/syntax-highlighting/-/merge_requests/220 (merged),
https://invent.kde.org/frameworks/kpty/-/merge_requests/12 (under review)

25

rendering) as we do not require them for our demonstrator.32 Similarly, we made changes to
avoid a dependency on Wayland, but did not submit those changes upstream -- as a longer-
term upstream goal is to default to Wayland rather than X11. Finally, we also submitted an
optimization that significantly reduced application startup times on slow systems.33

Plasma desktop shell (including the QML-based start menu) running on CHERI-RISC-V

Plasma desktop and applications
For the KDE applications, we had to make CHERI-related changes to only one application:
the KWin window manager, which contained an out-of-bounds read. As this memory access
could potentially have a security impact, we have reported our finding to the KDE security
team, and have not yet published the fix to any open repositories.34 Other than this, we had
to make only straightforward (albeit tedious) changes to make certain dependencies
optional, as we do not have them on our desktop prototype. Many applications
unconditionally depended on OpenGL, DBus, Wayland, or documentation tools.35

32 OpenGL: https://invent.kde.org/frameworks/kdeclarative/-/merge_requests/64 (merged),
Documentation: https://invent.kde.org/network/kio-extras/-/merge_requests/110 (merged),
QML debugger: https://invent.kde.org/frameworks/kdeclarative/-/merge_requests/65 (merged),
DBus: https://invent.kde.org/frameworks/kdbusaddons/-/merge_requests/10 (merged),
33 https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/116 (merged)
34 The KDE security team reviewed this change after the initial version of this report was completed
and concluded that it does not warrant a security advisory. The patch has now been published and
can be seen at https://invent.kde.org/plasma/kwin/-/merge_requests/1400.
35 Optional OpenGL: https://invent.kde.org/graphics/gwenview/-/merge_requests/95

26

Furthermore, we encountered a long-standing bug in CMake36 that prevented cross-
compilation of the poppler PDF rendering library that is used by the Okular document viewer.
We submitted a merge request to poppler to work around this issue.37 Finally, we also
upstreamed minor changes to support cross-compilation (mostly build-system related).38

Various desktop applications running on CHERI-RISC-V

Summary
We have submitted the majority of our changes upstream. As of writing this report, almost all
of these changes have now been merged into the upstream repositories. The table below
gives an overview of these changes.

Component Lines of code Language Required adaptations

KIO 115 K C++ 1 line changed (0.0009% of total) to avoid an
out-of-bounds read.

Optional DBus: https://invent.kde.org/graphics/gwenview/-/merge_requests/94,
https://invent.kde.org/system/dolphin/-/merge_requests/231,
https://invent.kde.org/plasma/kwin/-/merge_requests/1206, https://invent.kde.org/graphics/okular/-
/merge_requests/460
Optional Wayland: https://invent.kde.org/plasma/kscreenlocker/-/merge_requests/41 (rejected)
Optional documentation: https://invent.kde.org/system/dolphin/-/merge_requests/230 (merged)
https://invent.kde.org/graphics/gwenview/-/merge_requests/92 (merged)
https://invent.kde.org/plasma/systemsettings/-/merge_requests/74 (merged)
36 https://gitlab.kitware.com/cmake/cmake/-/issues/22414
37 https://gitlab.freedesktop.org/poppler/poppler/-/merge_requests/887 (under review)
38 https://invent.kde.org/plasma/plasma-desktop/-/merge_requests/532 (merged),
https://invent.kde.org/graphics/okular/-/merge_requests/455 (merged),
https://invent.kde.org/graphics/okular/-/merge_requests/456 (under review),
https://invent.kde.org/plasma/kscreenlocker/-/merge_requests/42 (merged)

27

60 unmodified KDE
libraries

620 K C++ Completely unmodified C++, only some minor
cross-compilation build system fixes.

KWin 117 K C++ 38 LoC changed (0.021%) to avoid two out-of-
bounds reads.
711 LoC changed (0.403%) to make OpenGL
and Wayland support optional.

Plasma-framework
Plasma-workspace
Plasma-desktop

28K
112K
45K

C++ No changes related to CHERI, 14/383/39 LoC
changed in the respective repositories
(0.049/0.343/0.087%) to make OpenGL, DBus
and Wayland optional.

Dolphin 42K C++ No CHERI changes, 13 LoC changed (0.031%)
to make DBus optional.

Gwenview 45K C++ No CHERI changes, 23 LoC changed (0.051%)
to make DBus and OpenGL optional.

poppler 193K 85% C++
15% C

No CHERI changes, 2 LoC changed (0.001%)
to silence a warning. Minor CMake build
system fix for cross-compilation.

Okular 87K C++ No CHERI changes, 4 LoC changed (0.005%)
to make dependencies optional and fix
warnings.

Systemsettings 4K C++ No CHERI changes, 1 LoC (0.025%) changed
to make DBus optional.

QtBase 5.15 1,661 K +
570K tests +

77K examples

C++ 817 LoC changed in the library (0.049%) and
42 LoC changed in the tests (0.022%).
No changes to the examples.

QtSvg 5.15 15 K C++ 12 LoC added (0.078%) to avoid an out-of-
bounds read with empty strings.

QtDeclarative 5.15 496 K C++ 391 LoC changed (0.079%)

QtGraphicalEffects
5.15

3K C++ No CHERI changes, 8 LoC (0.275%) changed
to make OpenGL optional.

Additional libraries
and programs39

560 K 68% C
30% C++
2% ASM

Unmodified other than minor cross-compilation
changes and non-CHERI warning fixes.

Complete changes summary
In total we compiled more than 6 million source lines of code for CHERI C/C++ successfully
with only a very few changes: 2071 LoC or 0.034%. Of these 2071 changed lines, many
were unrelated to CHERI; if we exclude changes that are required to make certain
dependencies optional, we have a total of 1584 changed lines or 0.026% of the total.

39 epoll-shim, exiv2, lcms2, libevdev, libexpat, libinput, libintl-lite, libudev-devd, mtdev, openjpeg,
pixman, QtTools, QtQuickControls, QtQuickControls2, QtX11Extras, shared-mime-info

28

Compared to previous analyses of porting software to CHERI [6, 17], we find that this rate of
0.026% is noticeably lower than previously reported values of 0.1% (or 1.4% for the
FreeBSD kernel40). This lower rate can be attributed to multiple factors: first, improvements
to compiler analysis and CHERI C/C++ semantics41 over the past few years have removed
the need for many changes that were previously required. Second, our previous analysis
showed that higher-level code generally requires fewer adaptations for CHERI C/C++, and
the software we have ported in this work is mostly higher-level application code rather than
low-level system libraries or language runtimes (with the exception of QtQml). Finally, a
large proportion of the ported code is C++ rather than C, and writing code in C++ means
certain patterns that can cause incompatibilities with CHERI are not used -- since the
language or standard library provides abstractions for them (e.g., incorrect use of realloc
rarely happens, since programmers can use classes such as std::vector). We also found
that conversions between integers and pointers were less common in C++ compared to C,
since C++ can use templates for generic data structures whereas C must resort to void* or
intptr_t.

7. Compiler improvements
As part of our porting efforts we encountered multiple recurring CHERI-incompatible patterns
that can at times be awkward to debug. These patterns are often undefined behaviour
according to the C standard (creation of out-of-bounds pointers), but happen to "work" as
expected on conventional architectures (at least, until a sufficiently sophisticated optimizing
compiler attempts to leverage this undefined behaviour for optimization purposes).

-Wshorten-cap-to-int
This newly added compiler diagnostic warns whenever a capability is implicitly truncated to
an integer. This diagnostic catches cases where a pointer that has been stored in a
uintptr_t is implicitly converted to a smaller integer type before being converted back to
uintptr_t. If this happens, the result of casting back to a pointer will be missing the
capability metadata and cannot be dereferenced anymore. It is very similar to the existing
clang warning -Wshorten-64-to-32 that was added to find the equivalent issue when
porting from 32-bit to 64-bit (truncating intptr_t via int). This warning was extremely
useful while porting QtDeclarative since the code uses uint64_t and uintptr_t
interchangeably for JavaScript object data. The QtQml port would have taken significantly
longer without this warning, since we would have encountered the problems only at run time,
rather than through compile-time diagnostics.

40 The change rate of 1.4% is higher than normal in this case since we also support compiling the
kernel as a hybrid program where every capability needs an explicit __capability annotation.
41 For example, we changed the CHERI C semantics for casting between capabilities and integers to
always use the address instead of the capability offset, and we modified CHERI Clang to support
inferring the provenance source for arithmetic expressions involving multiple capabilities.

29

CHERI UndefinedBehaviorSanitizer
We also extended the UndefinedBehaviorSanitizer (UBSan) [20] compiler instrumentation to
leverage CHERI architectural features (bounds and tagged memory) in order to detect
creation of significantly out-of-bounds pointers. Creating out-of-bounds pointers is undefined
behaviour in C,42 and therefore the compiler may assume that this does not happen and
optimize accordingly. However, in our porting efforts we discovered that multiple C libraries
(e.g., libX11, fontconfig or the X Server) created such pointers due to incorrectly relocating
pointers after calling realloc(). As conventional CPU architectures do not keep track of
bounds at run time, this incorrect code appears to work but triggers traps when run as
CHERI C/C++. The creation of the invalid out-of-bounds pointer and the actual use (i.e.,
dereference) usually occur with a rather large time gap, so a debugger backtrace rarely
allows programmers to infer where the incorrect code is. After spending significant time
debugging two such issues, we decided to add compiler instrumentation instead.

The current implementation of the CHERI UBSan43 relies on the tag-clearing nature of out-
of-bounds pointer arithmetic: a CHERI capability that is significantly out-of-bounds will
become untagged [15] and thereby non-dereferenceable. This allows us to detect
significantly-out-of-bounds pointers (guaranteed further than one past the end) by comparing
the capability tag before pointer arithmetic with the resulting one. If the value changed, we
can issue a diagnostic message or terminate the program to allow debugging with GDB. This
new instrumentation can be enabled using a new -fsanitize=cheri-unrepresentable
command line flag, and it remains possible to mix libraries compiled with and without
instrumentation.

In the future, we plan to extend the CHERI UBSan instrumentation to not only detect
capabilities that have become unrepresentable, but also look at the capability bounds to
diagnose the creation of capabilities that are more than one element out-of-bounds. This is a
rather simple change to the instrumentation, but it does add additional run-time overhead
compared to only checking the capability tag.44 As this more thorough instrumentation was
not required to debug the libraries and programs used by our chosen prototype desktop
stack, we have not yet implemented it.

8. Compartmentalization whiteboarding
Implementing software compartmentalization can be a substantial software engineering
activity, and compartmentalization frameworks for CHERI and Morello remain ongoing
research. As such, we did not attempt to develop end-to-end demonstrations of
compartmentalization, but instead explored potential applications of compartmentalization in
the Qt/KDE desktop environment through whiteboard exercises.

To the extent possible, we have applied knowledge gained in our early software
compartmentalization work including the Capsicum OS sandboxing framework [21] and also
in developing software compartmentalization techniques for CHERI [10]. We have taken into

42 With the exception of one-past-the-end pointers which are in fact legal.
43 https://github.com/CTSRD-CHERI/llvm-project/pull/553
44 Currently, we would need to compare the computed address to both the lower and upper bounds of
the capability. This overhead could be reduced by adding an CInBounds instruction to the ISA.

30

account the potential structural and performance improvements introduced by CHERI, such
as single-address-space operation for multiple processes, and IPC roughly 1.5 orders-of-
magnitude faster than MMU-enabled UNIX IPC, as predicted by on-FPGA CHERI research.

While CHERI supports a variety of compartmentalization models, we have chosen to
whiteboard (and evaluate) with respect to a performance-enhanced colocated process (co-
process) model, in which UNIX processes are able to perform substantially accelerated
context switching and message passing. The practical import for user-level application
software is that compartments are represented as processes, except that it is then possible
to assume much faster communications between them making some previously untenable
compartmentalizations viable. For example, with co-processes, we are able to assume that
processing all image files within sandboxes is performance-viable, whereas we would not
normally do that for MMU-based hardware designs. Isolation of software components is
therefore done by a combination of CHERI protection within user-level and the kernel
process abstraction when in system calls or traps.

We are therefore able to assume that FreeBSD’s current Capsicum security model is
applicable in sketching compartmentalized software policies. Capsicum is a software
capability-based model in which sandboxed processes are denied access to global
namespaces, such as the filesystem or network services, unless specifically granted them
via UNIX file descriptors (in effect, making file descriptors into another kind of capability). We
can therefore assume, for example, that a sensible compartmentalization of a software
component would prevent undesired network or filesystem access beyond that specifically
configured for the use case (privilege minimization).

Key focuses in our current work were identifying natural ‘fracture lines’ within KDE software,
with focuses on:

● Security benefit: Compartmentalization should encapsulate and contain software
elements with known high risk (e.g., image processing), exposure to untrustworthy
input (e.g., network connectivity), and/or high-value information (e.g., passwords or
private keys).

● Natural encapsulation boundaries: Sandboxed components should align with
existing public or internal KDE or Qt APIs, providing for clean interfaces and
benefiting from relatively careful API design with respect to internal data.

● Performance plausibility: Boundaries are selected that will offer affordable
overhead either using classical MMU-based IPC or CHERI-enabled co-process IPC.

It is important to recognize that introducing software compartmentalization can be disruptive
to the software, if it has not been designed with compartmentalization in mind from inception.
This is an area deserving of substantial further research, but existing work [22–24] suggests
that there is reason to hope that automated tooling could reduce the level of engineering and
improve longer-term maintainability. For the purposes of this work, we assume that
introducing compartment boundaries along existing encapsulation boundaries and APIs is
feasible and will be accepted by the affected software communities.

31

Compartmentalization example 1: QImageReader
We analyzed the list of prior vulnerabilities (see 8. Security evaluation), and clearly saw that
many of them are related to file format parsing (especially for image formats). We therefore
believe that isolating the Qt image-parsing code would be one of the most impactful
applications of compartmentalization in the current desktop stack. When loading/saving an
image using the QImage/QPixmap/QIcon classes in Qt, the conversion between raw pixels
and an image format is handled by QImageWriter and QImageReader. These classes
provide a generic interface that dispatches to file format parsers inside Qt or a large number
of third-party libraries such as libpng. These classes also include a plugin-based mechanism
that allows registering handlers for other image formats. In the current version of QtBase,
reading and writing image data is performed in-process without any form of sandboxing.
Additionally, these classes expose a small API surface: the only communication is passing
raw/compressed image data between the application and the compartment. This makes
these classes much easier to compartmentalize than an API that uses (e.g.) function pointer
callbacks and/or complex data structures. Finally, the main API is a single read()/write()
function; therefore we should be able to avoid regular context switches between the main
application and the compartmentalized image reader/writer.

We believe that compartmentalizing the Qt image format handlers would have a significant
security impact, since it would mitigate vulnerabilities in any application that uses Qt to
render and/or save images. Compartmentalizing the Qt image format handlers would not
only prevent exploitation of applications that directly load images, but would have also
mitigated configuration errors such as CVE-2019-7443, where a privileged daemon (running
as root) that is not normally expected to handle images could be tricked into decoding
arbitrary user-provided data as an image. This flaw can grant an attacker full control over the
system using a vulnerability in any of the supported image format libraries. Moreover,
compartmentalizing the image parsing code would allow returning an invalid QIcon or an
"image not found" icon if the compartment crashes. This would convert all denial-of-service
flaws (e.g., NULL-pointer dereferences) in image-rendering libraries such as libpng from fatal
application crashes into recoverable errors.

Compartmentalization example 2: Okular's document renderer
Looking at the application stack ported as part of this work, another clear candidate for
compartmentalization is the KDE document reader, Okular. It will often be used to read PDF
files downloaded from potentially untrustworthy sources; the underlying PDF rendering
library, poppler, has seen numerous exploitable Common Vulnerabilities and Exposures
(CVEs) over the past years.45

Okular uses a plugin architecture to support many different rendering backends in addition to
PDF files, so the code already uses a higher-level API that does not involve any function
pointers. For document formats, Okular uses a Generator class that loads the appropriate
plugin for the current file format and has APIs e.g. to return the raw image data for a given
area of a page as well as the textual contents. In a previous research project at the
University of Cambridge in 2015 [25], it was shown that Okular's renderer design can be

45 https://www.cvedetails.com/product/24992/Freedesktop-Poppler.html?vendor_id=7971

32

adapted with relative ease to use process-based sandboxing techniques (in this case
Capsicum [21] was used). In this work it was also shown that compartmentalization resulted
in low performance overheads (less than 30ms to transfer the image data from the helper
process) despite being an unoptimized proof-of-concept implementation. We believe that a
compartmentalization approach based on CHERI would further reduce this overhead as it
would allow running code within the same address space, and thereby reduce copying
overheads.

Unlike the Qt image reader example, this compartmentalization will mitigate flaws only for a
single application, but it is to be noted that it is an application with a rather large attack
surface. One advantage of compartmentalizing applications over libraries is that it can be
easier to adapt them as the internal APIs can be changed to be more friendly to
compartmentalization.

Compartmentalization example 3: KFileMetadata
KFileMetadata is a KDE framework that provides a plugin-based system to read and write
descriptive metadata (e.g., image dimensions, document authors, licenses, etc.) embedded
in various file formats. It is commonly used for file indexing (e.g., the Baloo framework used
by KDE) or to update metadata when writing files. Reading and writing metadata is
performed in-process and usually performed by other lower-level libraries (e.g., libexiv2 for
image formats, ffmpeg for videos, or poppler for PDFs). Many of these libraries have an
extensive history of exploitable CVEs,46 so we believe compartmentalization would provide a
significant reduction in attack surface.

The API provided by KFileMetadata is very high-level, with all of the data processing in the
internal implementation, and therefore should be easily adaptable to a compartmentalized
software architecture. To read metadata from a file, users of KFileMetadata must find the
appropriate extractor plugin for a given file format by calling
ExtractorCollection::fetchExtractors(). This returns a subclass of
ExtractorPlugin that implements two functions: extract() to return the metadata and
mimeTypes() which returns a list of supported MIME types. This architecture is quite similar
to the one used in Okular, so we believe that the same approach of wrapping the plugin’s
APIs with a compartmentalized proxy is feasible.

In terms of vulnerability mitigation, this will most likely have a lower impact than sandboxing
the Qt image rendering code. However, on KDE Plasma desktops with file indexing enabled,
untrusted files downloaded from the Internet will be scanned for metadata using Baloo (and
thus KFileMetadata), which is a very high-risk library -- and should therefore be a prime
candidate for compartmentalization.

46 https://www.cvedetails.com/vendor/7561/Exiv2.html,
https://www.cvedetails.com/vendor/3611/Ffmpeg.html,
https://www.cvedetails.com/product/24992/Freedesktop-Poppler.html

33

9. Security evaluation
In this section, we review security vulnerabilities from X11, Qt, KDE, and a selection of
supporting libraries over a five-year period (August 2016 - July 2021)47 to assess whether
our proposed or actual CHERI adaptations would have impacted the severity of the
vulnerabilities. This is done as a whiteboarding exercise, due to time and scope constraints,
but reflects reasonable best estimates of the impacts of CHERI memory protection (including
temporal heap memory safety) and compartmentalization (as described). A more rigorous
study would perform more in-depth studies of the specific code paths, ideally with an
adversarial element to evaluate practical exploitability.

Information sources
For each software category, we review the complete set of Common Vulnerabilities and
Exposures (CVEs) or other announced past vulnerabilities. Where possible, we rely on
vulnerability lists documented on the web pages of the corresponding open-source project
websites (e.g., X.org and KDE). However, in some cases, where a project doesn’t maintain
such a list, we turn to externally maintained lists (e.g., CVE Details48). For software
components in the former category, researching vulnerabilities was typically straightforward,
as security advisories provide detailed technical information, references to software changes
and patches, and important contextual information. Those in the latter category required
substantially more work to research vulnerabilities across multiple independent websites,
issue trackers, source repositories, and so on.

Open-source projects inevitably handle discovered reported vulnerabilities differently -- for
example, whether all potential vulnerabilities are announced by the project, whether and
when denial of service is considered a vulnerability, and how vulnerabilities are assigned
severities. We do not address these potential concerns, given the scope of this project, and
instead simply review each CVE to offer our analysis of how it might have been impacted by
CHERI deployment.

We drew on a blend of information sources, including individual vendor websites as well as
their issue trackers and source-code repositories, the CVE Details web site, and the National
Vulnerability Database (NVD).49 In some cases we also turned to analyses presented in OS
vendor advisories and issue trackers such as those from Ubuntu50 and RedHat51; this was
especially helpful when analyzing supporting library vulnerabilities, which were rarely
documented by the vendors themselves. In our analysis, we indicate the primary source(s)
of vulnerability information used for each project.

47 As noted in the Qt evaluation section, Qt did not have announced vulnerabilities in this period, so
we reviewed vulnerabilities back through 2011.
48 https://www.cvedetails.com
49 https://nvd.nist.gov
50 https://ubuntu.com/security/notices
51 https://access.redhat.com/security

34

Advisory and vulnerability descriptions
Open-source projects with vulnerability disclosure processes request CVEs for specific
software vulnerabilities. However, their security advisories may address more than one
vulnerability -- for example, when a set of related vulnerabilities is reported as a result of
deploying a new static analysis tool, or when auditing for further cases of a newly reported
vulnerability class. In our analysis, we consider vulnerabilities at the granularity provided by
the open-source project: one entry per advisory (and potentially multiple vulnerabilities) if
reported in that way by the project, and otherwise one entry per vulnerability if advisories are
not issued by the project.

For each table entry, we report the following:

● CVE(s): The unique vulnerability identifier(s) reported by the software vendor.
● Date: The date the vendor released an advisory or patch for the vulnerability.
● Severity: The indication of vulnerability severity, by the vendor, or our own, if not.
● Description: A very brief description of the vulnerability or vulnerabilities.
● Assessment: Our brief assessment of the potential impact of CHERI memory

protection and compartmentalization on the vulnerabilities. If we have reduced
confidence in our analysis for a particular vulnerability, we also note that here.

Severities
Where open-source projects issue advisories with severities, we report those severities. If
the projects do not issue advisories, or issue advisories but do not assign severities to
vulnerabilities, we assign severities as follows:

● Critical vulnerabilities are those likely yielding or contributing directly to arbitrary
code execution across a trust boundary (e.g., as the local user following processing
of an untrustworthy data file, or as the root user when interacting with an unprivileged
desktop user).

● Moderate vulnerabilities are those leading to denial of service, or that may
unnecessarily expose more vulnerable attack surfaces without necessarily
constituting a vulnerability. For example, an information disclosure might provide
useful information required to build a successful exploit chain, while not itself
enabling direct privilege escalation.

Threat model
Most of the open-source GUI and desktop code we reviewed did not document a well-
defined threat model. However, as many of the projects have structured vulnerability
disclosure and review processes, and assign criticalities to disclosed vulnerabilities, we were
able to reason about their de facto threat models. In general, for the purposes of vulnerability
analysis and disclosure, the projects were concerned with privilege escalation, private
data disclosure, and denial of service.

35

Privilege escalation due to arbitrary code execution or file modification
This appeared to be considered the most important concern spanning almost all vulnerability
disclosures we reviewed, and tended to fall into one of two categories:

● Remote to user privilege. With these vulnerabilities, the desktop user is interacting
with network services (e.g., viewing websites, reading instant messages,
downloading and handling files, etc.) that are able to trigger local code execution as
the desktop user. In most cases this is due to memory-safety vulnerabilities, but in
some it may derive from bugs in (for example) archiving programs that permit
arbitrary local file replacement as the user. This is trivially escalated to arbitrary code
execution.

● User privilege to system privilege. With these vulnerabilities, the desktop user
interacts with privileged system services (e.g., the window server, screen locker, etc.)
and is able to trigger local code execution as the privileged user. As above, in most
cases this is due to memory-safety vulnerabilities, but likewise arbitrary file overwrite
is trivially escalated to arbitrary code execution.

The specifics of arbitrary code execution vulnerabilities varied substantially. X11, for
example, has experienced numerous C-language buffer overflows. KDE also suffered from
arbitrary code execution vulnerabilities, but these were more typically with respect to logical
errors, such as by permitting file overwrites due to incorrect enforcement of target directory
constraints in archiving tools.

Private data disclosure
The Private Data Disclosure category relates to library or application logical bugs in which
private data is improperly disclosed. For example, KDE’s KMail client contained a logical bug
causing email intended to be submitted encrypted to instead be sent in plain text. This class
appears to be largely secondary compared to arbitrary code execution, featuring in few
vulnerability advisories. Nevertheless, private data disclosure is a key attacker end objective
often achieved via arbitrary code execution.

Undesired data modification
Undesired data modification vulnerabilities are most frequently considered to be a means to
the end of arbitrary code execution; for example, focus is placed on buffer overflows onto
stack or heap metadata. The broader category of concerns here -- e.g., overflow into
application data that does not lead to user data corruption -- seems largely unconsidered.

Denial of service
Although often assigned a lower severity than vulnerabilities leading to arbitrary code
execution, denial-of-service vulnerabilities still featured prominently. This was particularly
true for image-processing libraries, where the implications of a crash could be significant for
the larger application;they also featured prominently in the KDE vulnerability corpus. CHERI
memory protection coerces potential arbitrary code execution vulnerabilities into
deterministic crashes, which may reduce a critical vulnerability to one of low or moderate
severity -- but does not completely eliminate it.

36

Mitigation
We consider a vulnerability mitigated if a bug would no longer be considered a vulnerability
under the vendor’s threat model. However, as vendors rarely publish threat models, and we
must work with de facto ones, this presents some challenge to analysis.

Memory safety
CHERI memory protection in CHERI C and C++ directly mitigates both vulnerabilities (e.g.,
buffer overruns and use-after-reallocation) and exploit techniques (e.g., control-flow pointer
injection, integer-pointer confusion, and violations of spatial safety in the implementation),
coercing attempted attacks from arbitrary code execution into software crashes. Cornucopia
and related techniques can reliably and deterministically implement heap safety when using
CHERI, and our analysis assumes heap temporal safety is present. These techniques
collectively can mitigate a substantial proportion of C and C++ vulnerabilities, in which
simple programming errors yield a high-severity vulnerability, or at least essential steps in a
larger exploit chain (such as pointer value leakage, or arbitrary write primitives).

We choose to consider a memory-safety vulnerability mitigated only if CHERI C/C++ directly
addresses the vulnerability itself (e.g., spatial safety preventing a buffer overflow from
running into another allocation or global variable, or heap temporal safety preventing use-
after-reallocation). While CHERI may indeed limit exploit techniques -- for example, by
deterministically preventing pointer reinjection and hence making malicious control-flow
manipulation more difficult -- it is not currently clear how to best reason about the strength of
that protection.

The potential impact of denial of service arising from memory safety triggering a crash is
extremely application- and use-case dependent. For example, converting a buffer overflow
into software termination prevents arbitrary code execution, but might still interrupt service
delivery to the user if it crashes their web browser or window server. On the other hand, a
command-line tool crashing when processing an untrustworthy image may have little impact
on user experience.

Compartmentalization
CHERI compartmentalization will sometimes be able to mitigate denial of service by limiting
portions of applications affected by software termination, including when crashes originate
with memory-safety violations. For example, if image processing is compartmentalized, a
failed image processing sandbox may lead to a ‘bad image file’ icon in a web or file browser,
rather than crash of the tab or full application. Reviewing desktop relevant vulnerabilities, it
was clear that many vulnerabilities arise from the processing of images and other media
files, and compartmentalizing that processing would have a significant impact on reliability in
the presence of attempted attacks.

The extent to which a vulnerability is ‘fully mitigated’ can therefore be hard to determine. We
take the view that a substantial reduction in effect of a vulnerability (e.g. arbitrary code
execution to software crash) constitutes a significant mitigation -- but will always note where
a crash might have a broader impact that itself would need mitigating, and whether software
compartmentalization would be likely to contribute to further mitigation.

37

When software compartmentalization detects a memory-protection failure (or other fail-stop
condition), that impact on software can also vary substantially. In some cases, it may be
possible to entirely mask the failure by restarting a compartment and proceeding to the next
item of data, such as a packet or message. In other cases, there are clear and user-relevant
failure modes that can be exposed without interrupting operation. For example, if a memory-
protection exception is caught when rendering an image, a “broken image” icon could be
displayed, as is the case today when attempting to render a corrupted image file that does
not contain an exploit.

However, there may be some cases where compartmentalization is unable to usefully mask
a failure essential to the operation of affected software. For example, a memory-protection
error in the X Windows server could lead to termination of the entire desktop session. As we
review vulnerabilities for potential compartmentalization opportunities, it can sometimes be
difficult to understand the scope for mitigation without full application context, especially for
libraries in isolation from a specific application that uses them.

Depth of analysis
Due to the limited timeline and scope of this project, we have generally relied heavily on the
vulnerability analyses provided by the software vendors (e.g., in the vendor’s own revision-
control history or vulnerability announcement), or by a downstream software distribution
(e.g., Ubuntu or Redhat analysis). In some cases, we performed direct source-code analysis
where an advisory was unclear or the implications were not fully elaborated. We have
marked certain vulnerabilities as containing insufficient information, or as low confidence
analyses, where the nature of the vulnerability was unspecified or unclear, where the threat
model or vulnerability argument was unclear, or where our confidence in mitigation is lower.
Given further time, it would be desirable to take our analysis further through closer code
inspection or experimentation.

X.org
The X.org X Window System is a display server along with a collection of device drivers,
client libraries, and command-line tools supporting desktop graphics for UNIX (and other)
systems. X.org releases regular security advisories and software updates for reported
vulnerabilities, from which we have gathered this data, but does not publish an explicit threat
model or assign severities to vulnerabilities.52

The threat model around X server vulnerabilities has changed over time. Historically, the X
server has been run as root due to using user-level device drivers for display hardware. A
key threat, then, is X client applications exploiting vulnerabilities over their connections to the
server, potentially granting additional privilege to an otherwise less privileged client program.
Running the X server as root has become less common, but criticality assessments for
remote code execution continue to take this potential configuration into account. Our
presentation of X server vulnerability data also adopts this perspective.

52 https://www.x.org/wiki/Development/Security/

38

The threat model around X client library vulnerabilities often relates to the potential for
arbitrary code execution in client programs running with elevated privilege, and connected to
a potentially malicious X server (or program behaving as an X server). Historically, the
concern involved setuid root clients linked against X client libraries, which the attacker would
run connected to a malicious (but unprivileged) X server instance that would be able to gain
root privilege by sending specially crafted messages, leading to high criticality for such
vulnerabilities. A significant effort has been invested in deprivileging X client programs for
this reason, but a number still remain. Our presentation of client-library vulnerability data
again adopts the X.org perspective.

In most cases, we assess that while CHERI memory protection will mitigate a vulnerability, it
will lead to an X server or X application crash that is not easily mitigated by software
compartmentalization. However, we consider a potential arbitrary code-execution
vulnerability to be mitigated if it will then deterministically crash rather than allow code
execution. We have taken the view, for the purposes of this work, that crashes in the X
server or X client libraries do not lend themselves to mitigation by software
compartmentalization due to the essential role X11 plays in applications. It could be that
further analyses show this assumption to be incorrect.

Vulnerability Date Severity Description Assessment

CVE-2021-3472 13 April
2021

Critical An integer overflow allowed
out-of-bounds memory
accesses in the X server,
which could lead to arbitrary
code execution.

Mitigated by memory
safety (but will cause
the X server to
crash).

CVE-2020-14360,
CVE-2020-25712

1
December
2020

Critical Two independent failures of
input validation in the XKB
extension allow out-of-
bounds memory accesses in
the X server, which could
lead to arbitrary code
execution.

Mitigated by memory
safety (but will cause
the X server to
crash).

CVE-2020-14345,
CVE-2020-14346,
CVE-2020-14361,
CVE-2020-14362

25 August
2020

Critical Insufficient input validation in
multiple X server extensions
allow out-of-bounds memory
accesses, which could lead
to arbitrary code execution.

Mitigated by memory
safety (but will cause
the X server to
crash).

CVE-2020-14363 25 August
2020

Critical Integer overflow and double
free in libx11 locale handling
could lead to arbitrary code
execution in X client
applications.

Mitigated by memory
safety (but will cause
an application crash).

CVE-2020-14344 31 July
2020

Critical Integer overflows and
signed/unsigned
comparisons in libX11 input
methods could lead to
arbitrary code execution in X
client applications.

Mitigated by memory
safety (but will cause
an application crash).

CVE not assigned 25
October

Critical Incorrect command-line
validation in the X server can

Unmitigated (software
design error).

39

2018 lead to arbitrary code
execution, or arbitrary file
overwrite.

CVE not assigned 22 August
2018

Moderate libXcursor could write one
byte out of bounds when
processing Xcursor
theme files held in a malloc’d
buffer on the heap, which
could be a step in a more
complex attack on an X
client application.

Mitigated by memory
safety (but will cause
an application crash).

CVE-2018-14599,
CVE-2018-14600,
CVE-2018-14598

21 August
2018

Critical Multiple libX11 library
memory-safety bugs can
lead to arbitrary code
execution in X client
applications.

Buffer overruns are
mitigated by memory
safety (but will cause
an application crash).
Most likely
compartmentalization
would not mitigate the
effects of those
crashes.

CVE-2017-12176,
CVE-2017-12177,
CVE-2017-12178,
CVE-2017-12179,
CVE-2017-12180,
CVE-2017-12181,
CVE-2017-12182,
CVE-2017-12183,
CVE-2017-12184,
CVE-2017-12185,
CVE-2017-12186,
CVE-2017-12187

12
October
2017

Critical Multiple buffer overruns in
the X server’s protocol
processing can lead to
arbitrary code execution.

Mitigated by memory
safety (but will cause
an X server crash).

CVE-2017-13721,
CVE-2017-13723

4 October
2017

Critical Buffer overruns in the X
server’s handling of SHM
and XKB client requests can
lead to arbitrary code
execution.

Mitigated by memory
safety (but will cause
an X server crash).

CVE-2016-5407.
CVE-2016-7942,
CVE-2016-7943,
CVE-2016-7944,
CVE-2016-7945,
CVE-2016-7946,
CVE-2016-7947,
CVE-2016-7948,
CVE-2016-7949,
CVE-2016-7950,
CVE-2016-7951,
CVE-2016-7952,
CVE-2016-5953

4 October
2016

Critical Multiple buffer overruns in
the X client libraries can lead
to arbitrary code execution in
X client applications.

Mitigated by memory
safety (but will cause
an application crash).

We reviewed 11 X.org security advisories to understand the potential applicability of CHERI
vulnerability mitigation, and found that:

40

● 10 (91%) were likely mitigated by memory safety.

Overall, CHERI mitigation would likely have achieved roughly a 91% mitigation rate for
these collections of security issues. Note that many X.org security advisories covered
multiple underlying vulnerabilities, and so the vulnerability mitigation rate is likely
substantially higher.

Qt
Qt is an open-source GUI toolkit and framework, as well as design tools, providing a variety
of services such as GUI widgets, I/O handling including audio and video file formats and
rendering, networking. Qt is used as the baseline set of class libraries for KDE. Qt releases
regular vulnerability advisories, from which we have gathered these data.53 Due to a lack of
recent published Qt security advisories, we extended our investigation back through to 2011.

Vulnerability Date Severity Description Assessment

CVE-2020-0570 14 September
2020

High
(7.3)

Library (plugin) search
including current working
directory may allow
elevation of privilege via
local access.

Unmitigated (software
design error). Possibly
mitigated by
compartmentalization.

CVE-2017-
10904CVE-2017-
10905

JVN#67389262
JVN#27342829

22 November
2017

High Logic error allows
malicious users to enable
a custom debugger binary
which can result in
arbitrary code execution
on Android devices

Unmitigated (software
design error). Possibly
mitigated by
compartmentalization.

CVE-2015-1858,
CVE-2015-1859,
CVE-2015-1860

12 April 2015

High

Incorrect parsing of BMP,
ICO and GIF files results
in denial of service
crashes and/or buffer
overflows.

Mitigated (buffer
overflows), denial-of-
service mitigation
possible with well-
designed
compartmentalization.

CVE-2015-0295 22 February
2015

Low Library logic error results
in division by zero (denial-
of-service) when decoding
invalid BMP images

Unmitigated, partial
mitigation possible
with well-designed
compartmentalization.

CVE-2015-1290 9 January
2015

High Memory corruption bug in
V8 JavaScript engine
(included in
QtWebEngine) allows for
arbitrary code execution.

Mitigated by memory
protection
(downgraded to DoS).

CVE-2014-0190 24 April 2014

Low Library logic error results
in NULL-pointer
dereference (denial-of-
service) while decoding

Unmitigated, partial
mitigation possible
with well-designed
compartmentalization.

53 https://www.qt.io/blog/tag/security and the announcements mailing list https://lists.qt-
project.org/pipermail/announce/

41

invalid GIF images

CVE-2013-4549 5 December
2013

Low Library logic error in XML
parsing could result in
infinite memory usage and
thereby denial-of-service

Unmitigated, partial
mitigation possible
with well-designed
compartmentalization.

CVE-2013-0254 4 February
2013

Low to
Medium

Library logic error created
POSIX shared memory
segments world-writable

Unmitigated (software
design error).

CVE-2012-6093 2 January
2013

Low QSslSocket will load error
code from wrong memory
location when run with a
different OpenSSL version
than the one Qt was
compiled against

Likely unmitigated (or
converted to a crash
depending on
structure sizes).
Irrelevant on a
standard Linux
desktop deployment.

CVE-2012-5624 17 November
2012

Low

XMLHttpRequest allows
redirection from HTTP to
file:// scheme which can
expose local file contents
to QML applications

Unmitigated (software
design error).

CVE-2011-3194 21 September
2011

High Buffer overflow in the
TIFF image reader allows
for arbitrary code
execution

Mitigated by memory
protection
(downgraded to DoS).
DoS mitigated by
compartmentalization.

CVE-2011-3193 22 August
2011

High Buffer overflow in the
HarfBuzz text rendering
engine allows for arbitrary
code execution

Mitigated by memory
protection
(downgraded to DoS).
DoS possibly
mitigated by
compartmentalization.

We reviewed 11 Qt security advisories to understand the potential applicability of CHERI
vulnerability mitigation, and found that:

● 6 (55%) were likely mitigated by straightforward software compartmentalization.
● 4 (36%) (overlapping with some of the above) might or would have been mitigated by

memory protection.

Collectively, memory protection and compartmentalization would likely have achieved
roughly a 82% mitigation rate for these collections of security issues.

KDE
KDE is an open-source desktop environment including window manager, web browser, file
manager, contact manager, mail reader, and other applications such as an office suite and

42

graphics package. KDE releases regular vulnerability advisories, from which we have
gathered these data.54

Vulnerability Date Severity Description Assessment

CVE-2021-31855 29 April
2021

Low Application logical error in
KDE e-mail reader
incorrectly uploads
decrypted and then deleted
attachment to mail server.

Unmitigated (software
design error).

CVE-2021-28117 10 March
2021

Low Application logical error in
the KDE package manager
fails to limit rendered links to
http/https.

Unmitigated (software
design error).

CVE-2020-27187 17 October
2020

Important Application logical error in
KDE Partition Manager
could lead to local privilege
escalation.

Unmitigated (software
design error).

CVE-2020-26164 2 October
2020

Important Application logical errors in
KDE Connect may lead to
local denial-of-service.

Unmitigated, possibly
except for one use-
after-free vulnerability
that could have been
further exploitable for
privilege escalation,
and would be
mitigated by memory
protection.

CVE-2020-24654 27 August
2020

Important Application logical error in
KDE archiving tool may
install files outside of target
directory.

Mitigated by
straightforward
compartmentalization.

CVE-2020-24654 30 July
2020

Important Application logical error in
KDE archiving tool may
install files outside of target
directory.

Mitigated by
straightforward
compartmentalization.

CVE-2020-12755 10 May
2020

Low Application logical error in
KDE password wallet
improperly saves password
when not asked to.

Unmitigated (software
design error).

CVE-2020-9359 12 March
2019

Low Application logical error
allows arbitrary binary
execution by KDE PDF
viewer Okular.

Mitigated by
straightforward
compartmentalization.

CVE-2019-14744 7 August
2019

High Application design error
executes arbitrary command
lines in .desktop and
.directory files

Unmitigated (software
design error).

CVE-2019-7443 9 February
2019

Medium Unprivileged users can
trigger parsing of arbitrary

Mitigated by both
memory protection

54 https://kde.org/info/security/

43

data, such as images, in
privileged daemons via
kauth framework, which can
lead to arbitrary code
execution as root.

and straightforward
compartmentalization
(memory protection
coerces arbitrary code
execution into a
crash).

CVE-2018-19516 28
November
2018

Low KMail can be tricked into
opening a remote web page
even with HTML parsing
disabled.

Unmitigated (software
design error).

CVE-2018-19120 12
November
2018

Low HTML thumbnail previewer
improperly accessed remote
files.

Mitigated by
straightforward
compartmentalization.

CVE-2018-10380 4 May
2018

High Filesystem API race allows
unprivileged user to own any
file in the system.

Unmitigated (software
design error).

CVE-2018-6791 8 February
2018

High Shell syntax embedded in
VFAT volume labels allow
arbitrary command
execution.

Unmitigated (software
design error).

CVE-2018-6790 8 February
2018

Low Desktop notifications
rendered as HTML
improperly access remote
files.

Mitigated by
straightforward
software
compartmentalization.

CVE-2017-15923 12
November
2017

High An invalid message can
crash Konversation IRC
client.

Unmitigated (software
design error).

CVE-2017-9604 15 June
2017

Medium Delayed message send in
KMail disabled OpenPGP
signing and encryption.

Unmitigated (software
design error).

CVE-2017-8849 10 May
2017

High CIFS filesystem browser
permits running arbitrary
binaries as root.

Unmitigated (software
design error).

CVE-2017-8422 10 May
2017

High Kauth framework fails to
check remote process
identity properly, allowing
arbitrary binary execution as
root.

Unmitigated (software
design error).

CVE-2017-6410 28
February
2017

Medium Proxy Auto-Configuration
(PAC) files may trigger the
leak of full https URL
information to proxies, which
can be triggered remotely.

Unmitigated (software
design error).

(None assigned?) 27
February
2017

Medium A bug in KMail handling of
Outlook file attachments
allows attackers to write
arbitrary files in the
filesystem when the
attachment is opened.

Mitigated by
straightforward
software
compartmentalization.

44

CVE-2017-5593 14
February
2017

Important The Kopete instant
messaging client allows
Jabber identity
impersonation.

Unmitigated (software
design error).

CVE-2017-5330 12 January
2017

Important The Ark file archiving tool
allowed maliciously
constructed tar files to
trigger execution of arbitrary
binaries.

Mitigated by
straightforward
software
compartmentalization.

CVE-2016-7966 6 October
2016

Important A bug in the KMail text
viewer allowed HTML
parsing to be enabled
(otherwise disabled by
default), which might expose
other exploitable
vulnerabilities.

Some potential
vulnerabilities might
be mitigated by
memory protection or
straightforward
software
compartmentalization
(memory protection
coerces arbitrary code
execution into a
crash).

CVE-2016-7967 6 October
2016

Critical KMail improperly executed
received Javascript
embedded in HTML
messages in the local
execution context, including
allowing local file access.

Mitigated by
straightforward
software
compartmentalization.

CVE-2016-7968 6 October
2016

Normal KMail improperly executed
Javascript embedded in
HTML messages, which
might expose other
exploitable vulnerabilities.

Some potential
vulnerabilities might
be mitigated by
memory protection or
straightforward
software
compartmentalization
(memory protection
coerces arbitrary code
execution into a
crash).

CVE-2016-7787 30
September
2016

Important A maliciously crafted
command line intended to
be run as root may be
partially masked, causing
the user to run commands
they do not intend.

Unmitigated (software
design error).

CVE-2016-6323 24 July
2016

Important The KNewStuff framework
allowed maliciously
constructed tar and zip files
to install files outside of the
target extraction directory.

Mitigated by
straightforward
software
compartmentalization.

We reviewed 28 KDE security advisories to understand the potential applicability of CHERI
vulnerability mitigation, and found that:

45

● 12 (43%) were likely mitigated by straightforward software compartmentalization.
● 4 (14%) (fully overlapping with the above 12) might or would also have been

mitigated by memory protection.

Collectively, memory protection and compartmentalization would likely have achieved
roughly a 43% mitigation rate for these vulnerabilities.

Other libraries
Beyond the windowing system and toolkit libraries (see below), the open-source desktop
environment depends heavily on a set of libraries that handle common data formats. We
included in our analysis a sample of these55 including:

Software
module(s)

Description Vulnerability information
source(s)

freetype2 Font rendering library (C) Vendor website56

giflib* GIF image rendering library (C) Vendor issue tracker57,
CVE Details58

libjpeg-turbo* JPEG image rendering library (C) CVE Details59

libpng PNG image rendering library (C) Vendor website60,
CVE Details61

libxml2* XML parsing library (C) CVE Details62

Unlike the larger structured open-source projects (X11, Qt, KDE), these libraries typically do
not come with established vulnerability disclosure processes, nor documented threat
models. We therefore:

● Report at the granularity of assigned CVEs rather than announced vulnerability sets,
which may be finer grained than for reporting for other software components, and
may also suffer reduced accuracy in terms of our analysis, as the software vendor
themselves may not have contributed to the explanation of its potential implications
(e.g., denial of service vs. arbitrary code execution as an outcome, or with respect to
pertinent threat models).

55 Due to the limited time for this project and the large number of supporting libraries used in a
contemporary desktop environment, we limited this analysis to five representative libraries. Looking at
the vulnerability summaries from cvedetails.com, we believe that further interesting case studies
would have been libtiff (at least 176 CVEs), ffmpeg (365 CVEs), and poppler (at least 68 CVEs).
56 https://www.freetype.org/index.html#news
57 https://sourceforge.net/p/giflib/bugs/
58 https://www.cvedetails.com/product/33654/Giflib-Project-Giflib.html
59 https://www.cvedetails.com/product/40849/Libjpeg-turbo-Libjpeg-turbo.html
60 http://www.libpng.org/pub/png/libpng.html
61 https://www.cvedetails.com/vendor/7294/Libpng.html
62 https://www.cvedetails.com/product/3311/Xmlsoft-Libxml2.html

46

● Work with a de facto threat model assuming that data processed by the libraries will
be from untrustworthy (and potentially malicious) sources attempting to achieve
arbitrary code execution, private data disclosure, or denial of service.

 These libraries are marked with a ‘*’ above.

Vulnerability Date Severity Description Assessment

CVE-2016-4658 25
September
2016

Critical Libxml2 use-after-free on
invalid input can lead to
denial of service or arbitrary
code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2016-3177 23 January
2017

Critical Giflib double free on invalid
input can lead to denial of
service or arbitrary code
execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2016-10087 29 January
2017

Moderate Libpng NULL pointer
vulnerability on invalid input
can lead to denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2017-15232 11 October
2017

Moderate Libjpeg-turbo NULL-pointer
dereference on invalid input
can lead to denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2018-13785 5 April
2018

Moderate Linpng integer overflow and
divide-by-zero on invalid
input can lead to denial of
service.

Mitigated by
straightforward
compartmentalization.

CVE-2018-11489 26 May
2018

Critical Giflib buffer overflow on
invalid input can lead to
denial of service or arbitrary
code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2018-11490 26 May
2018

Moderate Giflib buffer overflow on
invalid input can lead to
denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2018-1152 18 June
2018

Moderate Libjpeg-turbo divide-by-zero
exception on invalid input
can lead to denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2018-14048 13 July
2018

Moderate Libpng unspecified
vulnerability can lead to
denial of service.

Mitigated by
straightforward
compartmentalization.

(This is a low
confidence

47

assessment.)

CVE-2018-19664 29
November
2018

Moderate Libjpeg-turbo heap-based
buffer over read on invalid
input can lead to denial of
service.

Mitigated by
straightforward
compartmentalization.

CVE-2018-20330 21
December
2018

Critical Libjpeg-turbo integer
overflow permits heap-based
buffer overwrite that can lead
to denial of service or
arbitrary code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2019-7317 29 January
2019

Critical Libpng use-after-free on
invalid input can lead to
denial of service or arbitrary
code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2018-14498 7 March
2019

Moderate Libjpeg-turbo heap-based
buffer overread on invalid
input can lead to denial of
service.

Mitigated by
straightforward
compartmentalization.

CVE-2017-12652 10 July
2019

Low Libpng could allocate
undesirably large amounts of
memory due to a missing
resource limit check against
a user-specified limit, leading
to denial of service.

Mitigated by
straightforward
compartmentalization.

(This is a low
confidence
assessment.)

CVE-2018-14550 10 July
2019

Critical Libpng utility stack-based
buffer overwrite that can lead
to arbitrary code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2019-15133 17 August
2019

Moderate Giflib divide-by-zero
exception on invalid input
can lead to denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2020-13790 9 June
2020

Moderate Libjpeg-turbo heap-based
buffer over read on invalid
input can lead to denial of
service.

Mitigated by
straightforward
compartmentalization.

CVE-2020-17541 15 June
2020

Critical Libjpeg-turbo stack-based
buffer overwrite on invalid
input can lead to denial of
service or arbitrary code
execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

48

CVE-2020-15999 19 October
2020

Critical FreeType heap-based buffer
overwrite on invalid input can
lead to denial of service or
arbitrary code execution.

Mitigated by memory
protection, but will
lead to application
crash, which in turn
may be mitigated by
straightforward
compartmentalization.

CVE-2020-27818 8
December
2020

Moderate Libpng command-line tool
global variable over read on
invalid input can lead to
denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2021-20205 10 March
2021

Moderate Libjpeg-turbo divide-by-zero
exception on invalid input
can lead to denial of service.

Mitigated by
straightforward
compartmentalization.

CVE-2020-23922 21 April
2021

Moderate Giflib buffer overread on
invalid input can lead to
denial of service.

Mitigated by
straightforward
compartmentalization.

We reviewed 22 vulnerabilities in these supporting libraries to understand the potential
applicability of CHERI vulnerability mitigation, and found that:

● 8 (36%) were likely mitigated by memory safety; this was 100% of critical
vulnerabilities potentially leading to arbitrary code execution.

● 22 (100%) were likely mitigated by straightforward software compartmentalization,
including the potential denial-of-service instances arising from mitigation using
memory safety.

Collectively, memory protection and compartmentalization would likely have achieved
roughly a 100% mitigation rate for these vulnerabilities.

10. Desktop demonstration narrative
Our investigation suggests a strong argument can be made for CHERI memory protection
and compartmentalization within a desktop environment. This is because there are
substantial quantities of memory-related vulnerabilities mitigated by CHERI C/C++ memory
safety, and also because there is significant useful software modularity that appears to lend
itself to useful fine-grained software compartmentalization. In particular, components dealing
with risky data from untrustworthy sources (e.g., media files, email and instant messages,
network protocol processing, crypto, etc.) are often well modularised, so
compartmentalization would likely be effective both in directly mitigating vulnerabilities, and
also in limiting the potential for denial-of-service impact when memory-safety violations are

49

detected. Compartmentalization in key class libraries would have a substantial impact across
the full application corpus.

Take for example a presentation package (see figure below). Compartmentalization might be
productive when implemented at many granularities: sandboxing the application as a whole,
the processing of each slide, and the processing of each image or other media embedded in
the slide. Memory safety within image processing compartments would eliminate arbitrary
code execution arising from the vast majority of exploitable vulnerabilities, coercing them into
crashes. Compartmentalization would prevent a crash in processing an image from crashing
the full application, and also mitigate other types of non-memory-safety vulnerabilities, such
as inserted backdoors or higher-level logical errors. CHERI allows that compartmentalization

to be substantially more efficient than existing technologies, and therefore potentially be
affordable at many more boundaries.

We believe that this approach applies to many other applications, including web browsers,
mail readers, and messaging applications that process complex data from multiple origins
during that execution -- all key desktop attack surfaces.

11. Constructive plan
Large-scale adaptation of an open-source desktop ecosystem will be a non-trivial
undertaking due to the size and complexity of the code base, as well as the potentially
considerable difficulty of thoroughly testing the resulting software stack. We partition our
analysis and plan in two parts: memory safety and compartmentalization. Although not
universally true, we generally consider memory safety as a baseline and prerequisite for
effective compartmentalization. Because of the number of largely independent software
components in a contemporary desktop stack, there is the opportunity for a highly
collaborative effort approaching both aspects with considerable concurrency. We do not
attempt to assign a level of effort to this overall program of work.

Memory safety
Our preliminary investigation suggests that, if a developer has even a modest background
with CHERI C/C++, adapting components from such a stack for memory safety is relatively
straightforward. Further, memory safety appears to offer a relatively easily achieved, yet
substantial security win. Many of the changes required fixed actual software bugs (e.g., with
respect to undefined C behaviour, buffer overflows, and so on).

The areas of greatest potential concern lie in:

50

● legacy code bases suffering substantial type-related confusion or misuse between
pointers and integers;

● code bases that rely on specific properties of the architecture due to, for example,
implementing a Just-in-Time (JIT) compiler;

● code bases that are particularly sensitive to the performance overheads associated
with expanded pointer size, such as language runtimes (some of which already use
pointer compression techniques to avoid the overheads of 64-bit pointers); or

● code bases making very flexible or extensive use of function pointers, such as
language runtimes, where simple recompilation will not be sufficient to eliminate
memory-safety vulnerabilities (e.g., WebKit [26]).

We feel that there is a particular gap in knowledge around language runtimes, where it is
currently difficult to predict the potential scope (and cost) of changes that will need to be
made.

A practical engineering challenge to adapting software packages to CHERI C/C++ is the
difficulty of rigorous dynamic testing, given that many applications have only modest
coverage in their test suites. This will place a heavy focus on manual testing, which is time
consuming.

To properly assess the security impact of CHERI memory protection on this larger software
corpus, we would also recommend an investment in security review and adversarial testing
based on a richer retrospective vulnerability analysis than we have been able to perform as
part of this study.

Compartmentalization
Due to the current state of software use of CHERI and Morello’s compartmentalization
feature, it is harder to envision the engineering challenges in this area. It is likely that an
initial investment in improving software compartmentalization support in operating systems
and the toolchain will pay dividends in simplifying compartmentalization work. Another
concern is the potentially greater software disruption from introducing compartmentalization
that may perform poorly on conventional hardware platforms, while vendors need to continue
to support both. Minimising that disruption may be key to software upstreamability (or longer-
term maintainability for a diverged implementation). Tools such as RLBox [23, 24], as they
mature, may substantially simplify this task.

That said, this work has shown that a relatively small set of compartmentalization activities
would likely substantially mitigate a majority of known vulnerabilities. These should ideally
focus on key data processing and communication libraries and classes; for example,
compartmentalising:

● Low-level data processing libraries such as giflib, libpng, freetype2, libxml2, and so
on, would likely mitigate 100% of known vulnerabilities including denial of service
issues. This would benefit multiple complete software stacks including KDE and
Gnome.

● Archiving and file management libraries, such as those decompressing file archives
that may lack adequate filtering of filenames and files that should be accessible
would eliminate several past application-level vulnerabilities.

51

● Network protocol and processing libraries such as HTTP, HTTPS, and so on would
offer protection when interacting with potentially malicious remote servers and
clients.

● Higher-level XML and HTML rendering spanning multiple data files (e.g., HTML
source, images, …) with embedded language runtimes (e.g., JavaScript) would limit
the extent to which security enforced by those interpreters is the only line of defence,
by taking steps to mitigate vulnerabilities when processing instant messages,
notifications, and so on.

It is not yet clear to us the extent to which compartmentalization should be applied to higher-
level class libraries (e.g., image rendering in Qt) vs the lower-level open-source libraries they
wrap (e.g., giflib, libpng). Placing compartmentalization in the former offers the great footprint
of benefit in terms of consuming applications, but is potentially substantially more disruptive
due to the potential need for substantial API change. Placing compartmentalization in the
latter, especially when using cleanly engineered C++ APIs, will be vastly easier but limit
impact to desktop components that use them -- e.g., KDE, but not Gnome or Chromium. In
the interests of rapid deployment of compartmentalization, higher-level compartmentalization
might prove a more efficient investment of engineering effort.

12. Limitations of this study
This report describes a pilot study performed over only three months, constraining the
approaches we could use, and level of depth we could pursue. It was also constrained by a
number of external limitations. It is easy to imagine a larger-scale study engaging specifically
with these concerns to increase confidence in the results:

Software stack
Due to time constraints, we were able to focus only on one specific (and narrow) desktop
software stack. However, the chosen X11/Qt/KDE stack is a rich software exemplar
containing many key elements including a broad spread of C and C++ implementation, code
of different vintages and programming styles, and many (sometimes competing) objectives.
We had to exclude some key types of software including GPU rendering code such as the
kernel Panfrost driver framework and OpenGL in userspace. We were also unable to include
more complex applications such as full web browsers and office suites (too complex for our
timeline) and video conferencing packages (which are primarily closed source). While we
found that the level of effort required to perform our adaptation work was quite low, it is
important not to project those results to software components such as language runtimes.

Software adaptations
We identified challenges to CHERI memory-safety adaptation via two means: compiler
warnings and dynamic testing. With the former, we were able to rigorously review warnings
and correct all problems, which typically included issues such as poor integer-pointer type
use. However, some issues could be detected only dynamically, such as certain types of
buffer overflows or poor pointer alignment. Our modest enhancements (e.g., CHERI UBsan)
improved our ability to debug problems found during dynamic testing. However, we were

52

constrained by test suites with generally poor coverage, and had to rely on manual
exercising, which, given the timeline, was necessarily limited. We are not able to estimate
the degree to which problems might remain beyond those picked up in our work to date.

Compartmentalization sketches
Our compartmentalization sketches were based on existing familiarity with, and careful
analysis of, the affected code bases. However, experience suggests that one can
understand the implications of compartmentalized software design only through a detailed
implementation effort. It is conceivable that compartmentalization boundaries might need to
be placed differently than we have recommended in order to reduce implementation
complexity, achieve acceptable performance, and so on. It’s also possible that the
boundaries we have recommended are not viable in a practical sense.

Because the QEMU software models don’t attempt to simulate microarchitecture, they are of
limited value for predictions regarding the performance impact of compartmentalization.63
We have reasonable confidence that our proposed decomposition is placed along sensible
lines so as to have acceptable performance, but future experimentation involving a full
software elaboration and Morello hardware will be required to determine whether that is the
case.

It is also important to understand that, in assembling these sketches, we have not
determined that they cannot be implemented realistically without access to CHERI-enabled
hardware. It is possible that existing process-based compartmentalization would suffice in
some cases, although experience from web-browser compartmentalization research
suggests that this is unlikely.

Vulnerability information
Vulnerability information was surprisingly variable in completeness, quality, and level of
detail across the software projects we investigated. On the whole, larger projects such as
X.org, KDE, and Ubuntu had highly structured vulnerability management procedures making
it easy to identify past vulnerabilities and analyse their impacts, even if they did not provide
specific threat models or explanations of severity. This made it relatively easy to research
vulnerabilities they reported on, including exploring the source-code implications. Some
smaller projects, such as giflib and libjpeg-turbo, typically did not have any structured record
of past vulnerabilities, causing us to rely on third-party sources of mixed reliability. Others,
such as libpng, provided detailed history and analysis, so this is not universally the case.

Throughout our research, it would have been incredibly valuable if a uniform (ideally,
machine readable) presentation of vulnerability data had been available. This would have
made it easy to find details of the vulnerability and its analysis, any associated patches,
severity information, context that allowed the vendor to decide that it required remediation,
and cross references to tools used to discover the vulnerabilities, etc.

63 It is possible to perform limited forms of performance analysis (e.g., instruction-count overheads),
but realistic results depend on many other factors such as changes to cache misses, etc.

53

Vulnerability analysis
Time constraints on this project impacted both the breadth and depth of our past vulnerability
analysis. For larger software components with structured vulnerability management and well
documented vulnerabilities, reviewing vulnerabilities was straightforward, allowing us to
review all potentially relevant vulnerabilities. However, with respect to supporting software
libraries, we had to select a sample of libraries, and spend far more time to identify and
analyse their vulnerabilities. It is unlikely that our sample is perfectly representative, and care
should be taken in extrapolating from this study to other open-source software stacks, or
even to the broader set of supporting libraries that we were not able to analyse within this
effort.

In general, we had to limit our analysis of past vulnerabilities to relatively coursory
classification, relying on existing vendor and third-party analyses to understand the potential
impact of each vulnerability. We were not able to inspect source-code changes for each
reported CVE, which we would ideally be able to do in a more in-depth study. This may have
led to incorrect analyses of the potential impact of CHERI, especially as related to the
mitigating effects of software compartmentalization.

If time had permitted, it would have been useful to select a sample of reported vulnerabilities
and explore them in greater detail using adversarial techniques (i.e., attempt to exploit them
without CHERI protection, to better understand them, and also more concretely explore how
CHERI would have helped). This is especially true where vulnerabilities might constitute part
of a larger exploit chain, but in isolation are not exploitable to achieve code execution (e.g.,
some buffer over reads). This would also have allowed us to better estimate the analysis
accuracy across the broader corpus.

More generally, some care is required in using past vulnerabilities to predict potential future
success for mitigation technologies. New vulnerability classes and exploit techniques arise
with moderate frequency, especially as relates to memory-safety vulnerabilities, and it will
need to be assessed, as they arise, the extent to which CHERI can be effective in mitigating
them.

13. Reproducing our results
We have extended the cheribuild framework to allow the adapted software described
throughout this report to be built and used on the QEMU emulator64 -- albeit very slowly as
compared to running it on the forthcoming Morello chip.

On a system that has all required system packages (e.g. compiler, CMake, etc.) installed,
the following command should allow compiling a pure-capability KDE plasma desktop65:

cheribuild.py --include-dependencies kde-x11-desktop-morello-purecap

64 The Arm FVP will also work but is significantly slower, so we prototyped on QEMU.
65 At the time of writing, there were still outstanding compiler bugs that prevented successful
compilation. We have submitted pull requests to the Morello and CHERI LLVM repositories and
expect these to be merged shortly,

54

It is possible this command does not complete successfully, as cheribuild will attempt to
build the latest git snapshot for almost all projects. Certain upstream commits (e.g., API
changes) could result in a compilation failure for the projects that are currently still using our
forked repositories.

In order to run this desktop, you will have to build a disk image that can be started in QEMU,
boot that image, start the XVNC server and applications, and finally connect to the VNC
server using TigerVNC (or equivalent software) on your host system:

Build a disk image, start it and expose the VNC port to the host:
 cheribuild.py disk-image-morello-purecap run-morello-purecap \
 --run/extra-tcp-forwarding=5900=5900
Once QEMU presents a login prompt, enter "root" to log in (no password required) and then
start the VNC server:
 Xvnc -geometry 1024x768 -SecurityTypes=None &
Start a shell with the required environment variables:
 kde-shell-x11
Start the window manager (kwin_x11) and the Plasma desktop:
 kwin_x11 &
 plasmashell

Once these programs are running, you should be able to view the CHERI desktop by starting
TigerVNC and connecting to localhost:5900. Some VNC viewers (such as the built-in
macOS VNC viewer) do not allow connections without a password (-
SecurityTypes=None), so we recommend TigerVNC for now.

14. Recommendations for future research
Our work has highlighted some known, but still key, challenges in CHERI adoption, which
would ideally see further research investment:

● As described in an earlier section, time and other practical concerns imposed a
number of limitations on this study. Continuing this work -- e.g., by increasing the
level of breadth and depth of our analysis of vulnerabilities, or prototyping the
sketched compartmentalizations, would increase our confidence in, and generality of,
the results, as well as our ability to give recommendations about the viability of a
CHERI-enabled open-source desktop software stack.

● The adoption of C/C++ memory safety appears relatively straightforward across most
application stacks except for language runtimes, which require both non-trivial
changes, and also would benefit from greater understanding as to how CHERI can
improve their robustness. There are also open questions about how to mitigate
potential performance overhead arising from increased pointer sizes.

● The current software operational models for compartmentalization are
immature, and require substantial work to make them ready for mainstream use.
Further, there is a significant gap around software tooling to assist with designing,
implementing, evaluating, and maintaining software compartmentalization of libraries
and applications.

55

● It is also known that compartmentalizing software can be a substantial engineering
task, if the software was not originally designed with this in mind. It is not clear to
what extent developers are effective in designing and implementing vulnerability-
mitigating compartmentalizations, or for that matter maintaining them over time in a
changing baseline source tree. The general topic of how to compartmentalize
software, and how to evaluate the result, is a topic for substantial further research.

● This study was unable to concretely engage with performance considerations,
as it took place in advance of Morello board availability. Based on prior work, it is
likely that performance overhead will arise primarily in applications with more densely
pointer-centric memory access patterns. How best to measure and optimize that
impact is currently unclear, and is an important next step in evaluating the suitability
of CHERI for vulnerability mitigation in the desktop environment.

● In CHERI memory-protection work to date, the primary focus has been on limiting
privilege escalation -- i.e., achieving arbitrary code execution with full user rights, root
privilege, or kernel privilege. However, it is clear from reviewing vulnerability
advisories that open-source desktop projects also consider denial of service to
be a significant concern. Software compartmentalization has the potential to
address denial-of-service concerns by limiting the scope of a crash or fail-stop (e.g.,
due to CHERI memory protection), which we believe has been under-addressed in
existing CHERI compartmentalization research. This is an area deserving of more
research attention, especially in the desktop context.

● Throughout, there remains a key question regarding the potential for disruption to
existing software stacks -- from Application Binary Interfaces (ABIs), to modest
source-code level changes required for memory safety, to more substantial structural
changes required for compartmentalization. Evaluating this impact, as well as
investigating techniques to reduce it, will be key to successful CHERI software
deployment not just in desktop software stacks, but also throughout the broader
software corpus and ecosystem.

● In this work we have focused solely on memory protection and compartmentalization
for software executing on general-purpose CPUs. Graphics Processing Units (GPUs)
are essential parts of contemporary desktop workstations and mobile devices. There
is currently not a good understanding of how CHERI should be integrated with
GPUs -- or how CHERI-enabled software on a general-purpose CPU attached to a
CHERI-unaware GPU (such as on the Morello SoC) should protect itself.

● The focus of this work has been software vulnerability mitigation, but hardware
vulnerabilities affecting isolation are also important. Transient execution attacks on
CHERI compartments can leak information via side channels (e.g., caches).
Further hardware and software research is required to mitigate this vulnerability using
a combination of hardware and software mechanisms. Formal contracts and
associated proofs need to be investigated to ensure that key invariant properties of
capability-based compartmentalization are preserved at every level of abstraction.

15. Related work
This project takes place within, and extends, a large body of research around vulnerability
mitigation, memory safety, and software compartmentalization.

56

The Microsoft Security Response Center (MSRC)’s 2020 study of the potential impact of
CHERI on the Microsoft software stack [27] is the most closely related work, which both
analyzes the impact of past vulnerabilities and performs an adversarial analysis of CHERI C
and C++, although does not look at the potential cost of software adaptation, nor at
compartmentalization. More generally, the CHERI software adaptation literature (e.g.,
CheriABI [6] and Richardson’s 2019 PhD dissertation [17]) considers many of the same
concerns with respect to software compatibility, but has been focused on a more classical
UNIX server environment; it has provided a less detailed vulnerability analysis, however.

Current directions in CHERI software compartmentalization are not only inspired by, but also
directly depend on, the compartmentalization approach developed in our earlier work on
Capsicum [21], an OS capability model for sandboxing software. It is also entirely
reasonable to contemplate a composition of the co-process compartmentalization model with
other OS access-control and sandboxing schemes, such as SELinux [28] or the iOS
Sandbox model [29].

Beyond the CHERI research ecosystem, practical memory-safety techniques have played an
important role in mitigating vulnerabilities, with the space well described by Szekeres, et al.
[30]. Pure software techniques such as Control-Flow Integrity (CFI) [31], and also hardware-
based techniques such as Arm’s Pointer Authentication Codes (PAC) [32], are starting to
see widespread deployment; e.g., within the Windows, Android, and Apple ecosystems. The
scopes of these techniques tends to be limited to narrower interventions into attacks on
control flow such as Return Oriented Programming (ROP) [33] and Jump Oriented
Programming (JOP) [34], rather than seeking to provide more general spatial and temporal
memory protection as found in CHERI C and C++. They also tend to be probabilistic and
secrets based, so can themselves be subject to vulnerabilities through information leakage
or simple brute forcing.

Compiler-based memory-safety and other “sanitizers”, such as LLVM’s Address Sanitizer
(ASAN) [35] and Undefined Behavior Sanitizer (UBSan) [20] have been extremely valuable
in identifying potential vulnerabilities during development or in post-development fuzzing. It
was clear during our vulnerability review that many had been found using extensive fuzzing
exploration while employing ASAN. These techniques tend not to be suitable for more than
limited production deployment due to their performance overheads or risks of false positives
-- however, it is clear that any vulnerability discovered and prevented before a product is
fielded is one that does not need to be mitigated in the field!

16. Acknowledgments
This work was supported by UKRI’s Digital Security by Design Research Programme
InnovateUK project 107145. We thank Ricardo Almeida, Saar Amar, John Baldwin, Thomas
Bauereiss, Kevin Brodsky, Brian Campbell, David Chisnall, Jessica Clarke, Brooks Davis,
Nathaniel Wesley Filardo, Brett Gutstein, Simon W. Moore, Peter G. Neumann, George
Neville-Neil, and Konrad Witaszczyk for their detailed and extremely helpful feedback on this
report. This project would not have been possible without the work of the broader CHERI
and Morello teams across SRI International, the University of Cambridge, Arm, and Linaro,
as well as their sponsors including DARPA, UKRI, Arm, Microsoft, and Google; we are
deeply grateful for their contributions and support.

57

17. Conclusion
In this report, we’ve described a three-month long three-staff-month research study into the
potential applicability of CHERI memory protection and CHERI software
compartmentalization to an open-source desktop stack based on X11 and KDE. During this
effort, we adapted a substantial volume of desktop and supporting code to run memory-safe
using CHERI C/C++, improved the CHERI C/C++ compiler, and also created a set of
“compartmentalization sketches” exploring potential software compartmentalization
opportunities within that stack.

We also performed a detailed retrospective study of the potential impact of CHERI
vulnerability mitigation on five years worth of vulnerabilities across a subset of the adapted
software stack. Our results are extremely exciting: It appears that key elements of the stack
were adapted for memory-safe execution with little difficulty (0.026% LoC changed), and that
CHERI memory safety and CHERI software compartmentalization had a strong potential
mitigation impact (ranging from 40% of past vulnerabilities for KDE up to 100% in key
supporting libraries). We described a number of limitations to our study, and key directions
for ongoing research and development.

We also recommended a future development strategy premised on rapidly deploying
memory safety to see immediate and strong vulnerability mitigation, allowing selected
compartmentalization projects to mature the CHERI software compartmentalization
infrastructure while offering substantial further mitigation. Overall, we have found that
creating a more secure desktop environment for the Arm Morello board, shipping in 2022, is
both feasible and likely to offer substantial security improvements over conventional
hardware platforms.

18. References
[1] R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann, ‘An Introduction to

CHERI’, University of Cambridge, Computer Laboratory, Technical Report UCAM-CL-
TR-941, 2019. Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-941.pdf

[2] R. N. M. Watson et al., ‘Capability Hardware Enhanced RISC Instructions: CHERI
Instruction-Set Architecture (Version 8)’, University of Cambridge, Computer
Laboratory, UCAM-CL-TR-951, Oct. 2020. Available:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

[3] R. N. M. Watson et al., ‘CHERI C/C++ Programming Guide’, University of Cambridge,
Computer Laboratory, Cambridge, UK, Technical Report UCAM-CL-TR-947, Jun. 2020.
Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

[4] Arm Ltd, ‘Arm Morello Program’, Arm Developer, 2020. Available:
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello

[5] Arm Ltd, ‘Arm® Architecture Reference Manual Supplement Morello for A-profile
Architecture’, Arm, Manual DDI0606, Jun. 2021. Available:
https://developer.arm.com/documentation/ddi0606/latest

[6] B. Davis et al., ‘CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer
Privilege in the POSIX C Run-time Environment’, in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, New York, NY, USA, 2019, pp. 379–393, doi:
10.1145/3297858.3304042. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf

58

[7] N. Filardo et al., ‘Cornucopia: Temporal Safety for CHERI Heaps’, in 2020 IEEE
symposium on security and privacy (SP), Los Alamitos, CA, USA, 2020, pp. 1507–
1524, doi: 10.1109/SP40000.2020.00098. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

[8] ‘Department of Computer Science and Technology: CHERI Clang/LLVM and LLD’.
Available: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-llvm.html

[9] ‘Department of Computer Science and Technology: CheriBSD’. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheribsd.html

[10] R. N. M. Watson et al., ‘CHERI: A Hybrid Capability-System Architecture for Scalable
Software Compartmentalization’, in Proceedings of the 2015 IEEE Symposium on
Security and Privacy, Washington, DC, USA, 2015, pp. 20–37, doi: 10.1109/SP.2015.9.
Available: https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201505-oakland2015-
cheri-compartmentalization.pdf

[11] ‘Department of Computer Science and Technology: CHERI-QEMU’. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/cheri-qemu.html

[12] ‘KDE’s Applications’, KDE Applications. Available: https://apps.kde.org/
[13] A. Danial, CLOC. 2019. Available: https://github.com/AlDanial/cloc
[14] A. Richardson, ‘CTSRD-CHERI/cheri-change-analysis at cheri-desktop’. Available:

https://github.com/CTSRD-CHERI/cheri-change-analysis
[15] J. Woodruff et al., ‘CHERI Concentrate: Practical Compressed Capabilities’, IEEE

Trans. Comput., vol. 68, no. 10, pp. 1455–1469, Oct. 2019, doi:
10.1109/TC.2019.2914037. Available:
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2019tc-cheri-concentrate.pdf

[16] A. Richardson, ‘X11 on pure-capability CHERI’, 16-Jun-2021. Available:
https://www.alexrichardson.me/post/x11-cheri/

[17] A. Richardson, ‘Complete spatial safety for C and C++ using CHERI capabilities’,
University of Cambridge, Computer Laboratory, Cambridge, UK, Technical Report
UCAM-CL-TR-949, Jun. 2020. Available: https://www.cl.cam.ac.uk/techreports/UCAM-
CL-TR-949.pdf

[18] ‘Qt | Cross-platform software development for embedded & desktop’. Available:
https://www.qt.io

[19] ‘KDE Frameworks’, Developer. Available: https://develop.kde.org/products/frameworks/
[20] ‘UndefinedBehaviorSanitizer — Clang 13 documentation’. Available:

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
[21] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway, ‘Capsicum: Practical

Capabilities for UNIX’, in Proceedings of the 19th USENIX Conference on Security,
Berkeley, CA, USA, 2010, pp. 3–3. Available:
https://www.cl.cam.ac.uk/research/security/capsicum/papers/2010usenix-security-
capsicum-website.pdf

[22] K. Gudka et al., ‘Clean Application Compartmentalization with SOAAP’, in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
New York, NY, USA, 2015, pp. 1016–1031, doi: 10.1145/2810103.2813611. Available:
http://doi.acm.org/10.1145/2810103.2813611

[23] T. Garfinkel, ‘The Road to Less Trusted Code: Lowering the Barrier to In-Process
Sandboxing.’, ;login: the USENIX Magazine, vol. 45, no. 4, pp. 15–22, Dec-2020.
Available: https://www.usenix.org/publications/login/winter2020/garfinkel-tal

[24] S. Narayan et al., ‘Retrofitting Fine Grain Isolation in the Firefox Renderer’, presented
at the 29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 699–716.
Available: https://www.usenix.org/conference/usenixsecurity20/presentation/narayan

[25] A. Richardson, ‘Analysis and compartmentalization of large C and C++ applications’,
MPhil Thesis, University of Cambridge, Cambridge, UK, 2015.

[26] S. Amar and N. Joly, ‘Security Analysis of CHERI ISA’, Las Vegas, NV, USA,
Wednesday, August 4. Available: https://www.blackhat.com/us-
21/briefings/schedule/#security-analysis-of-cheri-isa-23374

[27] N. Joly, S. ElSherei, and S. Amar, ‘SECURITY ANALYSIS OF CHERI ISA’, Microsoft

59

Security Response Center (MSRC), 2020.
[28] P. Loscocco and S. Smalley, ‘Integrating Flexible Support for Security Policies into the

Linux Operating System’, in Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, USA, 2001, pp. 29–42. Available:
https://www.usenix.org/conference/2001-usenix-annual-technical-
conference/integrating-flexible-support-security-policies

[29] Apple, ‘Apple Platform Security’, May 2021. Available:
https://manuals.info.apple.com/MANUALS/1000/MA1902/en_GB/apple-platform-
security-guide-b.pdf

[30] L. Szekeres, M. Payer, T. Wei, and D. Song, ‘SoK: Eternal War in Memory’, in
Proceedings of the 2013 IEEE Symposium on Security and Privacy, Washington, DC,
USA, 2013, pp. 48–62, doi: 10.1109/SP.2013.13. Available:
http://dx.doi.org/10.1109/SP.2013.13

[31] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, ‘Control-flow Integrity’, in Proceedings
of the 12th ACM Conference on Computer and Communications Security, New York,
NY, USA, 2005, pp. 340–353, doi: 10.1145/1102120.1102165. Available:
http://doi.acm.org/10.1145/1102120.1102165

[32] Qualcomm Product Security, ‘Pointer Authentication on ARMv8.3: Design and Analysis
of the New Software Security Instructions’, Qualcomm Technologies, Inc, Jan. 2017.

[33] H. Shacham, ‘The Geometry of Innocent Flesh on the Bone: Return-into-libc Without
Function Calls (on the x86)’, in Proceedings of the 14th ACM Conference on Computer
and Communications Security, New York, NY, USA, 2007, pp. 552–561, doi:
10.1145/1315245.1315313. Available: http://doi.acm.org/10.1145/1315245.1315313

[34] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘Jump-oriented programming: a new
class of code-reuse attack’, in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security - ASIACCS ’11, Hong Kong, China, 2011, doi:
10.1145/1966913.1966919. Available:
http://portal.acm.org/citation.cfm?doid=1966913.1966919

[35] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ‘AddressSanitizer: A Fast
Address Sanity Checker’, in Proceedings of the 2012 USENIX Conference on Annual
Technical Conference, Berkeley, CA, USA, 2012, pp. 309–318. Available:
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany

60

Appendix A: full list of build targets for the desktop
For our desktop demonstrator software stack we compiled the following cheribuild build
targets. Each of these targets maps to an upstream Git repository that has successfully been
compiled and run as CHERI C/C++. For certain targets we also have to build a version for
the host operating system as it provides, for example, build tools required for cross-
compilation. These targets are highlighted by a -native suffix. In total, we have adapted 150
repositories (with over 6 million lines of C and C++ code) for this work. Two of these
repositories had already been ported in previous work and two further repositories had a
partial pre-existing port of an older version that we updated and improved. The remaining
146 were newly adapted in this three staff-month project.

attica

breeze

breeze-icons

dejavu-fonts

dolphin

epoll-shim

exiv2

extra-cmake-modules

extra-cmake-modules-native

fontconfig

freetype2

gwenview

icewm

kactivities

kactivities-stats

karchive

karchive-native

kauth

kbookmarks

kcmutils

kcodecs

kcompletion

kconfig

kconfig-native

kconfigwidgets

kcoreaddons

kcoreaddons-native

kcrash

kdbusaddons

kde-x11-desktop

kdeclarative

kdecoration

kded

kfilemetadata

kframeworkintegration

kglobalaccel

kguiaddons

ki18n

ki18n-native

kiconthemes

kidletime

kimageformats

61

kinit

kio

kio-extras

kirigami

kitemmodels

kitemviews

kjobwidgets

knewstuff

knotifications

knotifyconfig

kpackage

kpackage-native

kparts

kpeople

krunner

kscreenlocker

kservice

ksyndication

ksyntaxhighlighting

ksyntaxhighlighting-native

ktextwidgets

kunitconversion

kwidgetsaddons

kwin

kwindowsystem

kxmlgui

lcms2

libevdev

libexpat (pre-existing)

libfontenc

libice

libinput

libintl-lite

libintl-lite-native

libjpeg-turbo

libkscreen

libksysguard

libpng

libqrencode

libsm

libudev-devd

libx11

libxau

libxcb

libxcb-cursor

libxcb-image

libxcb-keysyms

libxcb-render-util

libxcb-util

libxcb-wm

libxcursor

libxcomposite

libxdamage

libxext

libxfixes

libxfont

62

libxft

libxi

libxkbcommon

libxkbfile

libxmu

libxpm

libxrandr

libxrender

libxt

libxtrans

libxtst

mtdev

okular

openjpeg

phonon

pixman

plasma-desktop

plasma-framework

plasma-workspace

poppler

prison

qqc2-desktop-style

qtbase (pre-existing, but updated)

qtbase-native (pre-existing, but updated)

qtdeclarative

qtgraphicaleffects

qtquickcontrols

qtquickcontrols2

qtsvg

qttools

qtx11extras

shared-mime-info

shared-mime-info-native

solid

sonnet

sqlite (pre-existing)

systemsettings

threadweaver

tigervnc

twm

xbitmaps

xcbproto

xev

xeyes

xkbcomp

xkeyboard-config

xorg-font-util

xorg-macros

xorg-pthread-stubs

xorgproto

xprop

xsetroot

xvnc-server

