
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force 
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the 
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Secure Linking in the
CheriBSD Operating System

Alexander Richardson, Robert N. M. Watson
University of Cambridge

PriSC 2019

13 January 2019



Outline

• A little about the CHERI architecture 

• What do we mean by secure linking in the CHERI context?

• CHERI pure-capability protection before secure linking

• Improvements made by secure linking

• What more could be done?
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virtual address (64 bits)

Pointers today
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• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – can be injected/corrupted

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

Ø Attacks on data and code pointers are highly effective, often 
achieving arbitrary code execution



virtual address (64 bits)

25
6-

bi
t 

ca
pa

bi
lit

y
length (64 bits)

offset (64 bits)

base (64 bits)

Protection model: 256-bit capabilities

CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory:

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable
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Architecture:128-bit compressed capabilities
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• Compress bounds relative to 64-bit virtual address

• Floating-point bounds mechanism constrains bounds alignment

• Security properties maintained (e.g., provenance, monotonicity)

• Formats for sealed, non-sealed capabilities invest bits differently

• Strong C-language support (e.g., for out-of-bound pointers)



CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from 
other valid pointers via valid transformations; invalid pointers cannot be used

• Bounds prevent pointers from being manipulated to access the wrong object

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

Ø However, bounds and permissions must be initialized correctly by software – e.g., 
stack allocator, heap allocator, dynamic linker

Data

Heap Stack

Code

Control flow

Monotonicity Permissions
Integrity and

provenance validity
Bounds
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int x;

int y;

int main(int argc, char** argv) {

int *ptr = &x;
*ptr = 1;  // this is fine

}

X = 0

Y = 0

Example: protection for global variables
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int x;

int y;

int main(int argc, char** argv) {

int *ptr = &x;
*ptr = 1;  // this is fine

}

X = 0

Y = 0

X = 1

Example: protection for global variables
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int x;

int y;

int main(int argc, char** argv) {

int *ptr = &x;
*ptr = 1;  // this is fine

}

X = 0

Y = 0

X = 1

Example: protection for global variables

// address is the same as &y
int *ptr2 = &x + 1;
*ptr2 = 2; // what happens here?
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int y;

int main(int argc, char** argv) {

int *ptr = &x;
*ptr = 1;  // this is fine

}

X = 0

Most architectures permit storing 

to y using a pointer derived from x

Y = 0Y = 2

X = 1

Example: protection for global variables
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int *ptr2 = &x + 1;
*ptr2 = 2; // what happens here?
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int x;

int y;

int main(int argc, char** argv) {

int *ptr = &x;
*ptr = 1;  // this is fine

}

X = 0

Most architectures permit storing 

to y using a pointer derived from x

Y = 0Y = 2

Using CHERI we can ensure that a write to

y via a pointer to x always fails.
If the initial bounds were set correctly

X = 1

Example: protection for global variables

Y = 0

// address is the same as &y
int *ptr2 = &x + 1;
*ptr2 = 2; // what happens here?



Overall goal: reducing available privilege

• By privilege we mean the memory accessible at a given time in the program’s execution

• For now we ignore file system and network access rights. This kind of sandboxing can be 
managed differently (e.g. by using Capsicum)

• In a conventional architecture privilege is all memory mapped as accessible by the MMU

• Every integer is also a valid pointer and can therefore be used to access memory.

• ASLR makes arbitrary accesses more difficult but does not prevent them.

• With CHERI privilege is the set of all capabilities transitively reachable from the current 
register contents.

• The MMU can further restrict accessible memory (but is not essential).

• The CheriBSD kernel ensures that memory management APIs can’t break capability 
monotonicity.
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CHERI pure-capability linkage design goals
By reducing the amount of privilege available, we can achieve the following:

• Completely eliminate out-of-bounds memory accesses for global variables

• Memory outside of the current DSO should be inaccessible (except for exported symbols)

• Even stronger protection against control-flow hijacking

• CHERI hardware already prevents arbitrary jumps

• Linker support can reduce the number of accessible code capabilities

• Reduce the size of the TCB

• Compiler code-generation bugs can’t break the overall security model since we don’t rely 
on compiler-inserted checks

• However,  compiler and static linker are partially trusted to create an ELF file with a 
valid symbol table and relocations to be processed by kernel ELF loader and dynamic linker 

• Only the runtime linker and the kernel should are fully trusted but not libc.so, etc.

13



CHERI pure-capability code without secure linkage
• Capabilities to global variables are derived by using the virtual addresses from the GOT as an 

offset into program counter capability ($pcc) or default data capability ($ddc).

• MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
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Virtual address
of &bar 

Virtual address
of &myint

Stack ($csp):

stackframe #1

stackframe #2

.got ($ddc + $gp)

myint = 2

.data ($ddc)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)



CHERI pure-capability code without secure linkage
• Capabilities to global variables are derived by using the virtual addresses from the GOT as an 

offset into program counter capability ($pcc) or default data capability ($ddc).

• MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
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CHERI pure-capability code without secure linkage
• Capabilities to global variables are derived by using the virtual addresses from the GOT as an 

offset into program counter capability ($pcc) or default data capability ($ddc).

• MIPS globals pointer ($gp) used to find GOT by indexing into $ddc.
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Virtual address
of &bar 

Virtual address
of &myint

Stack ($csp):

stackframe #1

stackframe #2

.got ($ddc + $gp)

myint = 2

.data ($ddc)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)

$pcc spans the whole address 

space and is executable!

This means an attacker can 

jump anywhere (including data)!

$ddc spans the whole address 

space and is writable!

This means an attacker can write 

anywhere (including code)!

secret_key
(libsecret.so)

Accessible!

secret_func()
in libsecret.so



Bounds on global variables without linker support

• Capabilities to global variables are derived by using the virtual addresses 
from the GOT as an offset into $ppc or $ddc

• Bounds on global variables are implemented in the compiler by adding 
CSetBounds instructions for global variables as is done for stack 
allocations

• The executing code still has access to ambient capabilities that need 
to be bounded correctly à compiler code generation bugs can result 
in excessive privilege

• Furthermore, this only works if the size of a variable is known

• Can use various hacks to almost make it work for external symbols

• This model (mostly) works but has various limitations
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Accessing global variables with linker support

• Existing architectures can just generate any integer value and use that to access a variable. 

• This is not possible with CHERI due to monotonicity and integrity.

• Alternatively they can add a constant to $pc/$gp/toc/etc. in the PIC case (which must be within 
bounds for CHERI).

• For CHERI all global variable accesses and function calls must load an authorizing capability 
from a GOT-like table (the captable) even for position-dependent code.

• The static linker emits relocations to initialize capabilities in the globals table that are 
processed by the runtime linker on program startup.

• All capabilities must be initialized anyway because non-RAM storage cannot save tags. This 
initialization is equivalent to relocating pointer values by the load address in PIE. 

• PIE increasingly the default for ASLR so this adds no new overhead from CHERI 
compared to commonly on by default vulnerability mitigation techniques.

Ø Every function needs a capability for the globals table ($cgp) on entry
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PC-relative linkage model

• $cgp is generated by adding a static link-time constant to $pcc.

• This means $ddc can now be NULL.

• Advantages:

• $cgp can be generated within function so no need to pass as it as an (implicit) argument. 

• This means function pointers can point directly to the function and do not need a trampoline 
that generates $cgp

• Very similar to existing MIPS code generation (same number of instructions).  Therefore a good 
model for fair benchmarks between pure-capability and legacy MIPS code

• More efficient in contemporary architectures with pc-relative loads/AUIPC

• Disadvantages:

• $pcc must grant access to both the current function and the table of capabilities (i.e., .text and 
.captable section) and requires at least LOAD_DATA and LOAD_CAP permissions on $pcc

• An attacker with arbitrary code execution could jump to any instruction within the current DSO
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• All privilege held in three registers: stack pointer ($csp), program counter ($pcc) and 
return capability ($cra). The globals pointer ($cgp) is generated from $pcc.

• Since $ddc is now NULL only globals listed in the captable are accessible.

PC-relative linkage model
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}

.text ($pcc/$cra)

secret_key
(libsecret.so)

secret_func()
in libsecret.so

lib
se

cr
et

.s
o



• All privilege held in three registers: stack pointer ($csp), program counter ($pcc) and 
return capability ($cra). The globals pointer ($cgp) is generated from $pcc.

• Since $ddc is now NULL only globals listed in the captable are accessible.

PC-relative linkage model

21

&bar 

&myint

Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp)

myint = 2

.data ($ddc = NULL)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)

Can only access globals
that are available in 

current .captable

secret_key
(libsecret.so)

Inaccessible (different DSO)

secret_func()
in libsecret.so

lib
se

cr
et

.s
o

Inaccessible (different DSO)



• All privilege held in three registers: stack pointer ($csp), program counter ($pcc) and 
return capability ($cra). The globals pointer ($cgp) is generated from $pcc.

• Since $ddc is now NULL only globals listed in the captable are accessible.

PC-relative linkage model
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&bar 

&myint

Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp)

myint = 2

.data ($ddc = NULL)

int bar() {
return myint;

}

int foo() {
return bar();

}

.text ($pcc/$cra)

Can update $pcc to point to 

bar() if bar() is in the same 
DSO, otherwise inaccessible

Can only access globals
that are available in 

current .captable
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PLT linkage model

• $cgp must be set correctly on function entry and is a caller-save register

• This value can remain the same for calls within a library

• Advantages:

• Saves three instructions on function entry to generate $cgp

• $pcc is bounded to the current function

• An attacker with arbitrary code execution only has access to capabilities in the captable

• Disadvantages:

• $cgp must be set correctly by the caller or a PLT stub (which adds four instructions including two 
memory loads)

• Function pointers cannot point to the function but a trampoline that sets up $cgp

• This is required to call from a context with a different $cgp (e.g., UNIX signal handlers).

• This makes it harder to ensure they are globally unique (required by C standard).
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• All privilege held in four bounded registers: $csp, $pcc, $cgp and $cra

• $pcc is bounded to only the current function.

PLT linkage model
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&bar 

&myint

Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp)

myint = 2

.data ($ddc = NULL).text ($pcc/$cra)

Inaccessible: $pcc is 

tightly bounded

secret_key
(libsecret.so)

Can still return 
using $cra

secret_func()
in libsecret.so

int bar() {
return myint;

}

int foo() {
return bar();

}



• All privilege held in four registers: $csp, $pcc, $cgp and $cra

• $pcc bounded to only the current function

PLT linkage model
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Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp) .data ($ddc = NULL).text ($pcc/$cra)

All globals in the .captable

section are accessible!

&bar 

&myint

.captable ($cgp)

myint = 2

.data ($ddc = NULL)

secret_key
(libsecret.so)

&local_secret1

local_secret1

local_secret2&local_secret2

secret_func()
in libsecret.so

int bar() {
return myint;

}

int foo() {
return bar();

}



• All privilege held in four registers: $csp, $pcc, $cgp and $cra

• $pcc bounded to only the current function

PLT linkage model
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Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp) .data ($ddc = NULL).text ($pcc/$cra)

Called function can still 

access caller’s stack frame!

All globals in the .captable

section are accessible!

&bar 

&myint

.captable ($cgp)

myint = 2

.data ($ddc = NULL)

secret_key
(libsecret.so)

&local_secret1

local_secret1

local_secret2&local_secret2

secret_func()
in libsecret.so

int bar() {
return myint;

}

int foo() {
return bar();

}



• Each function uses a different $cgp à Privilege granted by $cgp is now minimal.

• Variables used by other functions are inaccessible.

Per-function .captable
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&bar 

&myint

Stack ($csp):

stackframe #1

stackframe #2

.captable ($cgp)

myint = 2

.data ($ddc = NULL).text ($pcc/$cra)

secret_key
(libsecret.so)

bar() .captable (1 entry)

foo() .captable (1 entry)

&local_secret1

other_func() .captable

local_secret1

local_secret2&local_secret2

secret_func()
in libsecret.so

int bar() {
return myint;

}

int foo() {
return bar();

}



Per-function .captable

• How can we find the correct table?

• Static linker emits all per-function/per-file tables and concatenates them in a 
single .captable section

• Also emits a special special ELF section that contains a mapping from 
function address to required .captable subset

• Run-time linker can use this section when creating PLT stubs for exported 
function or external calls

• Note: the run-time linker must also insert a PLT stub for every local call since 
every function needs a different $cgp value

• Per-function tables will result in duplicate capabilities in the .captable. Some 
deduplication is possible for functions using the same set of globals.
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Beyond basic privilege reduction
• Every library transition stub uses a return stub instead of returning to the caller directly.

• This allows switching to a separate stack on function transitions (or bounding and clearing it).

• Could also clear non-argument registers or validate control flow.
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void foo() {

// …

bar();

// … 

return;

}
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void foo() {

// …

bar();

// … 

return;

}

PLT stub for bar()

• Load $cgp + target $pcc
• Save return $cra and return $csp
• Limit or allocate new stack for bar()
• Allocate return stub and set $cra
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• Allocate return stub and set $cra void bar() {

// …

}
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void foo() {

// …

bar();

// … 

return;

}

PLT stub for bar()

• Load $cgp + target $pcc
• Save return $cra and return $csp
• Limit or allocate new stack for bar()
• Allocate return stub and set $cra void bar() {

// …

}
Return stub for bar()

• Clear stack used by bar() or free the 
new stack allocated for bar()

• Restore $cra from foo()
• Restore $csp from foo()
• Return back to foo()



Beyond basic privilege reduction
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void foo() {

// …

bar();

// … 

return;

}

PLT stub for bar()

• Load $cgp + target $pcc
• Save return $cra and return $csp
• Limit or allocate new stack for bar()
• Allocate return stub and set $cra void bar() {

// …

}
Return stub for bar()

• Clear stack used by bar() or free the 
new stack allocated for bar()

• Restore $cra from foo()
• Restore $csp from foo()
• Return back to foo()



Configurable Linkage Policy
• PLT and return stubs are dynamically allocated by the runtime linker

• This allows flexible policy decisions at link-time and at run-time

• Runtime linker supports mixing DSOs with different policies

• We can therefore use different models depending on performance and security goals on a per-library 
granularity

• Linker and compiler flags can change available privilege scope:

• General ABI selection: -cheri-cap-table-abi={legacy,pcrel,plt}

• Further narrowing of captable scope (this only makes sense with the PLT ABI):  -Wl,-captable-
scope={all,file,function}

• RTLD can read a configuration file with per-library/binary policy:

/usr/lib/libsecure.so: new-stack,clear-regs
/usr/bin/more-speed-less-bounds: clear-regs
/bin/cat: trust-all

• Basic infrastructure for this exists but not yet fully implemented
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Performance (PC-relative ABI)
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Impact commonly less than 5% (compared to MIPS)
PostgreSQL initdb 6.8%



Summary

• We fully support dynamic linking with minimal privilege including dlopen() and lazy binding.

• Compiler code-generation bugs cannot be exploited to gain access to inaccessible data.

• Further security goals such stack and register clearing to prevent data leakage can be enabled with a per-library configurable 
policy.

• It is possible to mix the different modes even within a process to choose a suitable trade-off between security and 
performance.

• All code is available on GitHub:

• https://github.com/CTSRD-CHERI/llvm

• https://github.com/CTSRD-CHERI/clang

• https://github.com/CTSRD-CHERI/lld

• https://github.com/CTSRD-CHERI/cheribsd

• To learn more about the CHERI architecture and prototypes:

• https://www.cheri-cpu.org/
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Questions?
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What about loading via the target $pcc or $cra?

• In the current implementation this is still possible.

• However, this can be fixed by using the sealed capability mechanism.

• Pairs of sealed capabilities can be invoked using CCall,

• CCall unseals the paired capabilities (the data argument is 
unsealed into $cgp) and jumps to the code.

• We also have an experimental implementation of call-only sealed 
capabilities that could be used for call targets and return addresses.
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Why don’t we just use pairs of capabilities?

• We could do: by using function descriptors

• However, POSIX APIs require sizeof(void*) == sizeof(void(*)(void))

• Therefore we need indirection: function pointers are non-executable pointers to a 
pair of capabilities

• This is more-or-less the same as jumping to a stub that loads the pair

• Can inline the pair in the captable, but this puts pressure on the limited immediate 
range in the load capability instruction

• Requires kernel changes to handle non-executable capabilities in sigaction(), etc.

• Note:  We have an experimental function descriptor implementation with slightly 
different performance characteristics but the same security properties as the PLT 
model
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Function pointers must be unique

• Required by C and C++ standard 

• Cannot use the PLT stub as the function pointer since the stub is different in 
every library that uses that function.

• Chosen solution:  The function pointer always resolves to a stub in the library 
that exports the function.

• Two different relocations for direct call and taking a function pointer:

• R_MIPS_CHERI_CAPABILITY_CALL: does not need to be unique so can 
point to the per-DSO PLT stubs.

• R_MIPS_CHERI_CAPABILITY:  When used with STT_FUNC symbol 
guarantees a unique address (otherwise a direct data reference).

• Lazy binding is not possible for function pointers but still fine for direct calls.
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