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The need for C++ memory safety

• Many widely used applications are written in C++: web browsers, 
mail readers, office suites, etc.

• These applications handle untrusted data and are thus quite 
susceptible to spatial and temporal security vulnerabilities.

• This can lead to information leaks, privilege escalation, arbitrary 
code execution.
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CHERI protection model

• RISC hybrid-capability architecture supporting fine-grained, 
pointer-based memory protection:

• pointer integrity (e.g., no pointer corruption)

• pointer provenance validity (e.g., no pointer injection)

• bounds checking (e.g., no buffer overflows)

• permission checking (e.g., W^X for pointers)

• monotonicity (e.g., no privilege escalation / improper re-use)

• encapsulation (e.g., protect software objects)
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CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable
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CHERI: 256-bit architectural capabilities
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Virtual address (64 bits)

• Compress bounds relative to 64-bit virtual address

• Floating-point bounds mechanism limits bounds alignment

• Security properties maintained (e.g., monotonicity)

• Still supports C-language semantics (e.g., out-of-bound 
pointers)

CHERI: 128-bit micro-architectural capabilities



Compiling C++ to CHERI

• Two modes of compilation using Clang/LLVM:

• Hybrid – annotate which pointers should become capabilities 
(like const, volatile)

• Pure – all pointers are turned into capabilities
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class A { public: int f; }

A* __capability a = new A;
a->f = 42;

LLVM IR:
%call = tail call i8 addrspace(200)* @operator new(unsigned long)(i64 zeroext 4)
%f = bitcast i8 addrspace(200)* %call to i32 addrspace(200)*
store i32 42, i32 addrspace(200)* %f

new calls malloc() which 
sets bounds on the allocation



Let’s start simple…

Look easy?
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#include <iostream>
using namespace std;

cout << “Hello World!” << endl;



Challenges

• Almost all challenges have been in the compiler frontend

• Ensuring __capability is supported and propagated correctly

• References, templates, function overloading

• Initializer lists, static initialisation of structs

• nullptr
• Memory alignment

• std::align, new, new[]

8



Challenges

• Name mangling for capability-qualified types

• void foo(A* __capability) à _Z3fooU3capP1A

• <type_traits> and <hash> specialisations for __intcap_t

• Pointer-to-members (last thing we had to fix for ”Hello World!”)

• End result: can compile all of libc++ and all ~5K non-
exception-non-rtti tests are passing.

• Have implemented support for exceptions but not very well tested

• Modifications to LLVM, libunwind, libcxxrt
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Virtual-table hijacking
• Common code re-use attack is to use the dynamic dispatch mechanism 

to invoke arbitrary C++ virtual functions.

• Counterfeit Object-Oriented Programming paper (IEEE S&P 2015) explains a 
version of this attack:

1. Find a loop over a collection of objects that invokes a virtual 
function on each object. vtable index is fixed at the call site.

2. Exploit a memory vulnerability and inject a collection of objects 
each with their vptr fields set such that when the vtable index is 
added, the desired virtual gadget will be called. 

3. Overlap instance fields of these injected objects to achieve passing 
values between gadgets.
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Virtual-table hijacking

• CHERI already prevents injection of arbitrary objects.

• We can harden the virtual call mechanism by enforcing integrity of 
the vptr by using sealed capabilities.

• Integrity here also means that the vptr points to the right vtable.
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Capability sealing mechanism

• Capability sealing allows capabilities to be marked as immutable and 
non-dereferenceable.

• Hardware exceptions are thrown if attempts are made to modify 
or dereference them.

• Sealed capabilities contain an additional piece of metadata, an object 
type, set when a memory capability undergoes sealing.

• Sealing capability has the PERMIT_SEAL permission and the object 
types that it is allowed to seal for.

• Object types allow multiple sealed capabilities to be linked.
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vptr sealing mechanism

• Idea: replace vptr with a sealed capability

• vptr capability is sealed with the otype set to the class’s type. 
Call this new capability sealed-vptr

• When an object is created, the vptr field is initialized to the 
sealed-vptr capability

• At a virtual function call, sealed-vptr is unsealed to get back 
the vptr capability.

• Unseal successful à correct vtable pointer, proceed to call 
virtual function
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• Tightening bounds for base-class sub objects.

• When passing an object to a polymorphic call, which expects the base 
class type, set bounds to the base-class object.

• Challenges:  What if we later downcast? How common is this? Can the 
compiler identify these cases and not tighten bounds then?

B vptr

Hardening other C++ features

14

class A { … }
class B : public A { … }

void foo(A* a) { … }

B* b = new B;
foo(b);

A_field1

A_field2

B_field1

B_field2

A sub-object

B object

Pass capability with 
bounds tightened
to the A sub-object



Hardening other C++ features

• Type safety to prevent type confusion attacks. 

• A dangling pointer of class type A may now point to an object of 
some other class type B when the memory is re-allocated.

• Can lead to accessing sensitive data and executing arbitrary code.

• Idea: store a sealed type capability in each object and unseal it 
whenever deemed important.

• Unseal successful à type matches, 
otherwise error.
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WebKit case study

• Web rendering engine used in web browsers, such as Apple Safari.

• Very large C++ codebase: parsers, interpreters, untrusted data handling.
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• WebKit: thin layer to link against from the 
applications

• WebCore: rendering, layout, network access, 
multimedia, accessibility support

• JS Engine: the JavaScript engine. JavaScriptCore
by default, but can be replaced (e.g. V8 in 
Chromium)

• Platform: platform-specific hooks

WebKit

WebCore

JS Engine Platform

Application



JavaScriptCore case study

• JavaScriptCore Interpreter is written in a combination of C++ and 
typed target-independent assembly (?).

• The assembly is compiled (via ruby scripts!) to target-specific 
assembly (if supported) or C++.
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subi 1, t3
loadp [protoCallFrame, t3, 16], extraTempReg
storep extraTempReg, CodeBlock[sp, t3, 16]      
btinz t3, .copyHeaderLoop

t3.i32 = t3.i32 - int32_t(0x1);
t3.clearHighWord();
t5.i = *CAST<intptr_t*>(t2.i8p + (t3.i << 4));
*CAST<intptr_t*>(sp.i8p + (t3.i << 4) + intptr_t(0x20)) = t5.i;
if (t3.i32 != 0)

goto _offlineasm_doVMEntry__copyHeaderLoop;

Assuming JS pointers are 
128-bit capabilities

Translation to
C++ for CHERI



JavaScriptCore case study

• Interpreter has virtual registers, stack and heap.

• C++ version is a large switch statement with 
gotos and computed gotos:

opcode = t0.opcode;
goto *opcode;

• Each JavaScript expression is turned into an 
array of ‘instructions’.

• An instruction could be an opcode, operand or 
any of…
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JavaScriptCore case study
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union {
Opcode opcode;
int operand;
unsigned unsignedValue;
WriteBarrierBase<Structure> structure;
StructureID structureID;
WriteBarrierBase<SymbolTable> symbolTable;
WriteBarrierBase<StructureChain> structureChain;
WriteBarrierBase<JSCell> jsCell;
WriteBarrier<Unknown>* variablePointer;
Special::Pointer specialPointer;
PropertySlot::GetValueFunc getterFunc;
LLIntCallLinkInfo* callLinkInfo;
UniquedStringImpl* uid;
ValueProfile* profile;
ArrayProfile* arrayProfile;
ArrayAllocationProfile* arrayAllocationProfile;
ObjectAllocationProfile* objectAllocationProfile;
WatchpointSet* watchpointSet;
void* pointer;
bool* predicatePointer;
ToThisStatus toThisStatus;
TypeLocation* location;
BasicBlockLocation* basicBlockLocation;
PutByIdFlags putByIdFlags;

} u;

Instruction

union {
EncodedJSValue value;
CallFrame* callFrame;
CodeBlock* codeBlock;
EncodedValueDescriptor encodedValue;
double number;
int64_t integer;

} u; 

(Virtual) Register



JavaScriptCore case study

• 64-bit NaN-boxing encoding to identify types of value:

• Integers (top 16-bits all set): 
e.g. 0xffff000000000003 à 3

• Double-precision (at least 1 of the top 16 bits is set but not all):
e.g. 0x3ff4eb851eb851ec à 1.245
e.g. 0x7ff9000000000000 à NaN

• Pointer values (only use low 48 bits):
e.g. 0x164066810
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JavaScriptCore case study

• Teaching WebKit/JavaScriptCore the following:

• JS pointers and registers are 128-bit capabilities

• Fixing mixing of pointer-typed and int64/int32-typed instructions 
on the same register values

• Fixing constant offsets to reflect capability-sized fields

• Using virtual addresses in cases when offset is not enough (e.g. 
bitwise ops, inequalities, subtracting entire capabilities)*

21



JavaScriptCore case study

• Other fixes:

• Regular expressions

• Exceptions, garbage collection

• Reading and writing closure values

• Various ops such as: op_inc, op_get_array_length, op_nstricteq, 
op_get_parent_scope, op_negate, op_to_number

• Fix alignment when accessing and allocating multiple objects 
contiguously (in a single allocation)

• Custom binary operations (e.g. concatenating an integer and a string)
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JavaScriptCore case study
root@qemu-cheri128-kg365:~ # ./jsc
>>> var add3 = function(arg) { return arg + 3; }
>>> add3(5)
8
>>> add3(add3(5))
11
>>> 15.3 / 18 * 27.1 * (Math.ceil(1.3) * Math.exp(2.3) * Math.log (1.223) * Math.sin(32.22))
66.6192983328985
>>> print("hello" + ", " + "world!")
hello, world!
>>> var d = new Date()
>>> d.toDateString()
Sat May 12 2018
>>> parseInt('Infinity')
NaN
>>> new Date(0).toLocaleTimeString('zh-Hans-CN-u-nu-hanidec', { timeZone: 'Asia/Kolkata' } )
���:��:��
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WebKit
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CHERI homepage

CHERI-WebKit Safari



Conclusion

• C++ is widely used for important applications, such as web 
browsers, office suites, mail readers, etc. 

• CHERI provides fine-grained memory protection providing bounds 
and permissions checking.

• We are looking at hardening C++ features using CHERI: vtable
pointers, type safety, base class bounds

• Evaluating with the WebKit rendering engine because it is a 
substantial C++ codebase with complex behavior and large trade 
off space.

• Performance?
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Questions?
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