
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of
the author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Efficient Tagged Memory
Alexandre Joannou, Jonathan Woodruff, Simon W. Moore, Robert Kovacsics,

Hongyan Xia, Robert N. M. Watson, David Chisnall, Michael Roe, Brooks
Davis, Peter G. Neumann, Edward Napierala, John Baldwin, A. Theodore

Markettos, Khilan Gudka, Alfredo Mazzinghi, Alexander Richardson, Stacey Son
and Alex Bradbury

University of Cambridge and SRI International

Johnny Proposes Tagged Memory

2

1-bit Tag Per Word!
• Tag pointers for integrity?
• Tag allocated memory?
• Data flow tracking?
• Watchpoints on any word?

Only 1-bit per word!

Johnny Proposes Tagged Memory

3

Non-standard Memory?
• Custom cache width is possible
• Registers could preserve the bit
• But custom DRAM is a non-starter

We can’t even afford ECC!
• Security must be free!

1-bit Tag Per Word!
• Tag pointers for integrity?
• Tag allocated memory?
• Data flow tracking?
• Watchpoints on any word?

Only 1-bit per word!

Johnny Proposes Tagged Memory

4

A Tag Table in DRAM!
• Put table in standard DRAM
• It will be really small (1-bit per word!)
• Emulate wider memory, fetch tag and data

on cache miss
• Keep them together on-chip

Johnny Proposes Tagged Memory

5

A Tag Table in DRAM!
• Put table in standard DRAM
• It will be really small (1-bit per word!)
• Emulate wider memory, fetch tag and data

on cache miss
• Keep them together on-chip

Double the Memory Accesses?
• Access both the table and the data on every

cache miss?
• No

Johnny Proposes Tagged Memory

6

A Cache for the Tag Table!
• Use a dedicated cache for the tags!
• It will hold tags for loads of data

(1-bit per word! Covers megabytes of data!)
• Only do DRAM table lookup on a miss

Johnny Proposes Tagged Memory

7

A Cache for the Tag Table!
• Use a dedicated cache for the tags!
• It will hold tags for loads of data.

(1-bit per word! Covers megabytes of data!)
• Only do DRAM table lookup on a miss.

Last-level Caches Aren’t that Effective
• This is logically a last-level cache
• LLC has low hit-rates: 40-60% for SPEC

We only see accesses that have missed in primary caches…

• +50% memory accesses isn’t going to fly

The Tagged Memory Challenge

1. Add 1 bit per word of memory

2. Make it “free”

8

Re-cap Simple Tag Hierarchy

• Store tags with data in cache
hierarchy

• Tag controller does tag table
lookup on DRAM access

• Cache lines of tags from DRAM

9

CPU

I$ D$

L2$

Tag $

Tag Table
Manager

DRAM

An Experiment in Gem5

• Trace all DRAM accesses

• Replay against a tag controller + cache model

• Measure tag-cache hit-rate
• Using ARMv8 Gem5

• Google v8 engine running Earley-Boyer Octane (x3)

• FFMPEG

• 4-core, 8MiB L3 with prefetching

10

Tag Table Cache Properties
DRAM traffic overhead vs. tag cache size, 64-byte lines

11

Why is tag cache more effective than a traditional last-level cache?

64KiB (for 4MiB of data) 128KiB (for 8MiB of data) 256KiB (for 16MiB of data)

Tag cache size

0%

10%

20%

30%

40%

50%

T
ag

D
R

A
M

tr
a�

c
ov

er
he

ad Earley-Boyer (big) FFMPEG (big)

Only 12% overhead with same
reach as last level cache!

<5% traffic overhead at
256KiB with 16MiB capacity

1 2 4 8 16 32 64 128 256 512 1024
Tag cache line size (bytes)

0%

20%

40%

60%

80%

100%

Ta
g

ca
ch

e
ac

ce
ss

es

1-byte line covers
64 data bytes

64-byte line covers
4KiB of data

misses spatial hits temporal hits

Tag Table Cache Locality Analysis

12

Temporal and Spatial Hits vs. Line Size
for Earley-Boyer, 256KiB tag cache, 8-way set associative

64-byte line of tags
=

4KiB Page of data
1-byte line of tags =

64B Line of data

Tag Compression

• 2-level tag table

• Each bit in the root level indicates all zeros in a
leaf group

• Reduces tag cache footprint

• Amplifies cache capacity

13

Figure 3 graphs the temporal and spatial hits in the tag cache
as the line size grows for the Earley-Boyer big case (256KiB
tag cache, 8-way associative). Spatial hits are on tags that
have not previously been accessed in the cache, i.e. that have
been brought in due to a miss on a nearby tag. Temporal
hits are on tags that have previously been accessed and are
re-accessed due to lack of capacity in the upper layer of
cache. The graph begins with a tag cache line that covers one
data line. As the line size increases, spatial hits continue to
increase consistently until we reach lines of 512 tags (64 bytes)
which each cover a 4KiB page of data. Bigger lines benefit
spatial hits more then they harm temporal hits until lines of
approximately 4096 tags (512 bytes) which each cover 8 pages
of data memory. After that point, no more spatial locality
seems to be harvested from larger lines, but the number of
temporal hits still decreases, harming overall hit-rate. Thus
the tag cache can exploit spatial locality at page granularities
to reduce overhead from an expected 50% of DRAM traffic
to less than 5%, even for an unusually small capacity.

Silent-Write Elimination: Writes that rewrite the existing
value, or silent writes, are more common for tags than for
data and are more problematic. Silent tag writes are common
since tag metadata is often unchanged through data writes,
e.g., when updating untagged data. Tag lines are also much
more likely to be dirty than data lines, as the coarse line
granularity increases the probability that some bit will be
written. Our simulated tag cache eliminates these silent writes.
This optimization reduces dirty lines from 80% to 4% in the
pointer-sparse FFMPEG case, and from 60% to around 30%
for the pointer-heavy Earley-Boyer case. This feature makes
writeback traffic dependent on the value of the tags. Figure 8
includes several use cases, one of which sees a 30% reduction
of traffic overhead without compression due to tags changing
less frequently.

B. Hardware Implementation
We rebuilt the tag controller engine in the open-source

CHERI processor (http://www.bericpu.org/), and added perfor-
mance counters to the CHERI cache. CHERI is instantiated
with 32KiB L1 caches and a 256KiB L2 cache, all 4-way set
associative with 128-byte lines. CHERI requires a tag bit for
each 256-bit word, resulting in a natural caching amplification
factor of 256. Our new tag controller includes a lookup engine
backed by a 32KiB 4-way set-associative cache with 128-byte
lines, matching the burst size in the CHERI system. Since
each cached tag bit covers 256 bits of data memory, each 128-
byte line in the tag-table cache provides tags for 32 kilobytes
of data memory. We restricted ourselves to a standard cache
instantiation for the tag controller which did not allow silent-
write elimination so this feature was not evaluated in hardware.

Benchmark results for this basic FPGA implementation are
shown as the Uncompressed case in Figure 9. All of our
benchmarks were compiled to use 256-bit CHERI capabilities
for all pointers, though the tag values do not affect hit rates for
the uncompressed case. Our benchmarks include a selection of
Octane benchmarks running under the Duktape interpreter and

of MiBench benchmarks running natively. DRAM overhead
was below 3% for programs with data sets contained in the
multi-megabyte reach of the tag cache. The Splay benchmark
with a working set of over 100MB still maintained an overhead
of less than 8%.

VI. TAG-TABLE CACHE COMPRESSION

Tag-table compression reduces cache footprint by taking
advantage of likely patterns in adjacent tag-bit values. Our
focus is on compression for caching rather than reducing the
size of the table in memory, as the table itself occupies a
very small proportion of DRAM, and the full capacity is
required in the worst case. As compressibility depends heavily
on probable distributions, we must select a tag use case to gain
concrete insights into compressibility.

Three prominent approaches have been taken for tag com-
pression. The Range Cache approach compressed arbitrary
ranges of tags with the same value, and was particularly useful
for large MTB systems [10]. The Multi-granularity tagging
approach indicates the presence or absence of tags using
the TLB, eliminating tag lookup for the majority of cases.
Most of these systems keep tags on virtual memory such that
tag storage is entirely under software control [9], [15], [33].
Our approach is a fully hardware-managed1 hierarchical tag
table in physical memory that performs compression while
emulating a flat tag space.

A. Hierarchical Tag Table
To optimize for regions that contain no tags, we may

implement a two-level table where a bit in the root level
indicates whether any bits are set in a group of leaf level
bits. In the example in Figure 4, one bit in the root level can
be cleared to indicate that 512 bits in the leaf level are all zero
and need not be accessed on a read or on a write of zero. We
refer to the group granularity as the grouping factor “GF”, as
this is the factor by which the tag footprint can be compressed
for groups with no pointers. All tag-table lookups must access
the root level, but only addresses that lie in a group including a
tagged word must access the leaf level. It is simple to maintain
such a hierarchy. Each time we clear a tag bit in the leaf level,
we must check whether the rest of the tags in the group are
zero, clearing the bit in the root level if this is the case. On
boot up, we must clear only the root level of the table to clear
the tag bits on all of memory.

root tabletag-cache line

leaf table

1 bit
tag-cache line

512 bits

. . .

. . .

Fig. 4. Hierarchical table structure for grouping factor of 512

Crucially, this scheme eliminates table-cache pressure for
applications that do not use tagged pointers. In addition, this

1WHISK demonstrates that the root level of a two-level tag table can be
managed in software at the cost of flushing tag caches on root updates [31].

64 bytes

Tags for a
page of data

1 bit per page of data: 0 for no tags set

0
10
20
30
40
50
60
70
80
90

100

bzip2 vlc chromium Octane	Earley-
Boyer

Octane	Splay

Use-case 1: Pointer Integrity

14

• All virtual addresses are tagged
All words that match successful TLB translations

• Similar to our CHERI FPGA implementation

Cache Lines Containing Pointers

Pe
rc

en
t

of
 C

ac
he

 L
in

es

C C++
Pointer-heavy Javascript

C++ & Javascript

Use-case 2: Zero Elimination

15

• Tag cache lines that contain zeros

• Eliminate zero cache lines from DRAM traffic

• Can we eliminate more data traffic than the tag
table generates?

• 1.5-2.5% of lines in DRAM traffic are all zero
(in our workloads)

• If we use less than 1% for table traffic, we
improve performance!

Overhead with Compression

16

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

No	Compression Pointers Zeroes

FFMPEG Earley-Boyer

D
R

A
M

 T
ra

ffi
c

O
ve

rh
ea

d

Compressed
Pointers

Compressed
Zeros

No Compression

CHERI FPGA Implementation

• 64-bit MIPS implementation with tagged pointers

• 256KiB, 4-way set associative L2 cache

• Parameterizable hierarchical tag controller
backed by 32KiB 4-way associative tag cache

17

Benchmarks in Hardware

18

DRAM Traffic Overhead in FPGA Implementation
Note: MiBench overheads with compression are approximately zero

qsor
t

jpeg

dijk
str

a
sh

a

CRC32
FFT

Earle
y-B

oye
r

splay
pdfjs

gb
em

u
0%

2%

4%

6%

8%

D
R

A
M

tr
af

fic
ov

er
he

ad

MiBench Octane

Uncompressed
Compressed

Things We’ve Learned

19

• A tag table caches extremely well
Spatial locality pays off for very wide lines

• Simple compression works well for sparse tags

• Single-bit tags in standard memory can require
nearly zero overhead in the common case
Pointer tags + zero line elimination could actually net reduce
memory accesses for most cases!

Questions?
Jonathan.Woodruff@cl.cam.ac.uk

