
virtual address (64 bits)

Pointers in conventional architectures

64
-b

it
po

in
te

r

Allocation

Virtual
address
space

• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – pointers can be injected/corrupted

• Arithmetic errors – overflows, out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

! In current architectures, attacks on data and code pointers are highly
effective, often achieving arbitrary code execution

virtual address (64 bits)25
6-

bi
t

ca
pa

bi
lit

y

length (64 bits)
offset (64 bits)
base (64 bits)

256-bit architectural capabilities

CHERI capabilities extend pointers with:

• Tags to protect in-memory capabilities:
• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable

Allocation

Virtual
address
space

v1-
bi

t
ta

g

permissions (31 bits) sobjtype (24bits)

128-bit micro-architectural capabilities

12
8-

bi
t

ca
pa

bi
lit

y

Allocation

Virtual
address
space

v

1-
bi

t
ta

g

permissions compressed bounds relative to address s

Virtual address (64 bits)

• Bounds alignment restricted to reduce capability size
• Floating-point bounds relative to full 64-bit virtual address

• Security properties maintained (e.g., monotonicity)

• Different formats for sealed vs. non-sealed capabilities

• Still supports C-language semantics (e.g., out-of-bound pointers)

• DRAM tag density from 0.4% to 0.8% of memory size

• Full prototype with full software stack on FPGA

CHERI software models

• Source and binary compatibility – multiple C-language and code-generation models:

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: E.g., capabilities used in return addresses, annotated data/code
pointers, specific types, etc. (n64-interoperable)

… But “hybrid” is a spectrum between manual and automatic use

• Pure-capability code: Ubiquitous data- and data-pointer protection. (Non-n64-
interoperable due to changed pointer size) – also a spectrum

• CHERI Clang/LLVM compiler prototype generates code for all

More compatible Safer

Unmodified
All pointers are
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are

capabilities

CHERI Capability Hardware Enhanced RISC Instructions (CHERI) - Architectural Support for Fine-Grained Memory Protection and Scalability Compartmentalization
PIs: Robert N. M. Watson (University of Cambridge), Simon W. Moore (University of Cambridge), and Peter G. Neumann (SRI International)
Jonathan Anderson, John Baldwin, Hadrien Barrel, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis, Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Robert Kovacsics, Ben Laurie,
A. Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu, Alex Richardson,
Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, Munraj Vadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

Capability Hardware Enhanced RISC Instructions (CHERI) extend contemporary 64-bit
RISC architectures with a new hardware type, the architectural capability, used to represent
and protect hardware- and software-defined pointers. CHERI supports the granular
implementation of the principles of least privilege and intentional use, which naturally
mitigate vulnerabilities by limiting the rights gained (and further attack surfaces reachable) by
attackers. CHERI is a hybrid capability model that cleanly composes with RISC ISAs, Virtual
Memory implemented using Memory Management Units (MMUs), MMU-based general-
purpose OS designs such as UNIX, and the C and C++ programming languages, supporting
incremental deployment of the approach within current hardware-software ecosystems.

CHERI’s fine-grained memory protection utilizes capability registers and tagged memory
to (a) protect pointers through hardware-supported pointer integrity, provenance validity, and
monotonicity that constrain manipulation, and (b) protect pointee code and data through
fine-grained bounds and permissions that control use. Collectively, these features mitigate
many common vulnerability types and memory-based exploit techniques in C- and C++-
language software Trusted Computing Bases (TCBs) such as OSes, server applications,
language runtimes, and web browsers — including buffer overflows, integer-overflow attacks
on pointers, format-string vulnerabilities, Return-Oriented Programming (ROP), Jump-Oriented
Programming (JOP), “Stack Clash”, and many other pointer-/memory-based attacks.

CHERI’s scalable software compartmentalization is grounded in software-defined sealed
pointers, which, combined with its pointer and pointee protection, allow MMU-based
processes to be sub-divided into many isolated (but closely coupled) compartments with
much greater scalability than MMUs support. CHERI compartment-switching and memory
sharing costs are comparable to a function call rather than Inter-Process Communication
(IPC). CHERI’s compartmantalization performance facilitates more granular software
sandboxing to mitigate attacks in a vulnerability- and exploit-technique-independent manner
— defending against future, as-yet undiscovered attack techniques.

We have developed CHERI over 8 years of hardware-software co-design at Cambridge and
SRI that has been supported by DARPA, and also by Google, HPE, ARM, EPSRC, and other
sponsors. We have implemented formal models of the ISA that enable automated reasoning
about CHERI’s security properties, a fast ISA-level emulation in Qemu, and a pipelined,
multicore FPGA processor design to explore microarchitectural impacts. CHERI’s hybrid
capability model has allowed us to adapt the Clang/LLVM compiler to utilize capabilities, and
explore how a lightly modified version of the FreeBSD OS and its open-source application
stack can utilise architectural memory protection and scalable compartmentalization.

We have published about various aspects of CHERI in ISCA, ICCD, ASPLOS, ACM CCS, IEEE
SSP, PLDI, and IEEE Micro. Our most recent research has developed an 128-bit in-memory
capability representation and efficient tagged memory, and has explored the impact of strong
pointer and memory protection on a full UNIX software-stack implementation, demonstrating
strong vulnerability mitigation, good source-level compatibility, and low overhead.

Learn about the open-source CHERI architecture, hardware, and software on our website:
 http://www.cheri-cpu.org/

Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under
contracts FA8750-10-C-0237 (“CTSRD”) and FA8750-11-C-0249 (“MRC2”) as part of the DARPA CRASH and DARPA MRC research programs. The views, opinions, and/or findings
contained in this report are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or
the U.S. Government. Additional support was received from St John's College Cambridge, the Google SOAAP Focused Research Award, the RCUK's Horizon Digital Economy
Research Hub Grant (EP/G065802/1), the EPSRC REMS Programme Grant (EP/K008528/1), the EPSRC Impact Acceleration Account (EP/K503757/1), the Isaac Newton Trust, the UK
Higher Education Innovation Fund (HEIF), Thales E-Security, ARM Ltd, and HP Enterprise.

From hybrid-capability code to pure-capability code
• n64 MIPS ABI: hybrid-capability code

• Early investigation – manual annotation
and experimenal C semantics

• Many pointers are integers (including
syscall arguments, most implied VAs)

• CheriABI: pure-capability code

• The last two years – fully automatic use
of capabilities wherever possible

• All pointers, implied virtual addresses
are capabilities (inc. syscall arguments)

• CheriABI runs a full UNIX userspace

MIPS code

Pure-capability code

` Hybrid-capability code

Hybrid-capability
userspace

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

Hybrid-capability CheriABI shim

Pure-capability
userspace

CHERI pointer protection

➡ Provence and monotonicity control whether pointers can be dereferenced
• Valid pointers are derived from other valid pointers via valid transformations
• E.g., received network data cannot be interpreted as a code pointer

➡ Bounds and permissions constrain use, and can be minimized by software
• E.g., pointers cannot be manipulated to access other heap or stack objects

➡ Strong foundations for software memory protection and compartmentalization

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

17 October 2017

