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Pointers in conventional architectures
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• Implemented as integer virtual addresses (VAs)

• (Usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – pointers can be injected/corrupted

• Arithmetic errors – overflows, out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings

! In current architectures, attacks on data and code pointers are highly 
effective, often achieving arbitrary code execution
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256-bit architectural capabilities

CHERI capabilities extend pointers with:

• Tags to protect in-memory capabilities:
• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, fetch

• Sealing for encapsulation: immutable, non-dereferenceable
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128-bit micro-architectural capabilities
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• Bounds alignment restricted to reduce capability size
• Floating-point bounds relative to full 64-bit virtual address

• Security properties maintained (e.g., monotonicity)

• Different formats for sealed vs. non-sealed capabilities

• Still supports C-language semantics (e.g., out-of-bound pointers)

• DRAM tag density from 0.4% to 0.8% of memory size

• Full prototype with full software stack on FPGA

CHERI software models

• Source and binary compatibility – multiple C-language and code-generation models:

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: E.g., capabilities used in return addresses, annotated data/code 
pointers, specific types, etc. (n64-interoperable)

… But “hybrid” is a spectrum between manual and automatic use

• Pure-capability code: Ubiquitous data- and data-pointer protection. (Non-n64-
interoperable due to changed pointer size) – also a spectrum

• CHERI Clang/LLVM compiler prototype generates code for all

More compatible Safer

Unmodified
All pointers are 
integers

Hybrid
Annotated and automatically

selected pointers are capabilities

Pure-capability
All pointers are 

capabilities
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Capability Hardware Enhanced RISC Instructions (CHERI) extend contemporary 64-bit 
RISC architectures with a new hardware type, the architectural capability, used to represent 
and protect hardware- and software-defined pointers. CHERI supports the granular 
implementation of the principles of least privilege and intentional use, which naturally 
mitigate vulnerabilities by limiting the rights gained (and further attack surfaces reachable) by 
attackers. CHERI is a hybrid capability model that cleanly composes with RISC ISAs, Virtual 
Memory implemented using Memory Management Units (MMUs), MMU-based general-
purpose OS designs such as UNIX, and the C and C++ programming languages, supporting 
incremental deployment of the approach within current hardware-software ecosystems.

CHERI’s fine-grained memory protection utilizes capability registers and tagged memory 
to (a) protect pointers through hardware-supported pointer integrity, provenance validity, and 
monotonicity that constrain manipulation, and (b) protect pointee code and data through 
fine-grained bounds and permissions that control use. Collectively, these features mitigate 
many common vulnerability types and memory-based exploit techniques in C- and C++-
language software Trusted Computing Bases (TCBs) such as OSes, server applications, 
language runtimes, and web browsers — including buffer overflows, integer-overflow attacks 
on pointers, format-string vulnerabilities, Return-Oriented Programming (ROP), Jump-Oriented 
Programming (JOP), “Stack Clash”, and many other pointer-/memory-based attacks.

CHERI’s scalable software compartmentalization is grounded in software-defined sealed 
pointers, which, combined with its pointer and pointee protection, allow MMU-based 
processes to be sub-divided into many isolated (but closely coupled) compartments with 
much greater scalability than MMUs support. CHERI compartment-switching and memory 
sharing costs are comparable to a function call rather than Inter-Process Communication 
(IPC). CHERI’s compartmantalization performance facilitates more granular software 
sandboxing to  mitigate attacks in a vulnerability- and exploit-technique-independent manner 
— defending against future, as-yet undiscovered attack techniques.

We have developed CHERI over 8 years of hardware-software co-design at Cambridge and 
SRI that has been supported by DARPA, and also by Google, HPE, ARM, EPSRC, and other 
sponsors. We have implemented formal models of the ISA that enable automated reasoning 
about CHERI’s security properties, a fast ISA-level emulation in Qemu, and a pipelined, 
multicore FPGA processor design to explore microarchitectural impacts. CHERI’s hybrid 
capability model has allowed us to adapt the Clang/LLVM compiler to utilize capabilities, and 
explore how a lightly modified version of the FreeBSD OS and its open-source application 
stack can utilise architectural memory protection and scalable compartmentalization.

We have published about various aspects of CHERI in ISCA, ICCD, ASPLOS, ACM CCS, IEEE 
SSP, PLDI, and IEEE Micro. Our most recent research has developed an 128-bit in-memory 
capability representation and efficient tagged memory, and has explored the impact of strong 
pointer and memory protection on a full UNIX software-stack implementation, demonstrating 
strong vulnerability mitigation, good source-level compatibility, and low overhead. 

Learn about the open-source CHERI architecture, hardware, and software on our website:
    http://www.cheri-cpu.org/
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From hybrid-capability code to pure-capability code
• n64 MIPS ABI: hybrid-capability code

• Early investigation – manual annotation 
and experimenal C semantics

• Many pointers are integers (including 
syscall arguments, most implied VAs)

• CheriABI: pure-capability code

• The last two years – fully automatic use 
of capabilities wherever possible

• All pointers, implied virtual addresses 
are capabilities (inc. syscall arguments)

• CheriABI runs a full UNIX userspace

MIPS code

Pure-capability code

` Hybrid-capability code

Hybrid-capability
userspace

Largely conventional MIPS OS kernel
with CHERI-enabled userspace

Hybrid-capability CheriABI shim

Pure-capability 
userspace

CHERI pointer protection

➡ Provence and monotonicity control whether pointers can be dereferenced
• Valid pointers are derived from other valid pointers via valid transformations
• E.g., received network data cannot be interpreted as a code pointer

➡ Bounds and permissions constrain use, and can be minimized by software
• E.g., pointers cannot be manipulated to access other heap or stack objects

➡ Strong foundations for software memory protection and compartmentalization
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