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Application compartmentalization 

Application compartmentalization mitigates 
vulnerabilities by decomposing applications into 
isolated compartments delegated limited rights 
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•  Many possible compartmentalizations: 

•  Trade off security, complexity, performance 

•  But the process model is problematic: 

•  Virtual addressing scales poorly due to page 
tables, Translation Look-aside Buffer (TLB) 

•  Multiple address spaces and Inter-Process 
Communication (IPC) are hard to program 

•  Quite poor for library compartmentalization 
due to memory-centered APIs (e.g, zlib) 



CHERI capability model 
•  ISCA 2014: Fine-grained, in-address-space memory protection 

via a capability model 

•  Capabilities replace pointers for data references 

•  Capability registers and tagged memory enforce 
strong pointer and control-flow integrity, bounds checking 

•  Hybrid model composes naturally with an MMU 

•  ASPLOS 2015: Compiler support for capabilities 

•  Converge fat-pointer and capability models 

•  C pointers compiled into capabilities with various ABIs 

•  Can we build efficient compartmentalization over 
CHERI memory protection ? 
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Virtual memory vs. capabilities 
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Virtual Memory Capabilities 
Protects Virtual addresses and pages References (pointers) to C 

code, data structures 

Hardware MMU, TLB Capability registers, 
tagged memory 

Costs TLB, page tables, lookups, 
shootdowns 

Per-pointer overhead, 
context switching 

Compartment scalability Tens to hundreds Thousands or more 

Domain crossing IPC Function calls 

Optimization goals Isolation, full virtualization Memory sharing, 
frequent domain transitions 

CHERI hybridizes the models: pick two! 
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CHERI capabilities 

•  Sealed bit prevents further modification 

•  Object types atomically link code, data capabilities 

•  CCall/CReturn instructions provide hardware- 
assisted, software-defined domain transitions 
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CheriBSD object capabilities 
•  In-process object-capability model  

•  libcheri loads and links classes, 
instantiates objects 

•  Per-thread capability register file 
describes its protection domain 

•  Domain transition within threads 
via register-file transformation 

•  CCall/CReturn exception handlers 
unseal capabilities, allow delegation 

•  Trusted stack provides reliable 
software-defined return, recovery 

•  Many other software-defined models 
possible; e.g., asynchronous closures 
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Object-capability call/return 
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•  Initial registers after execve() 
grant ambient authority 

•  Synchronous function-like call 
eases application/library 
adaptation 

•  CCall/CReturn ABI clears 
unused registers to prevent 
leakage 

•  Only authorized system 
classes can make system calls 

•  Constant overhead to 
function-call cost 
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CHERI hardware/software prototypes 

•  Bluespec FPGA prototype 

•  64-bit MIPS + CHERI ISA 

•  Pipelined, L1/L2 caches, MMU 

•  Synthesizes at ~100MHz 

•  Capability-aware software 

•  CheriBSD OS 

•  CHERI clang/LLVM compiler 

•  Adapted applications 

•  Open-source release 
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Application implications 

Pros 
•  Single address-space 

programming model 

•  Referential integrity matches 
programmer model 

•  Modest work to insert 
protection-domain boundaries 

•  Objects permit mutual distrust 

•  Constant (low) overhead 
relative to function calls even 
with large memory flows 

Cons 
•  Still have to reason about the 

security properties 

•  Shared memory is more subtle 
than copy semantics 

•  Capability overhead in data 
cache is real and measurable 

•  ABI subtleties between MIPS 
and CHERI compiled code 

•  Lower overhead raises further 
cache side-channel concerns 
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Conclusions 
•  Hybrid object-capability model over memory capabilities 

•  Software-defined, fine-grained, in-address-space 
compartmentalization 

•  Cleanly extends the MMU-based process model 

•  Targets C-language userspace TCBs 

•  Non-IPC model supports library compartmentalization 

•  Orders of magnitude more efficient 
compartmentalization that conventional designs 

•  Open-source reference implementation, ISA specification: 

http://www.cheri-cpu.org/  
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