
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the
Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions, and/or
findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

CHERI
A Hybrid Capability-System Architecture for

Scalable Software Compartmentalization
Robert N.M. Watson*, Jonathan Woodruff*, Peter G. Neumann†, Simon W. Moore*,

Jonathan Anderson‡, David Chisnall*, Nirav Dave†, Brooks Davis†, Khilan Gudka*, Ben Laurie§,
Steven J. Murdoch¶, Robert Norton*, Michael Roe*, Stacey Son, and Munraj Vadera*

*University of Cambridge, †SRI International, ‡Memorial University,

§Google UK Ltd, ¶University College London

IEEE Symposium on Security and Privacy
18 May 2015

Application compartmentalization

Application compartmentalization mitigates
vulnerabilities by decomposing applications into
isolated compartments delegated limited rights

2

UNIX process

Kernel

main loop

vulnerable
decompression

code

Kernel

UNIX process Capability-mode process

main loop
vulnerable

decompression
code

Compartmentalized gunzipConventional gunzip

3

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation

D
at

a-
ce

nt
er

ed
 c

om
pa

rtm
en

ta
lis

at
io

n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

•  Many possible compartmentalizations:

•  Trade off security, complexity, performance

•  But the process model is problematic:

•  Virtual addressing scales poorly due to page
tables, Translation Look-aside Buffer (TLB)

•  Multiple address spaces and Inter-Process
Communication (IPC) are hard to program

•  Quite poor for library compartmentalization
due to memory-centered APIs (e.g, zlib)

CHERI capability model
•  ISCA 2014: Fine-grained, in-address-space memory protection

via a capability model

•  Capabilities replace pointers for data references

•  Capability registers and tagged memory enforce
strong pointer and control-flow integrity, bounds checking

•  Hybrid model composes naturally with an MMU

•  ASPLOS 2015: Compiler support for capabilities

•  Converge fat-pointer and capability models

•  C pointers compiled into capabilities with various ABIs

•  Can we build efficient compartmentalization over
CHERI memory protection ?

4

Virtual memory vs. capabilities

5

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C

code, data structures

Hardware MMU, TLB Capability registers,
tagged memory

Costs TLB, page tables, lookups,
shootdowns

Per-pointer overhead,
context switching

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

CHERI hybridizes the models: pick two!

6

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

permissions (31 bits) otype (24bits) s

length (64 bits)

offset (64 bits)

base (64 bits)

CHERI capabilities

•  Sealed bit prevents further modification

•  Object types atomically link code, data capabilities

•  CCall/CReturn instructions provide hardware-
assisted, software-defined domain transitions

7

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

CheriBSD object capabilities
•  In-process object-capability model

•  libcheri loads and links classes,
instantiates objects

•  Per-thread capability register file
describes its protection domain

•  Domain transition within threads
via register-file transformation

•  CCall/CReturn exception handlers
unseal capabilities, allow delegation

•  Trusted stack provides reliable
software-defined return, recovery

•  Many other software-defined models
possible; e.g., asynchronous closures

8

Virtual
address
space

…

$c0
$c1
$c2

$c31

$c3

…

$c0
$c1
$c2

$c31

$c3

Thread1
capability
registers

Thread2
capability
registers

Object-capability call/return

Compartmentalized object

Ambient object

Compartmentalized object

Ambient object

Kernel

CCall

CCall

System
call

CReturn

CReturn

System-
call return

CReturnCCall

•  Initial registers after execve()
grant ambient authority

•  Synchronous function-like call
eases application/library
adaptation

•  CCall/CReturn ABI clears
unused registers to prevent
leakage

•  Only authorized system
classes can make system calls

•  Constant overhead to
function-call cost

9

CHERI hardware/software prototypes

•  Bluespec FPGA prototype

•  64-bit MIPS + CHERI ISA

•  Pipelined, L1/L2 caches, MMU

•  Synthesizes at ~100MHz

•  Capability-aware software

•  CheriBSD OS

•  CHERI clang/LLVM compiler

•  Adapted applications

•  Open-source release

10

Implementation on FPGA

11

Application implications

Pros
•  Single address-space

programming model

•  Referential integrity matches
programmer model

•  Modest work to insert
protection-domain boundaries

•  Objects permit mutual distrust

•  Constant (low) overhead
relative to function calls even
with large memory flows

Cons
•  Still have to reason about the

security properties

•  Shared memory is more subtle
than copy semantics

•  Capability overhead in data
cache is real and measurable

•  ABI subtleties between MIPS
and CHERI compiled code

•  Lower overhead raises further
cache side-channel concerns

12

Conclusions
•  Hybrid object-capability model over memory capabilities

•  Software-defined, fine-grained, in-address-space
compartmentalization

•  Cleanly extends the MMU-based process model

•  Targets C-language userspace TCBs

•  Non-IPC model supports library compartmentalization

•  Orders of magnitude more efficient
compartmentalization that conventional designs

•  Open-source reference implementation, ISA specification:

http://www.cheri-cpu.org/

13

