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Abstract
Contemporary network stacks are masterpieces of generality, sup-
porting many edge-node and middle-node functions. Generality
comes at a high performance cost: current APIs, memory models,
and implementations drastically limit the effectiveness of increas-
ingly powerful hardware. Generality has historically been required
so that individual systems could perform many functions. How-
ever, as providers have scaled services to support millions of users,
they have transitioned toward thousands (or millions) of dedicated
servers, each performing a few functions. We argue that the over-
head of generality is now a key obstacle to effective scaling, making
specialization not only viable, but necessary.

We present Sandstorm and Namestorm, web and DNS servers
that utilize a clean-slate userspace network stack that exploits knowl-
edge of application-specific workloads. Based on the netmap frame-
work, our novel approach merges application and network-stack
memory models, aggressively amortizes protocol-layer costs based
on application-layer knowledge, couples tightly with the NIC event
model, and exploits microarchitectural features. Simultaneously, the
servers retain use of conventional programming frameworks. We
compare our approach with the FreeBSD and Linux stacks using
the nginx web server and NSD name server, demonstrating 2–10×
and 9× improvements in web-server and DNS throughput, lower
CPU usage, linear multicore scaling, and saturated NIC hardware.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Architec-
ture and Design — Network communications

General Terms: Design, performance

Keywords: Network stacks; network performance; network-
stack specialization; clean-slate design

1. INTRODUCTION
Conventional network stacks were designed in an era where indi-

vidual systems had to perform multiple diverse functions. In the last
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decade, the advent of cloud computing and the ubiquity of network-
ing has changed this model; today, large content providers serve
hundreds of millions of customers. To scale their systems, they are
forced to employ many thousands of servers, with each providing
only a single network service. Yet most content is still served with
conventional general-purpose network stacks.

These general-purpose stacks have not stood still, but today’s
stacks are the result of numerous incremental updates on top of code-
bases that were originally developed in the early 1990s. Arguably,
these network stacks have proved to be quite efficient, flexible, and
reliable, and this is the reason that they still form the core of contem-
porary networked systems. They also provide a stable programming
API, simplifying software development. But this generality comes
with significant costs, and we argue that the overhead of generality
is now a key obstacle to effective scaling, making specialization not
only viable, but necessary.

In this paper we revisit the idea of specialized network stacks.
In particular, we develop Sandstorm, a specialized userspace stack
for serving static web content, and Namestorm, a specialized stack
implementing a high performance DNS server. More importantly,
however, our approach does not simply shift the network stack to
userspace: we also promote tight integration and specialization of
application and stack functionality, achieving cross-layer optimiza-
tions antithetical to current design practices.

Servers such as Sandstorm could be used for serving images such
as the Facebook logo, as OCSP [20] responders for certificate revo-
cations, or as front end caches to popular dynamic content. This is
a role that conventional stacks should be good at: nginx [6] uses the
sendfile() system call to hand over serving static content to the
operating system. FreeBSD and Linux then implement zero-copy
stacks, at least for the payload data itself, using scatter-gather to di-
rectly DMA the payload from the disk buffer cache to the NIC. They
also utilize the features of smart network hardware, such as TCP
Segmentation Offload (TSO) and Large Receive Offload (LRO) to
further improve performance. With such optimizations, nginx does
perform well, but as we will demonstrate, a specialized stack can
outperform it by a large margin.

Namestorm is aimed at handling extreme DNS loads, such as
might be seen at the root nameservers, or when a server is under
a high-rate DDoS attack. The open-source state of the art here is
NSD [5], which combined with a modern OS that minimizes data
copies when sending and receiving UDP packets, performs well.
Namestorm, however, can outperform it by a factor of nine.

Our userspace web server and DNS server are built upon
FreeBSD’s netmap [31] framework, which directly maps the NIC
buffer rings to userspace. We will show that not only is it possible for
a specialized stack to beat nginx, but on data-center-style networks
when serving small files typical of many web pages, it can achieve



three times the throughput on older hardware, and more than six
times the throughput on modern hardware supporting DDIO1.

The demonstrated performance improvements come from four
places. First, we implement a complete zero-copy stack, not only
for payload but also for all packet headers, so sending data is very
efficient. Second, we allow aggressive amortization that spans tra-
ditionally stiff boundaries – e.g., application-layer code can request
pre-segmentation of data intended to be sent multiple times, and
extensive batching is used to mitigate system-call overhead from
userspace. Third, our implementation is synchronous, clocked from
received packets; this improves cache locality and minimizes the
latency of sending the first packet of the response. Finally, on re-
cent systems, Intel’s DDIO provides substantial benefits, but only if
packets to be sent are already in the L3 cache and received packets
are processed to completion immediately. It is hard to ensure this
on conventional stacks, but a special-purpose stack can get much
closer to this ideal.

Of course, userspace stacks are not a novel concept. Indeed, the
Cheetah web server for MIT’s XOK Exokernel [19] operating sys-
tem took a similar approach, and demonstrated significant perfor-
mance gains over the NCSA web server in 1994. Despite this, the
concept has never really taken off, and in the intervening years con-
ventional stacks have improved immensely. Unlike XOK, our spe-
cialized userspace stacks are built on top of a conventional FreeBSD
operating system. We will show that it is possible to get all the per-
formance gains of a specialized stack without needing to rewrite all
the ancillary support functions provided by a mature operating sys-
tem (e.g., the filesystem). Combined with the need to scale server
clusters, we believe that the time has come to re-evaluate special-
purpose stacks on today’s hardware.

The key contributions of our work are:

• We discuss many of the issues that affect performance in con-
ventional stacks, even though they use APIs aimed at high
performance such as sendfile() and recvmmsg().

• We describe the design and implementation of multiple mod-
ular, highly specialized, application-specific stacks built over
a commodity operating system while avoiding these pitfalls.
In contrast to prior work, we demonstrate that it is possible
to utilize both conventional and specialized stacks in a single
system. This allows us to deploy specialization selectively, op-
timizing networking while continuing to utilize generic OS
components such as filesystems without disruption.

• We demonstrate that specialized network stacks designed for
aggressive cross-layer optimizations create opportunities for
new and at times counter-intuitive hardware-sensitive opti-
mizations. For example, we find that violating the long-held
tenet of data-copy minimization can increase DMA perfor-
mance for certain workloads on recent CPUs.

• We present hardware-grounded performance analyses of our
specialized network stacks side-by-side with highly opti-
mized conventional network stacks. We evaluate our opti-
mizations over multiple generations of hardware, suggesting
portability despite rapid hardware evolution.

• We explore the potential of a synchronous network stack
blended with asynchronous application structures, in stark
contrast to conventional asynchronous network stacks sup-
porting synchronous applications. This approach optimizes
cache utilization by both the CPU and DMA engines, yielding
as much as 2-10× conventional stack performance.

1Direct Data I/O. For more details, see Section 2.4

2. SPECIAL-PURPOSE ARCHITECTURE
What is the minimum amount of work that a web server can per-

form to serve static content at high speed? It must implement a
MAC protocol, IP, TCP (including congestion control), and HTTP.
However, their implementations do not need to conform to the con-
ventional socket model, split between userspace and kernel, or even
implement features such as dynamic TCP segmentation. For a web
server that serves the same static content to huge numbers of clients
(e.g., the Facebook logo or GMail JavaScript), essentially the same
functions are repeated again and again. We wish to explore just how
far it is possible to go to improve performance. In particular, we
seek to answer the following questions:

• Conventional network stacks support zero copy for OS-
maintained data – e.g., filesystem blocks in the buffer cache,
but not for application-provided HTTP headers or TCP packet
headers. Can we take the zero-copy concept to its logical ex-
treme, in which received packet buffers are passed from the
NIC all the way to the application, and application packets to
be sent are DMAed to the NIC for transmission without even
the headers being copied?

• Conventional stacks make extensive use of queuing and
buffering to mitigate context switches and keep CPUs and
NICs busy, at the cost of substantially increased cache foot-
print and latency. Can we adopt a bufferless event model that
reimposes synchrony and avoids large queues that exceed
cache sizes? Can we expose link-layer buffer information,
such as available space in the transmit descriptor ring, to pre-
vent buffer bloat and reduce wasted work constructing packets
that will only be dropped?

• Conventional stacks amortize expenses internally, but cannot
amortize repetitive costs spanning application and network
layers. For example, they amortize TCP connection lookup
using Large Receive Offload (LRO) but they cannot amortize
the cost of repeated TCP segmentation of the same data trans-
mitted multiple times. Can we design a network-stack API
that allows cross-layer amortizations to be accomplished such
that after the first client is served, no work is ever repeated
when serving subsequent clients?

• Conventional stacks embed the majority of network code in
the kernel to avoid the cost of domain transitions, limiting two-
way communication flow through the stack. Can we make
heavy use of batching to allow device drivers to remain in the
kernel while colocating stack code with the application and
avoiding significant latency overhead?

• Can we avoid any data-structure locking, and even cache-line
contention, when dealing with multi-core applications that do
not require it?

Finally, while performing all the above, is there a suitable program-
ming abstraction that allows these components to be reused for other
applications that may benefit from server specialization?

2.1 Network-stack Modularization
Although monolithic kernels are the de facto standard for net-

worked systems, concerns with robustness and flexibility continue to
drive exploration of microkernel-like approaches. Both Sandstorm
and Namestorm take on several microkernel-like qualities:

Rapid deployment & reusability: Our prototype stack is highly
modular, and synthesized from the bottom up using traditional
dynamic libraries as building blocks (components) to construct a



special-purpose system. Each component corresponds to a stand-
alone service that exposes a well-defined API. Our specialized net-
work stacks are built by combining four basic components:

• The netmap I/O (libnmio) library that abstracts traditional
data-movement and event-notification primitives needed by
higher levels of the stack.

• libeth component, a lightweight Ethernet-layer implemen-
tation.

• libtcpip that implements our optimized TCP/IP layer.

• libudpip that implements a UDP/IP layer.

Figure 1 depicts how some of these components are used with a sim-
ple application layer to form Sandstorm, the optimized web server.

Splitting functionality into reusable components does not require
us to sacrifice the benefits of exploiting cross-layer knowledge to
optimize performance, as memory and control flow move easily
across API boundaries. For example, Sandstorm interacts directly
with libnmio to preload and push segments into the appropriate
packet-buffer pools. This preserves a service-centric approach.

Developer-friendly: Despite seeking inspiration from microkernel
design, our approach maintains most of the benefits of conventional
monolithic systems:

• Debugging is at least as easy (if not easier) compared to
conventional systems, as application-specific, performance-
centric code shifts from the kernel to more accessible
userspace.

• Our approach integrates well with the general-purpose op-
erating systems: rewriting basic components such as device
drivers or filesystems is not required. We also have direct ac-
cess to conventional debugging, tracing, and profiling tools,
and can also use the conventional network stack for remote
access (e.g., via SSH).

• Instrumentation in Sandstorm is a simple and straightforward
task that allows us to explore potential bottlenecks as well as
necessary and sufficient costs in network processing across
application and stack. In addition, off-the-shelf performance
monitoring and profiling tools “just work”, and a synchronous
design makes them easier to use.

2.2 Sandstorm web server design
Rizzo’s netmap framework provides a general-purpose API that

allows received packets to be mapped directly to userspace, and
packets to be transmitted to be sent directly from userspace to the
NIC’s DMA rings. Combined with batching to reduce system calls,
this provides a high-performance framework on which to build
packet-processing applications. A web server, however, is not nor-
mally thought of as a packet-processing application, but one that
handles TCP streams.

To serve a static file, we load it into memory, and a priori generate
all the packets that will be sent, including TCP, IP, and link-layer
headers. When an HTTP request for that file arrives, the server must
allocate a TCP-protocol control block (TCB) to keep track of the
connection’s state, but the packets to be sent have already been
created for each file on the server.2

The majority of the work is performed during inbound TCP ACK
processing. The IP header is checked, and if it is acceptable, a hash
2Our implementation packetizes on startup, but it could equally well
do it on demand, the first time a file is requested, and the resulting
packets retained to serve future requests, managed as an LRU cache.
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Figure 1: Sandstorm high-level architecture view.

table is used to locate the TCB. The offset of the ACK number from
the start of the connection is used to locate the next prepackaged
packet to send, and if permitted by the congestion and receive win-
dows, subsequent packets. To send these packets, the destination
address and port must be rewritten, and the TCP and IP checksums
incrementally updated. The packet can then be directly fetched by
the NIC using netmap. All reads of the ACK header and modifi-
cations to the transmitted packets are performed in a single pass,
ensuring that both the headers and the TCB remain in the CPU’s L1
cache.

Once a packet has been DMAed to the NIC, the packet buffer
is returned to Sandstorm, ready to be incrementally modified again
and sent to a different client. However, under high load, the same
packet may need to be queued in the TX ring for a second client
before it has finished being sent to the first client. The same packet
buffer cannot be in the TX ring twice, with different destination
address and port. This presents us with two design options:

• We can maintain more than one copy of each packet in mem-
ory to cope with this eventuality. The extra copy could be
created at startup, but a more efficient solution would cre-
ate extra copies on demand whenever a high-water mark is
reached, and then retained for future use.

• We can maintain only one long-term copy of each packet,
creating ephemeral copies each time it needs to be sent.

We call the former a pre-copy stack (it is an extreme form of zero-
copy stack because in the steady state it never copies, but differs
from the common use of the term “zero copy”), and the latter a
memcpy stack. A pre-copy stack performs less per-packet work than
a memcpy stack, but requires more memory; because of this, it has
the potential to thrash the CPU’s L3 cache. With the memcpy stack,
it is more likely for the original version of a packet to be in the L3
cache, but more work is done. We will evaluate both approaches,
because it is far from obvious how CPU cycles trade off against
cache misses in modern processors.
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Figure 2: Several tradeoffs are visible in these packet traces taken on nginx/Linux and Sandstorm servers that are busy (but unsaturated).

Figure 2 illustrates tradeoffs through traces taken on nginx/Linux
and pre-copy Sandstorm servers that are busy (but unsaturated). On
the one hand, a batched design measurably increases TCP round-
trip time with a relatively idle CPU. On the other hand, Sandstorm
amortizes or eliminates substantial parts of per-request processing
through a more efficient architecture. Under light load, the benefits
are pronounced; at saturation, the effect is even more significant.

Although most work is synchronous within the ACK processing
code path, TCP still needs timers for certain operations. Sandstorm’s
timers are scheduled by polling the Time Stamp Counter (TSC): al-
though not as accurate as other clock sources, it is accessible from
userspace at the cost of a single CPU instruction (on modern hard-
ware). The TCP slow timer routine is invoked periodically (every
~500ms) and traverses the list of active TCBs: on RTO expiration,
the congestion window and slow-start threshold are adjusted accord-
ingly, and any unacknowledged segments are retransmitted. The
same routine also releases TCBs that have been in TIME_WAIT
state for longer than 2*MSL. There is no buffering whatsoever re-
quired for retransmissions: we identify the segment that needs to be
retransmitted using the oldest unacknowledged number as an offset,
retrieve the next available prepackaged packet and adjust its head-
ers accordingly, as with regular transmissions. Sandstorm currently
implements TCP Reno for congestion control.

2.3 The Namestorm DNS server
The same principles applied in the Sandstorm web server, also

apply to a wide range of servers returning the same content to mul-
tiple users. Authoritative DNS servers are often targets of DDoS
attacks – they represent a potential single point of failure, and be-
cause DNS traditionally uses UDP, lacks TCP’s three way hand-
shake to protect against attackers using spoofed IP addresses. Thus,
high performance DNS servers are of significant interest.

Unlike TCP, the conventional UDP stack is actually quite
lightweight, and DNS servers already preprocess zone files and store
response data in memory. Is there still an advantage running a spe-
cialized stack?

Most DNS-request processing is simple. When a request arrives,
the server performs sanity checks, hashes the concatenation of the
name and record type being requested to find the response, and sends
that data. We can preprocess the responses so that they are already
stored as a prepackaged UDP packet. As with HTTP, the destination
address and port must be rewritten, the identifier must be updated,
and the UDP and IP checksums must be incrementally updated.
After the initial hash, all remaining processing is performed in one
pass, allowing processing of DNS response headers to be performed
from the L1 cache. As with Sandstorm, we can use pre-copy or

memcpy approaches so that more than one response for the same
name can be placed in the DMA ring at a time.

Our specialized userspace DNS server stack is composed of three
reusable components, libnmio, libeth, libudpip, and a DNS-specific
application layer. As with Sandstorm, Namestorm uses FreeBSD’s
netmap API, implementing the entire stack in userspace, and uses
netmap’s batching to amortize system call overhead. libnmio and
libeth are the same as used by Sandstorm, whereas libudpip contains
UDP-specific code closely integrated with an IP layer. Namestorm
is an authoritative nameserver, so it does not need to handle recur-
sive lookups.

Namestorm preprocesses the zone file upon startup, creating DNS
response packets for all the entries in the zone, including the answer
section and any glue records needed. In addition to type-specific
queries for A, NS, MX and similar records, DNS also allows queries
for ANY. A full implementation would need to create additional re-
sponse packets to satisfy these queries; our implementation does
not yet do so, but the only effect this would have is to increase the
overall memory footprint. In practice, ANY requests prove compar-
atively rare.

Namestorm indexes the prepackaged DNS response packets us-
ing a hash table. There are two ways to do this:

• Index by concatenation of request type (e.g., A, NS, etc)
and fully-qualified domain name (FQDN); for example,
“www.example.com”.

• Index by concatenation of request type and the wire-format
FQDN as this appears in an actual query; for example,
“[3]www[7]example[3]com[0]” where [3] is a single byte
containing the numeric value 3.

Using the wire request format is obviously faster, but DNS permits
compression of names. Compression is common in DNS answers,
where the same domain name occurs more than once, but proves
rare in requests. If we implement wire-format hash keys, we must
first perform a check for compression; these requests are decom-
pressed and then reencoded to uncompressed wire-format for hash-
ing. The choice is therefore between optimizing for the common
case, using wire-format hash keys, or optimizing for the worst case,
assuming compression will be common, and using FQDN hash keys.
The former is faster, but the latter is more robust to a DDoS attack
by an attacker taking advantage of compression. We evaluate both
approaches, as they illustrate different performance tradeoffs.

Our implementation does not currently handle referrals, so it can
handle only zones for which it is authoritative for all the sub-zones.
It could not, for example, handle the .com zone, because it would
receive queries for www.example.com, but only have hash table
entries for example.com. Truncating the hash key is trivial to do



Function Parameters Description

tcpip_init() none Initialize TCP layer (timers, callbacks etc).
tcp_bind() tcb, ip, port Bind a specific TCB to an IP and port.
tcp_listen() tcb Set a TCB to LISTEN state.
tcp_accept() tcb, accept_callback Set an application-specific accept callback to allow the application to

control which connections to accept.
tcp_recv() tcb, receive_callback Set an application-specific receive callback to be called when data

from a connection is available for the application.
tcp_sent() tcb, sent_callback Set an application-specific sent callback to be called when data

previously written to a connection has been successfully delivered.
tcp_write() tcb, content, number of segments Push data to a TCP connection.
tcp_close() tcb Close a TCP connection, equivalent to BSD socket shutdown().

netmap_init() interfaces Initialize netmap I/O library for specific interfaces.
netmap_input_set_cb() interface, callback function Set a callback to push raw RX data to higher layers (e.g., Ethernet).
netmap_input() interface Start the input engine on a specific interface.
netmap_output() nring, pktbuf pool, slot index, flags Depending on flags, memory or zero copy a packet to the TX ring –

this function also implements TX batching.

Table 1: A selection of libtcpip and libnmio APIs.

1. Call RX poll to receive a batch of received packets that have been
stored in the NIC’s RX ring; block if none are available.

2. For each ACK packet in the batch:

3. Perform Ethernet and IP input sanity checks.

4. Locate the TCB for the connection.

5. Update the acknowledged sequence numbers in TCB; update
receive window and congestion window.

6. For each new TCP data packet that can now be sent, or each
lost packet that needs retransmitting:

7. Find a free copy of the TCP data packet (or clone one
if needed).

8. Correct the destination IP address, destination port,
sequence numbers, and incrementally update the TCP
checksum.

9. Add the packet to the NIC’s TX ring.
10. Check if δ t has passed since last TX poll. If it has, call

TX poll to send all queued packets.

11. Loop back to step 1

Figure 3: Outline of the main Sandstorm event loop.

as part of the translation to an FQDN, so if Namestorm were to
be used for a domain such as .com, the FQDN version of hashing
would be a reasonable approach.

2.4 Main event loop
To understand how the pieces fit together and the nature of inter-

action between Sandstorm, Namestorm, and netmap, we consider
the timeline for processing ACK packets in more detail. Figure 3
summarizes Sandstorm’s main loop. SYN/FIN handling, HTTP, and
timers are omitted from this outline, but also take place. However,
most work is performed in the ACK processing code.

One important consequence of this architecture is that the NIC’s
TX ring serves as the sole output queue, taking the place of conven-
tional socket buffers and software network-interface queues. This
is possible because retransmitted TCP packets are generated in the
same way as normal data packets. As Sandstorm is fast enough to
saturate two 10Gb/s NICs with a single thread on one core, data
structures are also lock free.

When the workload is heavy enough to saturate the CPU, the
system-call rate decreases. The receive batch size increases as calls
to RX poll become less frequent, improving efficiency at the ex-
pense of increased latency. Under extreme load, the RX ring will

fill, dropping packets. At this point the system is saturated and, as
with any web server, it must bound the number of open connections
by dropping some incoming SYNs.

Under heavier load, the TX-poll system call happens in the RX
handler. In our current design, δ t, the interval between calls to TX
poll in the steady state, is a constant set to 80µs. The system-call rate
under extreme load could likely be decreased by further increasing
δ t, but as the pre-copy version of Sandstorm can easily saturate all
six 10Gb/s NICs in our systems for all file sizes, we have thus far
not needed to examine this. Under lighter load, incoming packets
might arrive too rarely to provide acceptable latency for transmitted
packets; a 5ms timer will trigger transmission of straggling packets
in the NIC’s TX ring.

The difference between the pre-copy version and the memcpy
version of Sandstorm is purely in step 7, where the memcpy version
will simply clone the single original packet rather than search for
an unused existing copy.

Contemporary Intel server processors support Direct Data I/O
(DDIO). DDIO allows NIC-originated Direct Memory Access
(DMA) over PCIe to access DRAM through the processor’s Last-
Level Cache (LLC). For network transmit, DDIO is able to pull
data from the cache without a detour through system memory; like-
wise, for receive, DMA can place data in the processor cache. DDIO
implements administrative limits on LLC utilization intended to pre-
vent DMA from thrashing the cache. This design has the potential
to significantly reduce latency and increase I/O bandwidth.

Memcpy Sandstorm forces the payload of the copy to be in the
CPU cache from which DDIO can DMA it to the NIC without
needing to load it from memory again. With pre-copy, the CPU
only touches the packet headers, so if the payload is not in the CPU
cache, DDIO must load it, potentially impacting performance. These
interactions are subtle, and we will look at them in detail.

Namestorm follows the same basic outline, but is simpler as DNS
is stateless: it does not need a TCB, and sends a single response
packet to each request.

2.5 API
As discussed, all of our stack components provide well-defined

APIs to promote reusability. Table 1 presents a selection of API
functions exposed by libnmio and libtcpip. In this section
we describe some of the most interesting properties of the APIs.
libnmio is the lowest-level component: it handles all interac-

tion with netmap and abstracts the main event loop. Higher layers



(e.g., libeth) register callback functions to receive raw incoming
data as well as set timers for periodic events (e.g., TCP slow timer).
The function netmap_ouput() is the main transmission routine:
it enqueues a packet to the transmission ring either by memory or
zero copying and also implements an adaptive batching algorithm.

Since there is no socket layer, the application must directly in-
terface with the network stack. With TCP as the transport layer, it
acquires a TCB (TCP Control Block), binds it to a specific IPv4 ad-
dress and port, and sets it to LISTEN state using API functions. The
application must also register callback functions to accept connec-
tions, receive and process data from active connections, as well as
act on successful delivery of sent data (e.g., to close the connection
or send more data).

3. EVALUATION
To explore Sandstorm and Namestorm’s performance and be-

havior, we evaluated using both older and more recent hardware.
On older hardware, we employed Linux 3.6.7 and FreeBSD 9-
STABLE. On newer hardware, we used Linux 3.12.5 and FreeBSD
10-STABLE. We ran Sandstorm and Namestorm on FreeBSD.

For the old hardware, we use three systems: two clients and one
server, connected via a 10GbE crossbar switch. All test systems are
equipped with an Intel 82598EB dual port 10GbE NIC, 8GB RAM,
and two quad-core 2.66 GHz Intel Xeon X5355 CPUs. In 2006,
these were high-end servers. For the new hardware, we use seven
systems; six clients and one server, all directly connected via ded-
icated 10GbE links. The server has three dual-port Intel 82599EB
10GbE NICs, 128GB RAM and a quad-core Intel Xeon E5-2643
CPU. In 2014, these are well-equipped contemporary servers.

The most interesting improvements between these hardware gen-
erations are in the memory subsystem. The older Xeons have a con-
ventional architecture with a single 1,333MHz memory bus serving
both CPUs. The newer machines, as with all recent Intel server pro-
cessors, support Data Direct I/O (DDIO), so whether data to be sent
is in the cache can have a significant impact on performance.

Our hypothesis is that Sandstorm will be significantly faster than
nginx on both platforms; however, the reasons for this may differ.
Experience [18] has shown that the older systems often bottleneck
on memory latency, and as Sandstorm is not CPU-intensive, we
would expect this to be the case. A zero-copy stack should thus be a
big win. In addition, as cores contend for memory, we would expect
that adding more cores does not help greatly.

On the other hand, with DDIO, the new systems are less likely to
bottleneck on memory. The concern, however, would be that DDIO
could thrash at least part of the CPU cache. On these systems, we
expect that adding more cores would help performance, but that in
doing so, we may experience scalability bottlenecks such as lock
contention in conventional stacks. Sandstorm’s lock-free stack can
simply be replicated onto multiple 10GbE NICs, with one core per
two NICs to scale performance. In addition, as load increases, the
number of packets to be sent or received per system call will increase
due to application-level batching. Thus, under heavy load, we would
hope that the number of system calls per second to still be acceptable
despite shifting almost all network-stack processing to userspace.

The question, of course, is how well do these design choices play
out in practice?

3.1 Experiment Design: Sandstorm
We evaluated the performance of Sandstorm through a set of

experiments and compare our results against the nginx web server
running on both FreeBSD and Linux. Nginx is a high-performance,
low-footprint web server that follows the non-blocking, event-driven
model: it relies on OS primitives such as kqueue() for readiness

event notifications, it uses sendfile() to send HTTP payload
directly from the kernel, and it asynchronously processes requests.

Contemporary web pages are immensely content-rich, but they
mainly consist of smaller web objects such as images and scripts.
The distribution of requested object sizes for Yahoo! CDN, reveals
that 90% of the content is smaller than 25KB [11]. The conven-
tional network stack and web-server application perform well when
delivering large files by utilizing OS primitives and NIC hardware
features. Conversely, multiple simultaneous short-lived HTTP con-
nections are considered a heavy workload that stresses the kernel-
userspace interface and reveals performance bottlenecks: even with
sendfile() to send the payload, the size of the transmitted data
is not quite enough to compensate for the system cost.

For all the benchmarks, we configured nginx to serve content
from a RAM disk to eliminate disk-related I/O bottlenecks. Sim-
ilarly, Sandstorm preloads the data to be sent and performs its
pre-segmentation phase before the experiments begin. We use
weighttp [9] to generate load with multiple concurrent clients. Each
client generates a series of HTTP requests, with a new connection
being initiated immediately after the previous one terminates. For
each experiment we measure throughput, and we vary the size of
the file served, exploring possible tradeoffs between throughput and
system load. Finally, we run experiments with a realistic workload
by using a trace of files with sizes that follow the distribution of
requested HTTP objects of the Yahoo! CDN.

3.2 Sandstorm Results
First, we wish to explore how file size affects performance. Sand-

storm is designed with small files in mind, and batching to reduce
overheads, whereas the conventional sendfile() ought to be
better for larger files.

Figure 4 shows performance as a function of content size, compar-
ing pre-copy Sandstorm and nginx running on both FreeBSD and
Linux. With a single 10GbE NIC (Fig. 4a and 4d), Sandstorm out-
performs nginx for smaller files by ~23–240%. For larger files, all
three configurations saturate the link. Both conventional stacks are
more CPU-hungry for the whole range of file sizes tested, despite
potential advantages such as TSO on bulk transfers.

To scale to higher bandwidths, we added more 10GbE NICs and
client machines. Figure 4b shows aggregate throughput with four
10GbE NICs. Sandstorm saturates all four NICs using just two CPU
cores, but neither Linux nor FreeBSD can saturate the NICs with
files smaller than 128KB, even though they use four CPU cores.

As we add yet more NICs, shown in Figure 4c, the difference
in performance gets larger for a wider range of file sizes. With
6×10GbE NICs Sandstorm gives between 10% and 10× more
throughput than FreeBSD for file sizes in the range of 4–256KB.
Linux fares worse, experiencing a performance drop (see Figure 4c)
compared to FreeBSD with smaller file sizes and 5–6 NICs. Low
CPU utilization is normally good, but here (Figures 4f, 5b), idle time
is undesirable since the NICs are not yet saturated. We have not iden-
tified any single obvious cause for this degradation. Packet traces
show the delay to occur between the connection being accepted and
the response being sent. There is no single kernel lock being held
for especially long, and although locking is not negligible, it does
not dominate, either. The system suffers one soft page fault for every
two connections on average, but no hard faults, so data is already
in the disk buffer cache, and TCB recycling is enabled. This is an
example of how hard it can be to find performance problems with
conventional stacks. Interestingly, this was an application-specific
behavior triggered only on Linux: in benchmarks we conducted
with other web servers (e.g., lighttpd [3], OpenLiteSpeed [7]) we
did not experience a similar performance collapse on Linux with



4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

File size (KB)

T
h
ro
u
g
h
p
u
t
(G

b
p
s)

Sandstorm

nginx + FreeBSD

nginx + Linux

(a) Network throughput, 1 NIC

4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

File size (KB)

T
h
ro
u
g
h
p
u
t
(G

b
p
s)

Sandstorm

nginx + FreeBSD

nginx + Linux

(b) Network throughput, 4 NICs

4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

File size (KB)

T
h
ro
u
g
h
p
u
t
(G

b
p
s)

Sandstorm

nginx + FreeBSD

nginx + Linux

(c) Network throughput, 6 NICs

4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

80

100

File size (KB)

C
P
U

u
ti
li
za
ti
o
n
(%

)

Sandstorm

nginx + FreeBSD

nginx + Linux

(d) CPU utilization, 1 NIC

4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

80

100

File size (KB)

C
P
U

u
ti
li
za
ti
o
n
(%

)

Sandstorm

nginx + FreeBSD

nginx + Linux

(e) CPU utilization, 4 NICs

4 8 16 24 32 64 128 256 512 756 1024
0

20

40

60

80

100

File size (KB)

C
P
U

u
ti
li
za
ti
o
n
(%

)

Sandstorm

nginx + FreeBSD

nginx + Linux

(f) CPU utilization, 6 NICs

Figure 4: Sandstorm throughput vs. file sizes and number of NICs.
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Figure 5: Network throughput and CPU utilization vs. number of NICs while serving a Yahoo! CDN-like workload.

more than four NICs. We have chosen, however, to present the nginx
datasets as it offered the greatest overall scalability in both operating
systems.

It is clear that Sandstorm dramatically improves network perfor-
mance when it serves small web objects, but somewhat surprisingly,
it performs better for larger files too. For completeness, we evalu-
ate Sandstorm using a realistic workload: following the distribution
of requested HTTP object sizes of the Yahoo! CDN [11], we gen-
erated a trace of 1000 files ranging from a few KB up to ~20MB
which were served from both Sandstorm and nginx. On the clients,
we modified weighttp to benchmark the server by concurrently re-
questing files in a random order. Figures 5a and 5b highlight the
achieved network throughput and the CPU utilization of the server
as a function of the number of the network adapters. The network
performance improvement is more than 2× while CPU utilization
is reduced.

Finally, we evaluated whether Sandstorm handles high packet
loss correctly. With 80 simultaneous clients and 1% packet loss, as
expected, throughput plummets. FreeBSD achieves approximately
640Mb/s and Sandstorm roughly 25% less. This is not fundamental,
but due to FreeBSD’s more fine-grained retransmit timer and its
use of NewReno congestion control rather than Reno, which could
also be implemented in Sandstorm. Neither network nor server is

stressed in this experiment – if there had been a real congested link
causing the loss, both stacks would have filled it.

Throughout, we have invested considerable effort in profiling and
optimizing conventional network stacks, both to understand their
design choices and bottlenecks, and to provide the fairest possible
comparison. We applied conventional performance tuning to Linux
and FreeBSD, such as increasing hash-table sizes, manually tuning
CPU work placement for multiqueue NICs, and adjusting NIC pa-
rameters such as interrupt mitigation. In collaboration with Netflix,
we also developed a number of TCP and virtual-memory subsystem
performance optimizations for FreeBSD, reducing lock contention
under high packet loads. One important optimization is related to
sendfile(), in which contention within the VM subsystem oc-
curred while TCP-layer socket-buffer locks were held, triggering
a cascade to the system as a whole. These changes have been up-
streamed to FreeBSD for inclusion in a future release.

To copy or not to copy
The pre-copy variant of Sandstorm maintains more than one copy
of each segment in memory so that it can send the same segment to
multiple clients simultaneously. This requires more memory than
nginx serving files from RAM. The memcpy variant only enqueues
copies, requiring a single long-lived version of each packet, and
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Figure 6: Sandstorm throughput and CPU utilization vs. variable number of NICs and file sizes.

uses a similar amount of memory to nginx. How does this memcpy
affect performance? Figure 6 explores network throughput, CPU
utilization, and system-call rate for two- and six-NIC configurations.

With six NICs, the additional memcpy() marginally reduces
performance (Figure 6b) while exhibiting slightly higher CPU load
(Figure 6d). In this experiment, Sandstorm only uses three cores
to simplify the comparison, so around 75% utilization saturates
those cores. The memcpy variant saturates the CPU for files smaller
than 32KB, whereas the pre-copy variant does not. Nginx, using
sendfile() and all four cores, only catches up for file sizes of
512KB and above, and even then exhibits higher CPU load.

As file size decreases, the expense of SYN/FIN and HTTP-
request processing becomes measurable for both variants, but the
pre-copy version has more headroom so is affected less. It is inter-
esting to observe the effects of batching under overload with the
memcpy stack in Figure 6f. With large file sizes, pre-copy and mem-
cpy make the same number of system calls per second. With small
files, however, the memcpy stack makes substantially fewer system
calls per second. This illustrates the efficacy of batching: memcpy
has saturated the CPU, and consequently no longer polls the RX

queue as often. As the batch size increases, the system-call cost
decreases, helping the server weather the storm. The pre-copy vari-
ant is not stressed here and continues to poll frequently, but would
behave the same way under overload. In the end, the cost of the
additional memcpy is measurable, but still performs quite well.
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Figure 8: Namestorm performance measurements.

Results on contemporary hardware are significantly different
from those run on older pre-DDIO hardware. Figure 7 shows the
results obtained on our 2006-era servers. On the older machines,
Sandstorm outperforms nginx by a factor of three, but the memcpy
variant suffers a 30% decrease in throughput compared to pre-copy
Sandstorm as a result of adding a single memcpy to the code. It is
clear that on these older systems, memory bandwidth is the main
performance bottleneck.

With DDIO, memory bandwidth is not such a limiting factor. Fig-
ure 9 in Section 3.5 shows the corresponding memory read through-
put, as measured using CPU performance counters, for the network-
throughput graphs in Figure 6b. With small file sizes, the pre-copy
variant of Sandstorm appears to do more work: the L3 cache can-
not hold all of the data, so there are many more L3 misses than
with memcpy. Memory-read throughput for both pre-copy and ng-
inx are closely correlated with their network throughput, indicating
that DDIO is not helping on transmit: DMA comes from memory
rather than the cache. The memcpy variant, however, has higher net-
work throughput than memory throughput, indicating that DDIO is
transmitting from the cache. Unfortunately, this is offset by much
higher memory write throughput. Still, this only causes a small re-
duction in service throughput. Larger files no longer fit in the L3
cache, even with memcpy. Memory-read throughput starts to rise
with files above 64KB. Despite this, performance remains high and
CPU load decreases, indicating these systems are not limited by
memory bandwidth for this workload.

3.3 Experiment Design: Namestorm
We use the same clients and server systems to evaluate Name-

storm as we used for Sandstorm. Namestorm is expected to be
significantly more CPU-intensive than Sandstorm, mostly due to
fundamental DNS protocol properties: high packet rate and small
packets. Based on this observation, we have changed the network
topology of our experiment: we use only one NIC on the server
connected to the client systems via a 10GbE cut-through switch. In
order to balance the load on the server to all available CPU cores
we use four dedicated NIC queues and four Namestorm instances.

We ran Nominum’s dnsperf [2] DNS profiling software on the
clients. We created zone files of varying sizes, loaded them onto the
DNS servers, and configured dnsperf to query the zone repeatedly.

3.4 Namestorm Results
Figure 8a shows the performance of Namestorm and NSD run-

ning on Linux and FreeBSD when using a single 10GbE NIC. Per-
formance results of NSD are similar with both FreeBSD and Linux.

Neither operating system can saturate the 10GbE NIC, however, and
both show some performance drop as the zone file grows. On Linux,
NSD’s performance drops by ~14% (from ~689,000 to ~590,000
Queries/sec) as the zone file grows from 1 to 10,000 entries, and on
FreeBSD, it drops by ~20% (from ~720,000 to ~574,000 Qps). For
these benchmarks, NSD saturates all CPU cores on both systems.

For Namestorm, we utilized two datasets, one where the hash
keys are in wire-format (w/o compr.), and one where they are in
FQDN format (compr.). The latter requires copying the search term
before hashing it to handle possible compressed requests.

With wire-format hashing, Namestorm memcpy performance is
~11–13× better, depending on the zone size, when compared to the
best results from NSD with either Linux or FreeBSD. Namestorm’s
throughput drops by ~30% as the zone file grows from 1 to 10,000
entries (from ~9,310,000 to ~6,410,000 Qps). The reason for this
decrease is mainly the LLC miss rate, which more than doubles.
Dnsperf does not report throughput in Gbps, but given the typical
DNS response size for our zones we can calculate ~8.4Gbps and
~5.9Gbps for the smallest and largest zone respectively.

With FQDN-format hashing, Namestorm memcpy performance
is worse than with wire-format hashing, but is still ~9–13× better
compared to NSD. The extra processing with FQDN-format hashing
costs ~10–20% in throughput, depending on the zone size.

Finally, in Figure 8a we observe a noticeable performance over-
head with the pre-copy stack, which we explore in Section 3.5.

3.4.1 Effectiveness of batching
One of the biggest performance benefits for Namestorm is that

netmap provides an API that facilitates batching across the system-
call interface. To explore the effects of batching, we configured a
single Namestorm instance and one hardware queue, and reran our
benchmark with varying batch sizes. Figure 8b illustrates the results:
a more than 2× performance gain when growing the batch size from
1 packet (no batching) to 32 packets. Interestingly, the performance
of a single-core Namestorm without any batching remains more
than 2× better than NSD.

At a minimum, NSD has to make one system call to receive each
request and one to send a response. Recently Linux added the new
recvmmsg() and sendmmsg() system calls to receive and send
multiple UDP messages with a single call. These may go some
way to improving NSD’s performance compared to Namestorm.
They are, however, UDP-specific, and sendmmsg() requires the
application to manage its own transmit-queue batching. When we
implemented Namestorm, we already had libnmio, which abstracts
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Figure 9: Sandstorm memory read throughput, 6 NICs.

and handles all the batching interactions with netmap, so there is no
application-specific batching code in Namestorm.

3.5 DDIO
With DDIO, incoming packets are DMAed directly to the CPU’s

L3 cache, and outgoing packets are DMAed directly from the L3
cache, avoiding round trips from the CPU to the memory subsystem.
For lightly loaded servers in which the working set is smaller than
the L3 cache, or in which data is accessed with temporal locality
by the processor and DMA engine (e.g., touched and immediately
sent, or received and immediately accessed), DDIO can dramatically
reduce latency by avoiding memory traffic. Thus DDIO is ideal
for RPC-like mechanisms in which processing latency is low and
data will be used immediately before or after DMA. On heavily
loaded systems, it is far from clear whether DDIO will be a win
or not. For applications with a larger cache footprint, or in which
communication occurs at some delay from CPU generation or use
of packet data, DDIO could unnecessarily pollute the cache and
trigger additional memory traffic, damaging performance.

Intuitively, one might reasonably assume that Sandstorm’s pre-
copy mode might interact best with DDIO: as with sendfile()
based designs, only packet headers enter the L1/L2 caches, with
payload content rarely touched by the CPU. Figure 9 illustrates a
therefore surprising effect when operating on small file sizes: over-
all memory throughput from the CPU package, as measured using
performance counters situated on the DRAM-facing interface of the
LLC, sees significantly less traffic for the memcpy implementation
relative to the pre-copy one, which shows a constant rate roughly
equal to network throughput.

We believe this occurs because DDIO is, by policy, limited from
occupying most of the LLC: in the pre-copy cases, DDIO is re-
sponsible for pulling untouched data into the cache – as the file
data cannot fit in this subset of the cache, DMA access thrashes the
cache and all network transmit is done from DRAM. In the memcpy
case, the CPU loads data into the cache, allowing more complete
utilization of the cache for network data. However, as the DRAM
memory interface is not a bottleneck in the system as configured, the
net result of the additional memcpy, despite better cache utilization,
is reduced performance. As file sizes increase, the overall footprint
of memory copying rapidly exceeds the LLC size, exceeding net-
work throughput, at which point pre-copy becomes more efficient.
Likewise, one might mistakenly believe simply from inspection of
CPU memory counters that nginx is somehow benefiting from this
same effect: in fact, nginx is experiencing CPU saturation, and it is
not until file size reaches 512K that sufficient CPU is available to
converge with pre-copy’s saturation of the network link.

By contrast, Namestorm sees improved performance using the
memcpy implementation, as the cache lines holding packet data
must be dirtied due to protocol requirements, in which case per-

forming the memcpy has little CPU overhead yet allows much more
efficient use of the cache by DDIO.

It is much more difficult to reason about the interaction between a
conventional operating system, applications like nginx, and DDIO’s
effect on L3 cache behavior. Ideally, we would experiment by dis-
abling DDIO and monitoring the L3 cache miss rate, but there is no
way to disable it on the Xeon E5 CPUs we have used, nor modify
the policy that controls the fraction of the cache used by DDIO.

4. DISCUSSION
We developed Sandstorm and Namestorm to explore the hypothe-

sis that fundamental architectural change might be required to prop-
erly exploit rapidly growing CPU core counts and NIC capacity.
Comparisons with Linux and FreeBSD appear to confirm this con-
clusion far more dramatically than we expected: while there are
small-factor differences between Linux and FreeBSD performance
curves, we observe that their shapes are fundamentally the same.
We believe that this reflects near-identical underlying architectural
decisions stemming from common intellectual ancestry (the BSD
network stack and sockets API) and largely incremental changes
from that original design.

Sandstorm and Namestorm adopt fundamentally different archi-
tectural approaches, emphasizing transparent memory flow within
applications (and not across expensive protection-domain bound-
aries), process-to-completion, heavy amortization, batching, and
application-specific customizations that seem antithetical to general-
purpose stack design. The results are dramatic, accomplishing near-
linear speedup with increases in core and NIC capacity – completely
different curves possible only with a completely different design.

4.1 Current network-stack specialization
Over the years there have been many attempts to add spe-

cialized features to general-purpose stacks such as FreeBSD and
Linux. Examples include sendfile(), primarily for web servers,
recvmmsg(), mostly aimed at DNS servers, and assorted socket
options for telnet. In some cases, entire applications have been
moved to the kernel [13, 24] because it was too difficult to achieve
performance through the existing APIs. The problem with these en-
hancements is that each serves a narrow role, yet still must fit within
a general OS architecture, and thus are constrained in what they can
do. Special-purpose userspace stacks do not suffer from these con-
straints, and free the programmer to solve a narrow problem in an
application-specific manner while still having the other advantages
of a general-purpose OS stack.

4.2 The generality of specialization
Our approach tightly integrates the network stack and application

within a single process. This model, together with optimizations
aimed at cache locality or pre-packetization, naturally fit a reason-
ably wide range of performance-critical, event-driven applications
such as web servers, key-value stores, RPC-based services and name
servers. Even rate-adaptive video streaming may benefit, as devel-
opments such as MPEG-DASH and Apple’s HLS have moved intel-
ligence to the client leaving servers as dumb static-content farms.

Not all network services are a natural fit. For example, CGI-based
web services and general-purpose databases have inherently differ-
ent properties and are generally CPU- or filesystem-intensive, deem-
phasizing networking bottlenecks. In our design, the control loop
and transport-protocol correctness depend on the timely execution
of application-layer functions; blocking in the application cannot
be tolerated. A thread-based approach might be more suitable for
such cases. Isolating the network stack and application into different
threads still yields benefits: OS-bypass networking costs less, and



saved CPU cycles are available for the application. However, such
an approach requires synchronization, and so increases complexity
and offers less room for cross-layer optimization.

We are neither arguing for the exclusive use of specialized stacks
over generalized ones, nor deployment of general-purpose network
stacks in userspace. Instead, we propose selectively identifying key
scale-out applications where informed but aggressive exploitation of
domain-specific knowledge and micro-architectural properties will
allow cross-layer optimizations. In such cases, the benefits outweigh
the costs of developing and maintaining a specialized stack.

4.3 Tracing, profiling, and measurement
One of our greatest challenges in this work was the root-cause

analysis of performance issues in contemporary hardware-software
implementations. The amount of time spent analyzing network-
stack behavior (often unsuccessfully) dwarfed the amount of time
required to implement Sandstorm and Namestorm.

An enormous variety of tools exist – OS-specific PMC tools, lock
contention measurement tools, tcpdump, Intel vTune, DTrace, and
a plethora of application-specific tracing features – but they suffer
many significant limitations. Perhaps most problematic is that the
tools are not holistic: each captures only a fragment of the analysis
space – different configuration models, file formats, and feature sets.

Worse, as we attempted inter-OS analysis (e.g., comparing Linux
and FreeBSD lock profiling), we discovered that tools often mea-
sure and report results differently, preventing sensible comparison.
For example, we found that Linux took packet timestamps at differ-
ent points than FreeBSD, FreeBSD uses different clocks for DTrace
and BPF, and that while FreeBSD exports both per-process and per-
core PMC stats, Linux supports only the former. Where supported,
DTrace attempts to bridge these gaps by unifying configuration,
trace formats, and event namespaces [15]. However, DTrace also
experiences high overhead causing bespoke tools to persist, and is
unintegrated with packet-level tools preventing side-by-side com-
parison of packet and execution traces. We feel certain that improve-
ment in the state-of-the-art would benefit not only research, but also
the practice of network-stack implementation.

Our special-purpose stacks are synchronous; after netmap hands
off packets to userspace, the control flow is generally linear, and
we process packets to completion. This, combined with lock-free
design, means that it is very simple to reason about where time goes
when handling a request flow. General-purpose stacks cannot, by
their nature, be synchronous. They must be asynchronous to balance
all the conflicting demands of hardware and applications, manag-
ing queues without application knowledge, allocating processing
to threads in order to handle those queues, and ensuring safety via
locking. To reason about performance in such systems, we often
resort to statistical sampling because it is not possible to directly
follow the control flow. Of course, not all network applications are
well suited to synchronous models; we argue, however, that impos-
ing the asynchrony of a general-purpose stack on all applications
can unnecessarily complicate debugging, performance analysis, and
performance optimization.

5. RELATED WORK
Web server and network-stack performance optimization is not

a new research area. Past studies have come up with many opti-
mization techniques as well as completely different design choices.
These designs range from userspace and kernel-based implementa-
tions to specialized operating systems.

With the conventional approaches, userspace applications [1, 6]
utilize general-purpose network stacks, relying heavily on operating-
system primitives to achieve data movement and event notifica-

tion [26]. Several proposals [23, 12, 30] focus on reducing the
overhead of such primitives (e.g., KQueue,epoll,sendfile()).
IO-Lite [27] unifies the data management between OS subsys-
tems and userspace applications by providing page-based mech-
anisms to safely and concurrently share data. Fbufs [17] utilize
techniques such as page remapping and shared memory to provide
high-performance cross-domain transfers and buffer management.
Pesterev and Wickizer [28, 14] have proposed efficient techniques
to improve commodity-stack performance by controlling connec-
tion locality and taking advantage of modern multicore systems.
Similarly, MegaPipe [21] shows significant performance gain by
introducing a bidirectional, per-core pipe to facilitate data exchange
and event notification between kernel and userspace applications.

A significant number of research proposals follow a substantially
different approach: they propose partial or full implementation of
network applications in kernel, aiming to eliminate the cost of com-
munication between kernel and userspace. Although this design
decision improves performance significantly, it comes at the cost
of limited security and reliability. A representative example of this
category is kHTTPd [13], a kernel-based web server which uses
the socket interface. Similar to kHTTPd, TUX [24] is another note-
worthy example of in-kernel network applications. TUX achieves
greater performance by eliminating the socket layer and pinning the
static content it serves in memory. We have adopted several of these
ideas in our prototype, although our approach is not kernel based.

Microkernel designs such as Mach [10] have long appealed to OS
designers, pushing core services (such as network stacks) into user
processes so that they can be more easily developed, customized,
and multiply-instantiated. In this direction, Thekkath et al [32], have
prototyped capability-enabled, library-synthesized userspace net-
work stacks implemented on Mach. The Cheetah web server is built
on top of an Exokernel [19] library operating system that provides
a filesystem and an optimized TCP/IP implementation. Lightweight
libOSes enable application developers to exploit domain-specific
knowledge and improve performance. Unikernel designs such as
MirageOS [25] likewise blend operating-system and application
components at compile-time, trimming unneeded software elements
to accomplish extremely small memory footprints – although by
static code analysis rather than application-specific specialization.

OS-bypass and userspace network processing is another tech-
nique explored by the academic community with several studies
such as Arsenic [29], U-Net [33], Linux PF_RING [16], as well
as netmap [31]. lwIP [4] is a lightweight general-purpose network
stack which was designed for low-end, embedded devices; although
performance and specialization are not their primary goals, we have
borrowed several ideas for our TCP API. mTCP [22] is another re-
cent effort in userspace networking that demonstrates significant
performance improvements: likewise, this work is related, but dif-
fers from ours in that it offers a general-purpose stack aiming to
minimize integration effort for existing applications, while our pro-
posal sacrifices backward compatibility in favor of specialization
and performance. Finally, Solarflare OpenOnload [8] is one of the
most sophisticated commercial proposals: it is a hybrid stack, ca-
pable of operating both in usermode and kernel, minimizing inter-
rupts, data copies, and context switches. It requires, however, vendor-
specific hardware (NIC) and likewise retains the BSD sockets API
rather than exploiting domain-specific knowledge and cross-layer
optimizations.

6. CONCLUSION
In this paper, we have demonstrated that specialized userspace

stacks, built on top of netmap framework, can vastly improve the
performance of scale-out applications. These performance gains



sacrifice generality by adopting design principles at odds with con-
temporary stack design: application-specific cross-layer cost amor-
tizations, synchronous and buffering-free protocol implementations,
and an extreme focus on interactions between processors, caches,
and NICs. This approach reflects a widespread adoption of scale-out
computing in data centers, which deemphasizes multifunction hosts
in favor of increased large-scale specialization. Our performance
results are compelling: a 2–10× improvement for web service, and
a roughly 9× improvement for DNS service. Further, these stacks
have proven easier to develop and tune than conventional stacks, and
their performance improvements are portable over multiple genera-
tions of hardware.

General-purpose operating system stacks have been around a
long time, and have demonstrated the ability to transcend multi-
ple generations of hardware. We believe the same should be true
of special-purpose stacks, but that tuning for particular hardware
should be easier. We examined performance on servers manufac-
tured seven years apart, and demonstrated that although the perfor-
mance bottlenecks were now in different places, the same design
delivered significant benefits on both platforms.
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