
LLVM in the FreeBSD Toolchain

David Chisnall

1 Introduction

FreeBSD 10 shipped with Clang, based on
LLVM [5], as the system compiler for x86 and
ARMv6+ platforms. This was the first FreeBSD
release not to include the GNU compiler since the
project’s beginning. Although the replacement of
the C compiler is the most obvious user-visible
change, the inclusion of LLVM provides opportu-
nities for other improvements.

2 Rationale for migration

The most obvious incentive for the FreeBSD project
to switch from GCC to Clang was the decision by
the Free Software Foundation to switch the license
of GCC to version 3 of the GPL. This license is
unacceptable to a number of large FreeBSD con-
sumers. Given this constraint, the project had a
choice of either maintaining a fork of GCC 4.2.1
(the last GPLv2 release), staying with GCC 4.2.1
forever, or switching to another compiler. The first
option might have been feasible if other GCC users
had desired the same and the cost could have been
shared. The second was an adequate stopgap, but
the release of the C11 and C++11 specifications—
both unsupported by GCC 4.2.1—made this an im-
possible approach for the longer term. The remain-
ing alternative, to find a different compiler to re-
place GCC, was the only viable option.

The OpenBSD project had previously investi-
gated PCC, which performed an adequate job with
C code (although generating less optimised code
than even our old GCC), but had no support for
C++. The TENDRA compiler had also been con-
sidered, but development had largely stopped by
2007.

The remaining alternative was Clang, which was
still a very young compiler in 2008, but had some
significant commercial backing from companies in-
cluding Apple and Google. In 2009, Roman Di-

vacky and Pawel Worach begin trying to build
FreeBSD with Clang and quickly got a working
kernel, as long as optimisations were disabled. By
May 2011, Clang was able to build the entire base
system on both 32-bit and 64-bit x86 and so be-
came a viable migration target. A large number of
LLVM Clang bugs were found and fixed as a result
of FreeBSD testing the compilation of a large body
of code.

3 Rebuilding the C++ stack

The compiler itself was not the only thing that
the FreeBSD project adopted from GCC. The en-
tire C++ stack was developed as part of the GCC
project and underwent the same license switch.
This stack comprised the C++ compiler (g++), the
C++ language runtime (libsupc++) and the C++
Standard Template Library (STL) implementation
(libstdc++).

All of these components required upgrading to
support the new C++11 standard. The runtime
library, for example, required support for depen-
dent exceptions, where an exception can be boxed
and rethrown in another thread (or the same thread
later).

The FreeBSD and NetBSD Foundations jointly
paid PathScale to open source their C++ runtime
library (libcxxrt), which was then integrated into
the FreeBSD base system, replacing libsupc++.
The LLVM project provided an STL implementa-
tion (libc++), with full C++11 and now C++14
support, which was duly integrated.

Using libcxxrt under libstdc++ allowed C++
libraries that exposed C interfaces, or C++ inter-
faces that didn’t use STL types, to be mixed in the
same binary as those that used libc++. This in-
cludes throwing exceptions between such libraries.

Implementing this in a backwards-compatible
way required some linker tricks. Tradition-
ally, libsupc++ had been statically linked into



libstdc++, so from the perspective of all linked
programs the libsupc++ symbols appeared to come
from libstdc++. In later versions in the 9.x se-
ries, and in the 9-COMPAT libraries shipped for
10, libstdc++ became a filter library, dynamically
linked to libsupc++. This allows symbol resolu-
tion to work correctly and allows libsupc++ or
libcxxrt to be used as the filtee, which actually
provides the implementation of these symbols.

4 Problems with ports

The FreeBSD ports tree is a collection of infrastruc-
ture for building around 24,000 third-party pro-
grams and libraries. Most ports are very thin
wrappers around the upstream distribution’s build
system, running autoconf or CMake configurations
and then building the resulting make files or equiv-
alent. For well-written programs, the switch to
Clang was painless. Unfortunately, well-written
programs make up the minority of the ports tree.
To get the ports tree working with Clang required
a number of bug fixes.

4.1 Give up, use GCC

The first stopgap measure was to add a flag to the
ports tree allowing ports to select that they require
GCC. At the coarsest granularity is the USE GCC

flag knob, which allows a port to specify that it re-
quires either a specific version of GCC, or a specific
minimum version.

This is a better-than-nothing approach to get-
ting ports building again, but is not ideal. There is
little advantage in switching to a new base system
compiler if we are then going to use a different one
for a large number of ports. We also encounter
problems due to GCC’s current inability to use
libc++, meaning that it is hard to compile C++
ports with GCC if they depend on libraries that are
built with Clang, and vice versa. Currently around
1% of the ports tree requires this. Quite a few more
use the flags exposed in the compiler namespace
for the port’s USES flags. In particular, specify-
ing USES=compiler:openmp will currently force a
port to use GCC, as our Clang does not yet include
OpenMP support.

This framework allows ports to specify the exact
features of GCC that they require, allowing them

to be switched to using Clang once the

4.2 The default dialect

One of the simplest, but most common, things to fix
was the assumption by a lot of ports that they could
invoke the cc, program and get a C89 compiler.
POSIX97 deprecated the cc utility, because it ac-
cepts an unspecified dialect of C, which at the time
might have been K&R or C89. Over a decade later,
some code is still trying to use it. Today, it may
require K&R C (very rare), C89 (very common),
C99 (less common), or C11 (not yet common), and
so should be explicitly specifying a dialect. This
was a problem, because gcc, when invoked as cc

defaults to C89, whereas clang defaulted to C99
and now to C11.

This is not usually an issue, as the new versions of
the C standard are intended to be backwards com-
patible. Unfortunately, although valid C89 code is
usually valid C99 or C11 code, very little code is ac-
tually written in C89. Most C ports are written in
C plus GNU extensions. In particular, C99 intro-
duced the inline keyword, with a different meaning
to the inline keyword available as a GNU extension
to C89. This change causes linker failures when
C89 code with GNU-flavoured inline functions is
compiled as C99. For most ports, this was fixed by
adding -fgnu89-inline to the port’s CFLAGS.

4.3 C++ templates

Another common issue in C++ code relates to two-
phase lookup in C++ templates. This is a par-
ticularly tricky part of the C++ stack and both
GCC and Microsoft’s C++ compiler implemented
it in different, mutually incompatible, wrong ways.
Clang implements it correctly, as do new versions
of other compilers. Unlike other compilers, Clang
does not provide a fallback mode, accepting code
with GNU or Microsoft-compatible errors.

The most common manifestation of this differ-
ence is template instantiations failing with an un-
known identifier error. Often these can be fixed
by simply specifying this−> in front of the vari-
able named in the error message. In some more
complex programs, working out exactly what was
intended is a problem and so fixing it is impossible
for the port maintainer.



This is currently the largest cause of programs re-
quiring GCC. In particular, some big C++ projects
such as the Sphinx speech recognition engine have
not had new releases for over five years and so are
unlikely to be fixed upstream. Several of these
ports will only build with specific version of GCC
as well and so are still built with GCC in the ports
tree. Fortunately, many these (for example, some
of the KDE libraries) are now tested upstream with
Clang for Mac OS X compatibility and so simply
updating the port to a newer version fixed incom-
patibilities.

4.4 Goodbye tr1

C++ Technical Report 1 (TR1) is a set of experi-
mental additions to C++ that were standardised in
between C++03 and C++11. It provided a number
of extensions that were in headers in the tr1/ di-
rectory and in the std :: tr1 namespace. In C++11,
these were moved (with some small modifications)
into the standard header directory and namespace.

The new C++ stack is a full C++11 implemen-
tation and does not provide the TR1 extensions
to C++98. This means that code that references
these will fail, complaining about a missing header.
The simple fix for this is just to globally delete tr1
from the source files. Getting the code to also
build with GCC is somewhat more problematic,
but can be accomplished with a relatively small set
of #ifdefs.

4.5 Generic problems

In FreeBSD 10, we improved some of the generic
macros in math.h to use the C11 Generic ex-
pressions or GCC’s type select extension if avail-
able. The old code dispatched arguments to the
correct function by comparing sizeof(arg) against
sizeof(double) and so on. Now, we are able to ex-
plicitly match on the type. Macros such as isnan()
and isinf () will now raise compile-time errors if
they are invoked with a type that is not one of the
compatible ones.

This is something that we consider a feature. If
you pass an int to isnan(), then you probably have
a bug because there are no possible values of an
int that are not numbers. Unfortunately, a surpris-
ing amount of code depends on the previous buggy

behaviour. This is particularly prevalent in con-
figure scripts. For example, Mono checks whether
isnan(1) works, which checks whether there is a ver-
sion of isnan() that accepts an integer argument.
If it doesn’t find one, then it provides an imple-
mentation of isnan() that accepts a double as the
argument, which causes linker failures.

Fixing these was relatively easy, but time con-
suming. Most of the errors were in configure
scripts, but we did find a small number of real bugs
in code.

4.6 OpenMP

One of the current limitations of Clang as a C/C++
compiler is its lack of OpenMP support. OpenMP
is a pragma-based standard for compiler-assisted
parallelism and so is increasingly important in an
era when even mobile devices have multiple cores.
Intel has recently contributed an OpenMP imple-
mentation to Clang, but the code has not yet
been integrated. This implementation also in-
cludes a permissively licensed OpenMP runtime,
which would replace the GNU OpenMP library
(libgomp).

Work is currently underway to finish importing
the OpenMP support code into Clang. This is ex-
pected to be completed by LLVM 3.5, although
some extra effort may be required to build the
OpenMP support library on FreeBSD (Linux and
Mac OS X are its two current supported configura-
tions).

5 Looking forwards

Having a mature and easily extensible library-based
compiler infrastructure in the base system provides
a number of opportunities.

5.1 Install-time optimisation

A common misconception of LLVM, arising from
the VM in its name, is that it would allow us to
easily compile code once and run it on all archi-
tectures. LLVM uses an intermediate representa-
tion (IR) in the middle of the compiler pipeline.
This is not intended as a distribution format or as
a platform-neutral IR, in contrast to .NET or Java



bytecode. This is an intrinsic problem for any tar-
get for C compilation: once the C preprocessor has
run, the code is no longer target-neutral and much
C code has different paths for things like byte order
or pointer size.

Although LLVM IR is not architecture neutral,
it is microarchitecture neutral. The same LLVM IR
is generated for a Xeon and an Atom, however the
optimal code for both is quite different. It would be
possible for a significant number of ports to build
the binary serialisation of LLVM IR (‘bitcode’) and
ship this in packages. At install time, the pkg tool
could then optimise the binaries for the current ar-
chitecture.

To avoid long install times, packages could con-
tain both a generic binary and the IR, allowing the
IR to be stripped for people who are happy to run
the generic code, or used for optimisation as a back-
ground task if desired. It’s not clear how much
overhead this would add to installation. Build-
ing large ports can be time consuming, however
the slowest to build are typically C++ ports where
the build time is dominated by template expan-
sion. Generating a few megabytes of optimised ob-
ject code from LLVM IR typically only takes a few
seconds on a modern machine.

Microarchitectural optimisations are not the only
applicable kind that could benefit from this ap-
proach. Link-time optimisation can give a signifi-
cant speedup by doing interprocedural analysis over
an entire program and using these results in op-
timisation. Typically, the boundary for this is a
shared library, because you can not rely on code in
a shared library not changing. If we are shipping
both LLVM IR and binaries, however, it becomes
possible to specialise shared libraries for specific ex-
ecutables, potentially generating much better code.
The down side of this is that you end up without
code shared between users of a library, increasing
cache churn.

Fortunately, there is information available on a
system about whether this is likely to be a good
trade. The package tool is aware of how many pro-
grams link to a specific library and so can provide
hints about whether reduction in code sharing is
likely to be a problem. If you have a shared library
that is only used by a single program, obviously you
don’t get any benefits from it. The kernel may also
be able to profile how often two programs using the
same library are running simultaneously (or after a

short period) and so gaining any benefit from the
sharing.

Of course, these are just heuristics and it may
be that some library routines are very hot paths in
all of their consumers and so would benefit from
inlining anyway.

5.2 Code diversity

LLVM has been used by a number of other projects.
One interesting example is the Multicompiler [3],
which implements code diversity in LLVM with
the goal of making return-oriented programming
(ROP) more difficult. ROP turns the ability for an
attacker to run a small amount of arbitrary code
(e.g. control the target a single jump, such as
a return instruction) into the ability to run large
amounts of code. This works by stringing together
short sequences of instructions (‘gadgets’) in a bi-
nary, connected by jumps. Gadgets are particu-
larly common in code on x86, because the variable-
length instruction encoding and byte alignment of
instructions mean that a single instruction or in-
struction pair can have a number of different mean-
ings depending on where you start interpreting it.

The Multicompiler combats this in two ways.
First, it can insert nops into the binary, breaking
apart particularly dangerous accidental sequences.
Second, using a random seed, it performs various
permutations of the code, meaning that different
compiles can end up with code (including the sur-
viving gadgets) in different places.

We are currently working to incorporate the mul-
ticompiler into the ports tree, so that users building
site-local package sets can set a random seed and
get deterministic builds that are nevertheless dif-
ferent in binary layout to those produced by every-
one else. This makes generating an exploit that will
work on all FreeBSD systems very difficult. We will
also be able to incorporate this into the FreeBSD-
provided binary packages, quickly running diversi-
fied builds when a vulnerability is found, requiring
attackers to create new versions of their exploits.
By rolling these out in a staggered fashion, we can
make it hard to write an exploit that will work on
all FreeBSD users, even within a single package ver-
sion.



5.3 Sanitiser support

Clang, on Linux and Mac OS X, supports a number
of ‘sanitisers’, dynamic checkers for various kinds of
programming error. The compiler identifies partic-
ular idioms and inserts checks that are evaluated
at run time and may potentially call routines in a
supporting library. These include:

AddressSanitizer was the first of the family and
is intended to provide similar functionality to Val-
grind [6], with a much lower overhead. It detects
out-of-bounds accesses, use-after-free and other re-
lated memory errors.

MemorySanitizer checks for reads of unini-
tialised memory. This catches subtle bugs where
code can work fine on one system because memory
layout happens to contain valid values, but fail on
another.

ThreadSanitizer is intended to detect data
races.

UndefinedBehaviorSanitizer performs run-
time checks on code to detect various forms of
undefined behaviour. This includes checking that
bool variables only contain true or false values,
that signed arithmetic does not overflow, and so
on. This is very useful for checking portable code,
as undefined behaviour can often be implemented
in different ways on different platforms. For ex-
ample, integer division by zero may trap on some
architectures but may silently give a meaningless
result on others.

DataFlowSanitizer allows variables to be la-
belled and their flow through the program to be
tracked. This is an important building block for a
category security auditing tools.

All of these require a small runtime library
for supporting functionality, including intercepting
some standard C library functions (e.g. malloc()
and free ()). These have not yet been ported to
FreeBSD, but would provide significant benefits if
they were. In particular, running the FreeBSD test
suite with dynamic checks enabled on a regular ba-
sis would allow early detection of errors.

5.4 Custom static checks

The Clang static analyser provides generic func-
tionality for understanding control and data flow
inside compilation units. It also includes a num-
ber of checkers for correct usage of the relevant
languages, for example checking that variables are
not used uninitialised and NULL pointers are not
dereferenced in all possible control flows. The more
useful checks are those that incorporate some un-
derstanding of API behaviour.

By default, the analyser can check for correct us-
age of a number of POSIX APIs. Apple has also
contributed a number of checkers for OS X ker-
nel and userspace APIs. The framework is suffi-
ciently generic that we can also provide plugins for
FreeBSD APIs that are commonly misused.

Some of the checkers would be of more use if we
provided more annotation in the FreeBSD code.
For example, WITNESS allows dynamic lock or-
der checking, but Clang can also perform some of
these checks statically. It can also do some more
subtle checks, for example ensuring that every ac-
cess to a particular structure field has a specific
lock acquired. Ideally, the static analyser would be
combined with WITNESS, to elide run-time checks
where static analysis can prove that they are not
required.

5.5 Other analysis tools

The LLVM framework has been used to implement
a number of other analysis tools. Of particular rel-
evance to FreeBSD are SOAAP [4] and TESLA [1],
which were both developed at the University of
Cambridge with FreeBSD as the primary target.

TESLA is a framework for temporal assertions,
allowing the programmer to specify things that
must have happened (somewhere) before a line
of code is reached, or which must happen subse-
quently. A typical example is that within a sys-
tem call, by the time you get to the part doing
I/O, some other code must have already performed
a MAC check and then something else must later
write an audit log event. These complex interac-
tions are made harder to understand by the fact
that the kernel can load shared libraries. TESLA
uses Clang to parse temporal assertions and LLVM
to instrument the generated code, allowing them to
be checked at run time. A number of TESLA asser-



tions were added to the FreeBSD kernel in a branch
and used to validate certain parts of the system.

SOAAP is a tool to aid compartmentalising soft-
ware. This is an important mitigation technique,
limiting the scope of compromises. The Cap-
sicum [9] infrastructure provides the operating sys-
tem functionality required for running low-privilege
sandboxes within an application but deciding where
to place the partitions is still a significant engineer-
ing challenge. SOAAP is designed to make it easy
to explore this design space, by writing compart-
mentalisation hypotheses, ensuring that all shared
data really are shared, and simulating the perfor-
mance degradation from the extra process creation
and communication.

We anticipate a lot more tools along these lines
being developed over the coming years and intend
to take advantage of them.

5.6 The rest of the toolchain

We currently include code from either GNU binutils
or the ELF Toolchain project. Most of this dupli-
cates functionality already in LLVM. In particular,
every LLVM back end can parse assembly and gen-
erate object code, yet we still have the GNU as-
sembler. Various other tools, such as objdump have
direct replacements available in LLVM and some
others (e.g. addr2line would be simple wrappers
around the LLVM libraries). The only complex tool
is the linker.

There are two possible linkers available, both
based on LLVM: MCLinker [2] and lld [8].
MCLinker is currently able to link the entire
FreeBSD base system on i386, but lacks support
for version scripts and so the resulting binaries lack
symbol versions. It is a promising design, perform-
ing well in terms of memory usage and speed.

Lld is developed primarily by Sony and is part
of the LLVM project. It is currently less mature,
but is advancing quickly. Both use a scalable in-
ternal representation, with some subtle differences,
inspired in part by Apple’s 64-bit linker. MCLinker
aims to be a fast ELF-only linker, whereas lld aims
to link all of the object code formats supported
by LLVM (ELF, Mach-O and PE/COFF). We are
likely to import one of these in the near future.

We have already imported LLDB, the LLVM de-
bugger, into the base system, although it was not
quite ready in time for the 10.0 release. LLDB uses

numerous parts of LLVM. When you type an ex-
pression into the GNU debugger command line, it
uses its internal parser, which supports a subset of
the target language. In LLDB, the expression is
parsed with Clang. The parsing libraries in Clang
provide hooks for supplying declarations and these
are supplied by LLDB from DWARF debug infor-
mation. Once it’s parsed, the Clang libraries emit
LLVM IR and the LLVM JIT produces binary code,
which is copied into the target process’s address
space and executed.

5.7 Other compilers in FreeBSD

When people think of compilers in FreeBSD, the
C and C++ compilers are the most obvious ones.
There are a number of others, for domain-specific
languages, in various places. For example, the
Berkeley Packet Filter (BPF) contains a simple
hand-written JIT compiler in the kernel. This pro-
duces code that is faster than the interpreter, but
not actually very good in absolute terms.

Having a generic compiler infrastructure for writ-
ing compilers allows us to replace some of these
with optimising compilers. In a simple proof of
concept for an LLVM-based BPF JIT (a total of
under 500 lines of code, implementing all of the
BPF bytecode operations), we were able to gener-
ate significantly better code than the current in-
kernel JIT. The LLVM-based JIT in its entirety
(excluding LLVM library code) was smaller than
the platform-dependent code in the in-kernel JIT
and will work for any architecture that LLVM sup-
ports, whereas the current JIT only supports x86[-
64].

It is not a simple drop-in replacement, however.
LLVM is large and does not gracefully handle low-
memory conditions, so putting it inside the kernel
would be a terrible idea. There are two possible
solutions to this. The first is to run the JIT in
userspace, with the kernel streaming BPF byte-
codes to a device that a userspace process reads,
compiles, and then writes the generated machine
code back into. The kernel can use the interpreter
for as long as the userspace process takes to per-
form the compilation. The alternative is to use the
NetMap [7] infrastructure to perform packet filter-
ing entirely in userspace.

This is less attractive for BPF, where rule sets
tend to be fairly simple and even the interpreter is



often fast enough. It is more interesting for complex
firewall rules, which change relatively infrequently
(although the state tables are updated very often)
and which can be a significant bottleneck.

6 Platform support

FreeBSD currently supports several architectures.
We have enabled Clang/LLVM by default on x86,
x86-64, and ARMv6 (including ARMv7). This
leaves older ARM chips, SPARC, PowerPC, MIPS,
and IA64 still using GCC. Support is progressing
in LLVM for SPARC, PowerPC and MIPS.

We are able to compile working PowerPC64 ker-
nels without optimisation, but there are still some
optimisation bugs preventing Clang from becom-
ing the default compiler on this architecture. On
32-bit PowerPC, LLVM still lacks full support
for thread-local storage and position-independent
code. SPARC support is progressing in LLVM, but
it has not been recently tested.

We are currently compiling significant amounts
of MIPS code (including FreeBSD libc) with LLVM
and a large patch set. This includes significant im-
provements to the integrated assembler, but also
support for MIPS IV. Currently, LLVM supports
MIPS32, MIPS32r2, MIPS64 and MIPS64r2. The
earlier 64-bit MIPS III and MIPS IV ISAs are still
widespread. The changes required to support these
in the back end are not very complex: simply dis-
able the instructions that are not present in earlier
ISA revisions. They should be upstreamed before
LLVM 3.5 is released.

The (unfinished) IA64 back end in LLVM was
removed due to lack of developer interest. It is un-
likely that this architecture will ever be supported
in LLVM, and it is doubtful that it has a long-term
future in FreeBSD, as machines that use it are rare,
expensive, and unlikely to be produced in the fu-
ture.

7 Summary

Importing LLVM and Clang into the FreeBSD base
system and switching Tier 1 platforms to use it
was a significant amount of effort. So far, we have
only just started to reap the benefits of this work.
Over the next few years, LLVM is likely to be an

important component of the FreeBSD base system.

This paper has outlined a few of the possible di-
rections. It is likely that there are more that are
not yet obvious and will emerge over time.

8 Acknowledgements

The task of importing LLVM into FreeBSD was be-
gun by Roman Divacky and Pawel Worach in 2009
and without their initiative none of this work would
have been possible. Since then, a large number of
FreeBSD developers have worked to improve the
state of the LLVM toolchain in FreeBSD, includ-
ing Dimitry Andric, Ed Maste, Brooks Davis, Ed
Schouten, and many others.

Portions of this work were sponsored by
the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-10-C-0237. The
views, opinions, and/or findings contained in this
report are those of the authors and should not be
interpreted as representing the official views or poli-
cies, either expressed or implied, of the Defense Ad-
van ced Research Projects Agency or the Depart-
ment of Defense.

References

[1] Temporally enhanced security logic asser-
tions (TESLA). http://www.cl.cam.ac.uk/

research/security/ctsrd/tesla/ (accessed
31/1/2014).

[2] Chinyen Chou. MCLinker BSD. In BSDCan,
2013.

[3] Michael Franz, Stefan Brunthaler, Per Larsen,
Andrei Homescu, and Steven Neisius. Profile-
guided automated software diversity. In Pro-
ceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimiza-
tion (CGO), CGO ’13, pages 1–11, Washington,
DC, USA, 2013. IEEE Computer Society.

[4] Khilan Gudka, Robert N. M. Watson, Steven
Hand, Ben Laurie, and Anil Madhavapeddy.
Exploring compartmentalisation hypotheses
with soaap. In Proceedings of the 2012

http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/
http://www.cl.cam.ac.uk/research/security/ctsrd/tesla/


IEEE Sixth International Conference on Self-
Adaptive and Self-Organizing Systems Work-
shops, SASOW ’12, pages 23–30, Washington,
DC, USA, 2012. IEEE Computer Society.

[5] Chris Lattner and Vikram Adve. LLVM:
A compilation framework for lifelong program
analysis & transformation. In Proceedings of the
International Symposium on Code Generation
and Optimization: Feedback-directed and Run-
time Optimization, CGO ’04, pages 75–, Wash-
ington, DC, USA, 2004. IEEE Computer Soci-
ety.

[6] Nicholas Nethercote and Julian Seward. Val-
grind: A framework for heavyweight dy-
namic binary instrumentation. SIGPLAN Not.,
42(6):89–100, June 2007.

[7] Luigi Rizzo and Matteo Landi. Netmap: Mem-
ory mapped access to network devices. In Pro-
ceedings of the ACM SIGCOMM 2011 Con-
ference, SIGCOMM ’11, pages 422–423, New
York, NY, USA, 2011. ACM.

[8] Michael Spencer. lld - the LLVM Linker. In
EuroLLVM, 2012.

[9] Robert N. M. Watson, Jonathan Anderson, Ben
Laurie, and Kris Kennaway. Capsicum: Practi-
cal capabilities for unix. In Proceedings of the
19th USENIX Conference on Security, USENIX
Security’10, pages 3–3, Berkeley, CA, USA,
2010. USENIX Association.


	Introduction
	Rationale for migration
	Rebuilding the C++ stack
	Problems with ports
	Give up, use GCC
	The default dialect
	C++ templates
	Goodbye tr1
	_Generic problems
	OpenMP

	Looking forwards
	Install-time optimisation
	Code diversity
	Sanitiser support
	Custom static checks
	Other analysis tools
	The rest of the toolchain
	Other compilers in FreeBSD

	Platform support
	Summary
	Acknowledgements

