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* Spans security, CPUs, OS, compilers, languages, program
analysis/transformation, HW/SWV formal methods.

* Clean-slate design violates some current conventions, in
exchange for dramatic security improvements.

* Capability-based CPU protection and
compartmentalization features mitigate known and
unknown vulnerability classes.

* Hybrid model facilitates incremental SW adoption.

* Program analysis and transformation techniques improve
software TCB correctness, utilize new CPU features.

* Formal methods link models, hardware, and software.
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CTSRD project elements

* Capsicum, compartmentalization,and CTSRD
* Capability Hardware Enhanced RISC Instructions (CHERI)

* CHERI ISA and hardware compartmentalization prototype

CHERI platform: tablet, CheriCloud, peripherals, etc.
CHERI software: CheriBSD, CHERI Clang/LLVM, apps

Architectural extraction, verification of Bluespec (Smten)

ISA-level proofs and automated test generation
* Security-Oriented Analysis of Application Programs (SOAAP)
* Temporally Enhanced Security Logic Assertions (TESLA)
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August 2013 CTSRD/MRC2 meetings,

Cambridge, UK
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COMPARTMENTALIZATION
FOUNDATIONS
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Application compartmentalization

| Compartmentalized "gzip" program

sandbox via
T — capabilities

|
|
|
Conventional "gzip" program | | Conventional Capability-mode process | |
i | UNIX process !
| | with ambient [
! | authority L :
norab] ! vulnerable :
vulnerable . : |
~~~~~~~ compression : rlnaln e b C?é?grﬁgs:gn ! Selected rights
!
fetch logic | g2 9 | delegated to
|
|

Kernel Kernel

* Compartmentalization decomposes software into isolated components.
* Each sandbox runs with only the rights required to perform its function.

* This model implements the principle of least privilege.
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When a conventional application is compromised,
ambient rights are leaked to the attacker, e.g., network

and file system access.
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290 | sandbox via

1= _I‘é" capabilities

-~

As vulnerabilities yield fewer rights, attackers must
% exploit many vulnerabilities to meet their goals. -

)
KW\%

Compromising a compartmentalized application
yields only held rights to the attacker.
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Capsicum update

Hybrid capability model: OS APIs for
application compartmentalization

Joint Cambridge/Google project

Experimental feature in FreeBSD 9.x;
out-of-the box in 10.0 (RSN)

FreeBSD Foundation, Google

* Funded projects will continue in 2014

*  Growing number of FreeBSD programs
are using Capsicum out-of-the-box:
tcpdump, auditdistd, hastd, etc.

* Casper framework offers services to
sandboxes (e.g., DNS, socket server)

C ODSICum * Google has published a Linux port

prototype and hopes to upstream
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Data-centered compartmentalisation

v
Y

Code-centred compartmentalisation

1. fetch -
main loop

b

2. fetch i
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e

network
sandbox

FTP
sandbox

5. fetch
main loop
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URL-specific sandbox

| URL-specific sandbox

| URL-specific sandbox

7
International

N

Sl

>
3. fetch i 4. fetch i
v FTP HTTP ™ FTP HTTPauth ™ | |HTTPGET /
sandbox sandbox sandbox sandbox sandbox
/ _'i — ==
HTTPS &
sandbox @ SSL @
sandbox
SSL

sandbox

Applications can be compartmentalized in different ways,
trading off security and performance

Finer-grained decompositions mitigate vulnerabilities better:
attacks yield fewer rights, so attackers must exploit more
vulnerabilities to accomplish their goals

|deally, web browsers would use hundreds/thousands of
sandboxes: one for each image, script, etc.

However, CPUs support few simultaneous processes; e.g.,
Google Chrome reuses up to 20 sandboxes, one per tab

As a consequence of CPU design, malware in a webmail
image attachment can access a user’s entire mailbox
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Capability hardware enhanced RISC instructions

CHERI PROCESSOR
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Capability hardware enhanced RISC

instructions (CHERI)

C e ] e CHERI hybrid capability model:
1 C Control Coprocessor b Fine-grained memOI")' Protection
[ e ( Rgg;zther> e Execute> [ Vo ) (Wr.teback * In-address-space sandboxing
[ Capability Coprocessor d EXtenCIS 64'bit MIPS ISA
"Caone e * Haskell-derived Bluespec System Verilog
t t HDL; synthesizes to Altera and Xilinx
| \ FPGAs

* Fully pipelined; multithreaded and multicore
under development

O BERI Pipeline & L1 26%
D Control Regs & MMU 3%

O capavility ¢ 17% : i
apability Coprocessor * Extensive test suite and tools

M pebug unit 5%

D Level 2 Cache 5% . .

B wuitiply & Divide 3% * ISA and design subject to new formal
[l Tag Controller & Cache 3% anal)’SiS

OFpPu 32%

* Shortly to be released as open source

12 B UNIVERSITY OF
«¥ CAMBRIDGE




CTSRD

CHERI development timeline

November 2012:

October 2011: Deimos December 2012:

N . b
capability-based microkernel July 2012: LLVM z?]nsdor?)ée: eLrJisBeSr[c):?de Nested sandboxes
runs first sandbox generates ’ and sandbox

trojan mitigated

CHERI ISA code exception handling
_ ] January 2014:
June 2_(_J12: CheriBSD : 0 Feburary 2013: CheriBSD now
capability context for CHERI box on uses CHERI Clang/
user threads the Internet LLVM for key
sandboxing
/ components
| | | >

| l
12010 2011 12012 12013 2014

November May 2012:

2011: tPad DE4 tablet April 2013: December 2013: BERI
tablet demo runs FreeBSD CheriCloud online Open Systems CIC
with Deimos for SRI/Cam users created
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CHERI hardware platform

Ol eeri Pipeline & L1

D Control Regs & MMU
D Capability Coprocessor
. Debug Unit

D Level 2 Cache

B Multiply & Divide

. Tag Controller & Cache

O reu

26%
3%
17%
5%
5%
3%
3%
32%

CHERI prototypes

Tablet prototype: CPU,
DRAM, battery, flash,
touchscreen, HDMI,
Ethernet

In-field CPU, OS updates
CheriBSD OS, CHERI SDK
CHERI demonstrations

* E.g,fine-grained
compartmentalization in
CheriPoint presentation
package
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CheriCloud

* Centralized facility supporting
remote CHERI software
development for CTSRD and
MRC2 projects

'. e 7 x DE4 FPGA boards in 4U

B - CHERI CPU + CheriBSD with
Ethernet on each DE4

* Reset and serial console

* SSH into a live CHERI system;

off-the-shelf open-source
applications

* Total end-user transparency!
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CHERI enhancements (CTSRD)

 CHERI ISAv2.] enhancements to object-capability
invocation, software debugging features

* FPU — particularly useful for Olden benchmarks
* Improved hardware ISA-level tracing + CheriVis
* CHERI2 now fully implements ISAv2.|

* Annabella release in July 2013

* Multithreaded CHERI2 boots BSD in simulation
* Multicore CHERI in testing
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CHERI enhancements ((MRC)?)

 DARPA MRC sister project
also using and enhancing CHERI

* Multithreading and multicore

e Multi-FPGA interconnect

* AXI bus conversion

* NetFPGA 10G

* CPU Tracing enhancements
* FPU maturity

 BlueSwitch
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CHERI formal verification:

ISA model

* Formal model of ISA described in SAL model checker

* Bluespec CHERI and CHERI2 capability units are
automatically tested against the SAL model

* New: we can now automatically translate the SAL
model into PVS

* Using PVS, we can prove “memory safety” for a
CHERI ISA subset

* Future work: prove security properties of full model

* Future work: prove security properties of key
software TCB elements (e.g., CCall, Creturn)

18 B UNIVERSITY OF

«¥ CAMBRIDGE




CHERI formal verification:

Bluespec analysis / Smten

* Smten:Automatic Translation of High-level Symbolic Computations into
SMT Queries

* Motivation: SMT solvers are widely used for model checking, automated
theorem proving and test generation, but translating a model into an SMT
form is tedious

* Solution: Smten is a high-level, purely functional language, with syntax and
features borrowed heavily from Haskell which greatly helps translation of
models into SMT queries

* Initial work published at CAV’ |3

* See Nirav Dave during the poster session for details.

input (i
_
. — shared
output custom solver computational
— core
h
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CHERI SOFTWARE
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CHERI software model

T T * Fine-grained userspace memory
Java . . .
Script Capability C, protection, in-process sandboxing
Objective C,
Fetch Chromium or OCaml . . . .
£ PR N e * MIPS/CHERI binaries tightly integrated
£ _ application | | - oability C, (e.g., CHERI library in MIPS binary)
-S, zlib C++RT Objective C,
% or OCaml . .
2 | | ocexccutive | | libc executive || lioc executive | | Unikernel * Compiler allows pointers to be replaced
Ry . .
= | |[Network - with tagged, bounds-checked capabilities
apsicum
g stack kgrnel Device
o drivers * In-progress CHERI debugger
©
= Kernel address space executive g;éti;ir:g .
1 ¥ * OS support for model, tracing tools, etc.
Separation kernel
| Separation kernel executive \ ¢ Userspace sandbox model, class libraries,
CHERI components, monitoring tools
Legacy application code compiled for general-purpose registers b CherlBSD on github SO more eas”y
Hybrid code blending general-purpose registers and capabilities accessible to downstream users

High-assurance "pure" capability code

* BERI support + drivers shipping as

FreeBSD 10.0 embedded target in weeks
T UNIVERSITY OF
CAMBRIDGE
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Per-address space memory management and capability executive
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CHERI extensions to FreeBSD

* CHERI register file preserved for each user thread
* CCall/CReturn exception handlers: object-capability invocation
* CHERI*“trusted stack” for object-capability return path

* Sandbox fault recovery unwinds trusted stack on MMU fault,
capability fault, or other thread traps

* Kernel accepts system calls only from in-process protection
domains with ambient authority; requires using the system class

* Kernel debugging extensions for CHERI LLDB

* CHERI memory protection via CHERI Clang/LLVM

* libcheri(3) API to create and invoke sandboxes

* Extensions to the procstat(l) tool to track sandbox state
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CHERI Clang/LLVM/LLDB

* CHERI Clang/LLVM

* Clang supports new qualifiers, builtins for capability manipulation

* LLVM CHERI code generation extends MIPS support

* Pointers use MIPS representation and instructions by default

* Pointers tagged as__capability generates CHERI instead of MIPS

* Experimental CCured work automatically converts C code to CHERI ISA
 CHERI SDK

* Complete cross-development environment: toolchain, libraries, headers.
 CHERI LLDB

* LLDB supports CHERI registers in core files; live debugging in-progress

23 B UNIVERSITY OF




Example object-capability/sandbox

invocation: heIIo world”’

main() |
CCall; sandbox_object_cinvoke() ‘:( . L. . .
- A < Application main() invokes sandbox
N invoke() H GReturn +  Sandbox invokes system-object puts()
! puts()
£ | cheri_system_puts() | & <+  System object invokes libc puts()
! [
o CCﬁ','J—i cheri_invoke() I* 3
© Fa o
O | ] | %
‘:\| cheri_enter() |" CReturn
| - b : :
| cheri_system_puts( | System-object puts() invokes libc puts()
| uts . . .
System! pusy i +  libc puts() invokes write() system call
al write() o
e
b sys_write() ' System +  Kernel performs write()
\ 4 call return
24 I UNIVERSITY OF
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Call path

Example object-

X

\
. t] Legacy MIPS code can appear
____________________ I nvocalo throughout the stack, but requires
. maing j access functions (i.e., copies) to
CCa,IL%_ sandbox_object_cinvoke() 1\\\ access non_$co data /
‘I invoke() H'éRetUm +  Sandbox invokes system-object puts()
Rl . Rights passed between sandboxes
i cherl_system_puts) | : must be described using capabilities
CCEIIL'H cheri_invoke()
\‘H cheri_enter() H 'C;IReturn T ()
1 °"°"j::tz‘(‘;'“—'°”‘s° System-call interface remains \\
System: largely unmodified: MIPS ISA/ABI
call ] write()
e
" sys_write( “sse |n the future, we will add hybrid

"

CHERI-aware system calls allowed

in sandboxes, but scoped by
capability arguments

!




libcheri: object-capability sandbox API

° C_Ianguage bindings for CH ERI LIBCHERI(3) BSD Library Functions Manual LIBCHERI(3)

L] . L] NAME
libcheri, sandbox_class_new, sandbox_class_method_declare,
0] b] S Ct- ca P a b I I Ity san d b oxes sandbox_class_destroy, sandbox_object_new, -
sandbox_object_getsystemobject, sandbox_object_cinvoke,

sandbox_object_invoke, sandbox_object_destroy -- Library interface for
CHERI sandboxing

 Sandbox class .

library ““libcheri''

SYNOPSIS

* For now, memory image; soon, Finclude <nachine/cher.h>

#include <machine/cheric.h>

ELF binary (or segment) #include <sandbox.h>
int
sandbox_class_new(const char *path, size t sandboxlen,

* new, method_declare, destroy strict sandbox class *7sbpm);

int

sandbox_class_method_declare(struct sandbox class *sbcp, u_int methodnum,
const char *methodname) ;

* Sandbox object

void
sandbox_class_destroy(struct sandbox class *sbcp);

* |nstantiated class with data int

‘sandbox_object_new(struct sandbox class *sbcp,
struct sandbox object **sbopp);

H struct cheri object
* new’ getSYStemOb]eCt’ sandbox_object_getsystemobject(struct sandbox object *sbop);
H #if _ has_feature(capabilities)
cinvoke, destroy

register t
sandbox_object_cinvoke(struct sandbox object *sbop, u int methodnum,
register t al, register t a2, register t a3, register t a4,

register t a5, register t a6, register t a7, _ capability void *c3,
* Small assembly stubs for caller D o2, reEloier L 28, Tebletert 37, —comabiTy votd "ok
capability void *c7, _ capability void *c8, _ capability void *c9,

invoke() and callee enter() —Capablity Voo el

#else

register t
sandbox_object_invoke(struct sandbox object *sbop, u_int methodnum,

@ UNIVERSITY OF
» CAMBRIDGE
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libc_cheri: sandboxed C library;

libcheri system class
* Subset of key C functions

e Useful functions useable without ambient
authority (e.g., snprintf)

* Bottom-end functions invoke CHERI system-
class object capabilities instead of system calls

* Kernel rejects calls without ambient authority

* Sandboxes must request operations with
ambient effects through CHERI system class

8 UNIVERSITY OF
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procstat(|): sandbox monitoring

$ slogin -i .ssh/id cheri host ctsrd@cheritest.sec.cl.cam.ac.uk
Last login: Sat Nov 16 03:26:50 2013 from ip-64-134-230-112.public.wayport.net
FreeBSD 11.0-CURRENT (CHERI DE4 SDROOT) #8 825c7e7 (master)-dirty: Sat Jan 11 00:35:25 GMT 2014

% procstat -RX 7114

PID COMM CLASS METHOD INVOKE FAULT SMIN SMAX SMEAN SMEDIAN
7114 cheritest cheritest-helper.bin md5 0 10116 158925 47478 10436
7114 cheritest cheritest-helper.bin abort 1 3187 3187 3187 3187
7114 cheritest cheritest-helper.bin helloworld 0 452296 452296 452296 452296
7114 cheritest cheritest-helper.bin puts 0 456118 456118 456118 456118
7114 cheritest cheritest-helper.bin syscall 0 6551 6551 6551 6551
7114 cheritest cheritest-helper.bin divzero 3 2900 3166 3005 2950
7114 cheritest cheritest-helper.bin malloc 0 0 0 0 0

OCWKR R KL R A

* Libcheri exports statistics on sandbox classes, objects, and methods
* libprocstat(3) and procstat(l) can query/print this

* libprocstat(3) rovided data backend for demo Ul
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In progress: open sourcing CHERI

* Complete open-source hardware-software research/teaching stack

* BERI Open Systems CIC (“Community Interest Company”) Dec 2013
* BERI Apache-style license (HWV), BSD license (SW)

* Physical designs for DE4 tablet, interconnect boards

* CHERI and CHERI2 Bluespec designs; debugging components/tools

* CHERI test suite, formal models

* FreeBSD device drivers

* CheriBSD capability support

* CHERI Clang/LLVM/LLDB

* ETA:January/February 2014
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CHERI next steps

* CheriBSD kernel features (e.g., debugging, lazy switching)
e “Pure” CHERI ISA support for Clang/LLVM

* CHERI LLDB full feature support

* CCured-like automated use of memory protection

* Further CHERI ISA refinements: e.g., explicit CNULL
 Shift stack, heap access to CHERI ISA

* CCall/CReturn hardware optimizations

* Linker support for capabilities

e CHERI multithreading/multicore

* Additional languages: Object C, Ocaml
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Compartmentalized packet capture and processing

CHERI DEMO
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November 2012 - CheriPoint

v" Bespoke compartmentalized
CHERI presentation
package

CTSRD

® SRl International and the University of Cambridge

v" Sandboxing mitigates trojan

¢ Collaboration spans historically siloed research areas I n Se rted I n P N G I I b ra. I")’
®  Security, CPU architecture, operating systems,
compilers, programming languages, formal methods
®  Clean slate design violates conventions in exchange for X La- rge Iy M I PS ISA COd e
dramatic security improvemants d f C
¢  Capability-based compartmentalization mitigates ge n e rate ro m

known and unknown classes of vulnerabilities

®  Hybrid capability model facibtates incremental adoption

x A small amount of utility
code written in CHERI
assembly

o ‘ CT IR o
g_!‘ OF CAMBRIDGE

x Static sandboxing policy
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CHERI tcpdump demonstration

® 00 £ brooks — nc — 80x46 "

* Memory protection + compartmentalization

08:19:22.254991 [sandbox]
08:19:23.262518 [sandbox]
* OS support for CHERI thread contexts 10125 263038 Teomdbuns

08:19:24.255013 [sandbox]

° Compl|er‘ _capab:_l:_ty POinteI"S 08:19:24.255390 [sandbox]

08:19:25.259223 [sandbox]
» Userspace libcheri sandboxing model 09:19:25. 250536 [sandbox)
08:19:27.435610 [sandbox]

08:19:42.874340 [sandbox]

* Compartmentalized packet printing

08:19:42.874745 [sandbox]

08:19:55.059711 [sandbox]

* Key results:

08:19:57.454239 [sandbox]
* Applicability of hybrid capability model 29:19:57. 410304 Lxendbon)
08:19:57.819676 [sandbox]
*  Tight C-language/capability integration S——

08:20:02.179228 [sandbox]

* Tradeoffs policy/performance/mitigation BI562, req 0, Lameth 64
08:20:14.834395 [sandbox]
s Compartmentalization scalability 08:20:14.834798 [sandbox]

08:20:27.469241 [sandbox]

* Variable granularity I
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Software analysis and transformation

SOAAP ANDTESLA
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Security-oriented analysis of
application programs (SOAAP)

Repeated SOAAP iteration as program and hypotheses are refined

SOAAP toolchain
SOAAP inputs / ete \ [ dmemen
Callgraph
.| Application and library Clang | | el I
j==>-| | annotation taint, vuln.,
A \ source code processing callgraph Perform. SOAAP outputs
aul?\%r analysis simulation
Application
Past change
Compartmentalisation vulnerabili
7 “9- hypotheses as source =¥ o Sisty Information = and
ecuf:fv\ code annotations Y flow i
de eloper ] I refinement
Call graph xa ysns recommendations
( anaIyS|s
| Sandbox > Performance
f characterisation analysis
0S vendor |

CTSRD

 Static and dynamic analysis tools to assist programmers when

compartmentalizing applications

* Come see demo at poster session!
35
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TESLA

* Pragmatic validation of run-time security
properties

* LTL-like assertions embedded in code
* Compiler-generated instrumentation

* Significant outreach to potential open-source and
corporate consumers

* Come see demo at poster session!
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TESLA since last time

S 1 — * Applied TESLA to
= 1( W OpenSSL, FreeBSD,
Tgu 0-5 DDSysBench OLTP | ObleCtlve-C
3 U0 Clang build
e e * Found subtle bugs that
T @ e eluded traditional debu
o P e ot 5
W ? tools
wol = Dopre o 8. T0OLTP-pre |
_ JoPast | = ] JOOLTP-post * Build cost: rebuilds less
s 00| | g af| MClneest incremental
[ D g 5 |
ot U2 B |2 |if H H‘u * Significant runtime cost
W S W e optimizations
(a) Microbenchmark (b) Macrobenchmark

B UNIVERSITY OF
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Conclusion

* Three years into the five-year project

* Mature CHERI hardware platform

* CheriBSD operating system

* CHERI Clang/LLVM/LLDB/SDK

* CHERI application exploration in progress

* SOAAP and TESLA tools maturing

* Smten, architectural extraction, and formal ISA
models bearing early verification results
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(MRC)? sister project

Modular Research-based Composably tr

Mission-oriented Resilient Clouds

SDNsim: S Vi fr NetFPGAIOG and CHERL-NetFPGA
3 ke toibet foe (MRC) rwinching 0 FPGAICG

o dilatice

UNIVERSITY OF
MBRIDGE

* Heavy use of CTSRD-derived CHERI
e Multithreaded and multicore CHERI prototypes
* CHERI on NetFPGA 10G
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Q&A
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