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CTSRD 
•  Spans security, CPUs, OS, compilers, languages, program 

analysis/transformation, HW/SW formal methods. 

•  Clean-slate design violates some current conventions, in 
exchange for dramatic security improvements. 

•  Capability-based CPU protection and 
compartmentalization features mitigate known and 
unknown vulnerability classes. 

•  Hybrid model facilitates incremental SW adoption. 

•  Program analysis and transformation techniques improve 
software TCB correctness, utilize new CPU features. 

•  Formal methods link models, hardware, and software. 
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CTSRD project elements 
•  Capsicum, compartmentalization, and CTSRD 

•  Capability Hardware Enhanced RISC Instructions (CHERI) 

•  CHERI ISA and hardware compartmentalization prototype 

•  CHERI platform: tablet, CheriCloud, peripherals, etc. 

•  CHERI software: CheriBSD, CHERI Clang/LLVM, apps 

•  Architectural extraction, verification of Bluespec (Smten) 

•  ISA-level proofs and automated test generation 

•  Security-Oriented Analysis of Application Programs (SOAAP) 

•  Temporally Enhanced Security Logic Assertions (TESLA) 

4 



August 2013 CTSRD/MRC2 meetings, 
Cambridge, UK 
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COMPARTMENTALIZATION 
FOUNDATIONS 
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Application compartmentalization 

•  Compartmentalization decomposes software into isolated components. 

•  Each sandbox runs with only the rights required to perform its function. 

•  This model implements the principle of least privilege. 
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When a conventional application is compromised, 
ambient rights are leaked to the attacker, e.g., network 

and file system access. 

Compromising a compartmentalized application 
yields only held rights to the attacker. 

As vulnerabilities yield fewer rights, attackers must 
exploit many vulnerabilities to meet their goals. 



Capsicum update 
•  Hybrid capability model: OS APIs for 

application compartmentalization 

•  Joint Cambridge/Google project 

•  Experimental feature in FreeBSD 9.x; 
out-of-the box in 10.0 (RSN) 

•  FreeBSD Foundation, Google 

•  Funded projects will continue in 2014 

•  Growing number of FreeBSD programs 
are using Capsicum out-of-the-box: 
tcpdump, auditdistd, hastd, etc. 

•  Casper framework offers services to 
sandboxes (e.g., DNS, socket server) 

•  Google has published a Linux port 
prototype and hopes to upstream 
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•  Applications can be compartmentalized in different ways, 
trading off security and performance 

•  Finer-grained decompositions mitigate vulnerabilities better: 
attacks yield fewer rights, so attackers must exploit more 
vulnerabilities to accomplish their goals 

•  Ideally, web browsers would use hundreds/thousands of 
sandboxes: one for each image, script, etc. 

•  However, CPUs support few simultaneous processes; e.g., 
Google Chrome reuses up to 20 sandboxes, one per tab 

•  As a consequence of CPU design, malware in a webmail 
image attachment can access a user’s entire mailbox 

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation
D

at
a-

ce
nt

er
ed

 c
om

pa
rtm

en
ta

lis
at

io
n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get



CHERI PROCESSOR 
Capability hardware enhanced RISC instructions 
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Capability hardware enhanced RISC 
instructions (CHERI) 

•  CHERI hybrid capability model: 

•  Fine-grained memory protection 

•  In-address-space sandboxing 

•  Extends 64-bit MIPS ISA 

•  Haskell-derived Bluespec System Verilog 
HDL; synthesizes to Altera and Xilinx 
FPGAs 

•  Fully pipelined; multithreaded and multicore 
under development 

•  Extensive test suite and tools 

•  ISA and design subject to new formal 
analysis 

•  Shortly to be released as open source 
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CHERI development timeline 
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CHERI hardware platform 
•  CHERI prototypes 

•  Tablet prototype: CPU, 
DRAM, battery, flash, 
touchscreen, HDMI, 
Ethernet 

•  In-field CPU, OS updates 

•  CheriBSD OS, CHERI SDK 

•  CHERI demonstrations 
•  E.g., fine-grained 

compartmentalization in 
CheriPoint presentation 
package 
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CheriCloud 
•  Centralized facility supporting 

remote CHERI software 
development for CTSRD and 
MRC2 projects 

•  7 x DE4 FPGA boards in 4U 

•  CHERI CPU + CheriBSD with 
Ethernet on each DE4 

•  Reset and serial console 

•  SSH into a live CHERI system; 
off-the-shelf open-source 
applications 

•  Total end-user transparency! 

15 



CHERI enhancements (CTSRD) 

•  CHERI ISAv2.1 enhancements to object-capability 
invocation, software debugging features 

•  FPU – particularly useful for Olden benchmarks 

•  Improved hardware ISA-level tracing + CheriVis 

•  CHERI2 now fully implements ISAv2.1 

•  Annabella release in July 2013 

•  Multithreaded CHERI2 boots BSD in simulation 

•  Multicore CHERI in testing 
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CHERI enhancements ((MRC)2) 
•  DARPA MRC sister project 

also using and enhancing CHERI 

•  Multithreading and multicore 

•  Multi-FPGA interconnect 

•  AXI bus conversion 

•  NetFPGA 10G 

•  CPU Tracing enhancements 

•  FPU maturity 

•  BlueSwitch 
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CHERI formal verification: 
ISA model 

•  Formal model of ISA described in SAL model checker 

•  Bluespec CHERI and CHERI2 capability units are 
automatically tested against the SAL model 

•  New: we can now automatically translate the SAL 
model into PVS 

•  Using PVS, we can prove “memory safety” for a 
CHERI ISA subset 

•  Future work: prove security properties of full model 

•  Future work: prove security properties of key 
software TCB elements (e.g., CCall, Creturn) 
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CHERI formal verification: 
Bluespec analysis / Smten 

•  Smten: Automatic Translation of High-level Symbolic Computations into 
SMT Queries 

•  Motivation: SMT solvers are widely used for model checking, automated 
theorem proving and test generation, but translating a model into an SMT 
form is tedious 

•  Solution: Smten is a high-level, purely functional language, with syntax and 
features borrowed heavily from Haskell which greatly helps translation of 
models into SMT queries 

•  Initial work published at CAV’13 

•  See Nirav Dave during the poster session for details. 
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CHERI SOFTWARE 
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CHERI software model 

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive
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•  Fine-grained userspace memory 
protection, in-process sandboxing 

•  MIPS/CHERI binaries tightly integrated 
(e.g., CHERI library in MIPS binary) 

•  Compiler allows pointers to be replaced 
with tagged, bounds-checked capabilities 

•  In-progress CHERI debugger 

•  OS support for model, tracing tools, etc. 

•  Userspace sandbox model, class libraries, 
components, monitoring tools 

•  CheriBSD on github so more easily 
accessible to downstream users 

•  BERI support + drivers shipping as 
FreeBSD 10.0 embedded target in weeks 
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CHERI extensions to FreeBSD 
•  CHERI register file preserved for each user thread 

•  CCall/CReturn exception handlers: object-capability invocation 

•  CHERI “trusted stack” for object-capability return path 

•  Sandbox fault recovery unwinds trusted stack on MMU fault, 
capability fault, or other thread traps 

•  Kernel accepts system calls only from in-process protection 
domains with ambient authority; requires using the system class 

•  Kernel debugging extensions for CHERI LLDB 

•  CHERI memory protection via CHERI Clang/LLVM 

•  libcheri(3) API to create and invoke sandboxes 

•  Extensions to the procstat(1) tool to track sandbox state 
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CHERI Clang/LLVM/LLDB 
•  CHERI Clang/LLVM 

•  Clang supports new qualifiers, builtins for capability manipulation 

•  LLVM CHERI code generation extends MIPS support 

•  Pointers use MIPS representation and instructions by default 

•  Pointers tagged as__capability generates CHERI instead of MIPS 

•  Experimental CCured work automatically converts C code to CHERI ISA 

•  CHERI SDK 

•  Complete cross-development environment: toolchain, libraries, headers. 

•  CHERI LLDB 

•  LLDB supports CHERI registers in core files; live debugging in-progress 
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Example object-capability/sandbox 
invocation: “hello world” 

cheritest-helper.invoke()

cheritest.main()

libc_cheri.puts()

libcheri.sandbox_object_cinvoke()

libc_cheri.cheri_system_puts()

libc_cheri.cheri_invoke()

libcheri.cheri_enter()

libcheri.cheri_system_puts()
libc.puts()

…stdio stack…
libc.write()

sys_write()
… kernel I/O stack…

CCall

CCall

System
call

CReturn

CReturn

System
call return

R
eturn pathC

al
l p
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h

←  Application main() invokes sandbox 

←  Sandbox invokes system-object puts() 

←  System object invokes libc puts() 

←  System-object puts() invokes libc puts() 

←  libc puts() invokes write() system call 

 

←  Kernel performs write() 
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←  Application main() invokes sandbox 

←  Sandbox invokes system-object puts() 

←  System object invokes libc puts() 

←  System-object puts() invokes libc puts() 

←  libc puts() invokes write() system call 

 

←  Kernel performs write() 
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Rights passed between sandboxes 
must be described using capabilities 

Legacy MIPS code can appear 
throughout the stack, but requires 
access functions (i.e., copies) to 

access non-$c0 data 

System-call interface remains 
largely unmodified: MIPS ISA/ABI 

 
In the future, we will add hybrid 

CHERI-aware system calls allowed 
in sandboxes, but scoped by 

capability arguments 



libcheri: object-capability sandbox API 

•  C-language bindings for CHERI 
object-capability sandboxes 

•  Sandbox class 

•  For now, memory image; soon, 
ELF binary (or segment) 

•  new, method_declare, destroy 

•  Sandbox object 

•  Instantiated class with data 

•  new, getsystemobject, 
cinvoke, destroy 

•  Small assembly stubs for caller 
invoke() and callee enter() 
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libc_cheri: sandboxed C library; 
libcheri system class 

•  Subset of key C functions 

•  Useful functions useable without ambient 
authority (e.g., snprintf) 

•  Bottom-end functions invoke CHERI system-
class object capabilities instead of system calls 

•  Kernel rejects calls without ambient authority 

•  Sandboxes must request operations with 
ambient effects through CHERI system class 
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procstat(1): sandbox monitoring 

•  Libcheri exports statistics on sandbox classes, objects, and methods 

•  libprocstat(3) and procstat(1) can query/print this 

•  libprocstat(3) rovided data backend for demo UI 
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% slogin -i .ssh/id_cheri_host ctsrd@cheritest.sec.cl.cam.ac.uk  
Last login: Sat Nov 16 03:26:50 2013 from ip-64-134-230-112.public.wayport.net 
FreeBSD 11.0-CURRENT (CHERI_DE4_SDROOT) #8 825c7e7(master)-dirty: Sat Jan 11 00:35:25 GMT 2014 
 
% procstat -RX 7114 
 PID  COMM       CLASS                METHOD     INVOKE FAULT    SMIN     SMAX    SMEAN  SMEDIAN 
 7114 cheritest  cheritest-helper.bin md5             4     0   10116   158925    47478    10436 
 7114 cheritest  cheritest-helper.bin abort           1     1    3187     3187     3187     3187 
 7114 cheritest  cheritest-helper.bin helloworld      1     0  452296   452296   452296   452296 
 7114 cheritest  cheritest-helper.bin puts            1     0  456118   456118   456118   456118 
 7114 cheritest  cheritest-helper.bin syscall         1     0    6551     6551     6551     6551 
 7114 cheritest  cheritest-helper.bin divzero         3     3    2900     3166     3005     2950 
 7114 cheritest  cheritest-helper.bin malloc          0     0       0        0        0        0 



In progress: open sourcing CHERI 
•  Complete open-source hardware-software research/teaching stack 

•  BERI Open Systems CIC (“Community Interest Company”) Dec 2013 

•  BERI Apache-style license (HW), BSD license (SW) 

•  Physical designs for DE4 tablet, interconnect boards 

•  CHERI and CHERI2 Bluespec designs; debugging components/tools 

•  CHERI test suite, formal models 

•  FreeBSD device drivers 

•  CheriBSD capability support 

•  CHERI Clang/LLVM/LLDB 

•  ETA: January/February 2014 
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CHERI next steps 
•  CheriBSD kernel features (e.g., debugging, lazy switching) 

•  “Pure” CHERI ISA support for Clang/LLVM 

•  CHERI LLDB full feature support 

•  CCured-like automated use of memory protection 

•  Further CHERI ISA refinements: e.g., explicit CNULL 

•  Shift stack, heap access to CHERI ISA 

•  CCall/CReturn hardware optimizations 

•  Linker support for capabilities 

•  CHERI multithreading/multicore 

•  Additional languages: Object C, Ocaml 
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CHERI DEMO 
Compartmentalized packet capture and processing 
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November 2012 - CheriPoint 

ü  Bespoke compartmentalized 
CHERI presentation 
package 

ü  Sandboxing mitigates trojan 
inserted in PNG library 

⨯  Largely MIPS ISA code 
generated from C 

⨯  A small amount of utility 
code written in CHERI 
assembly 

⨯  Static sandboxing policy 
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CHERI tcpdump demonstration 
•  Memory protection + compartmentalization 

•  OS support for CHERI thread contexts 

•  Compiler __capability pointers 

•  Userspace libcheri sandboxing model 

•  Compartmentalized packet printing 

•  Key results: 

•  Applicability of hybrid capability model 

•  Tight C-language/capability integration 

•  Tradeoffs policy/performance/mitigation 

•  Compartmentalization scalability 

•  Variable granularity 
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SOAAP AND TESLA 
Software analysis and transformation 
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Security-oriented analysis of 
application programs (SOAAP) 

•  Static and dynamic analysis tools to assist programmers when 
compartmentalizing applications 

•  Come see demo at poster session! 
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TESLA 

•  Pragmatic validation of run-time security 
properties 

•  LTL-like assertions embedded in code 

•  Compiler-generated instrumentation 

•  Significant outreach to potential open-source and 
corporate consumers  

•  Come see demo at poster session! 
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TESLA since last time 

•  Applied TESLA to 
OpenSSL, FreeBSD, 
Objective-C 

•  Found subtle bugs that 
eluded traditional debug 
tools 

•  Build cost: rebuilds less 
incremental 

•  Significant runtime cost 
optimizations 
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close) is significantly slowed with TESLA.
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(b) The impact of TESLA on larger workloads is proportional to
the actual use of temporal assertions.

Figure 12: The performance impact of kernel TESLA asser-
tions on microbenchmarks and larger code.

NESS and INVARIANTS, and three TESLA-instrumented
kernels. The kernel was from the FreeBSD 10-CURRENT
development branch on June 3 2013 (svn r229293) with
(conditionally compiled) TESLA modifications applied. The
three variants of TESLA-instrumented kernels were: one
with just the instrumentation framework and test assertions,
one with MAC assertions, and the final one with inter-
process protection assertions.

As a typical developer workload we benchmarked the
time required to perform a compile of the Clang-3.3 com-
piler in all these configurations. We also ran the Sys-
Bench [17] 0.4.12 OLTP benchmark against a MySQL
5.6.14 database as an example of a transaction sensitive
workload. In addition to these macrobenchmarks we ran
portions of the lmbench [25] microbenchmark suite against
the same set of kernels. All FreeBSD benchmarks were run
on servers with an Intel E5-1620 (SandyBridge) 3.60GHz
CPU, 64GB of RAM, and a 500GB SSD running a FreeBSD
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Figure 13: Performance improvements with optimisation.

amd64 9.2-RELEASE userland. The MySQL database was
memory backed and builds were performed on the SSD.

At first, TESLA caused up 10⇥ slowdown in the OLTP
benchmark and 2⇥ for Clang builds. While developers ac-
cept impacts on this scale some of the time (e.g. running de-
bug builds of LLVM or using valgrind), 10⇥ is far beyond
the level of performance hit FreeBSD developers are will-
ing to routinely accept. This performance impact was caused
by many assertions sharing the same temporal bounds: entry
into and exit from a system call. On every system call entry,
instrumentation would call into libtesla once per assertion
to instantiate over 100 automata, most of which would re-
ceive no further events until the end of the system call.

We optimised for this common case by keeping a per-
context (global or per-thread) record of common initial-
isation and cleanup events and doing lazy initialisation
of automaton instances after they received their first non-
initialisation event. Pre- and post-optimisation results for
macrobenchmarks are shown in Figure 12b while Figure 12a
shows the impact of TESLA on the latency of pairs of open
and close system calls. With these optimisations, the CPU-
and I/O-bound Clang builds improved to be comparable to
WITNESS and INVARIANTS with less than 10% overhead.
The system-call–intensive SysBench performance improved
significantly to be less than 1.35⇥ slower, as shown in fig-
ure 13. Microbencharks improved dramatically from nearly
100⇥ slow down to less than 7⇥.

5.3 State machine exploration
For this case study, all our TESLA declarations are within
a single compilation unit. Although instrumentation spans
two libraries and multiple classes, it is all inserted via inter-
position and so we only need to run the instrumenter on a
single compilation unit. This means that incremental builds
still work, as do parallel builds, and so TESLA has a negli-
gible impact on build times.

5.3.1 Run-time overhead
To begin our investigation of the performance overhead for
Objective-C instrumentation, we illustrate the worst-case
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with just the instrumentation framework and test assertions,
one with MAC assertions, and the final one with inter-
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At first, TESLA caused up 10⇥ slowdown in the OLTP
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cept impacts on this scale some of the time (e.g. running de-
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to instantiate over 100 automata, most of which would re-
ceive no further events until the end of the system call.
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context (global or per-thread) record of common initial-
isation and cleanup events and doing lazy initialisation
of automaton instances after they received their first non-
initialisation event. Pre- and post-optimisation results for
macrobenchmarks are shown in Figure 12b while Figure 12a
shows the impact of TESLA on the latency of pairs of open
and close system calls. With these optimisations, the CPU-
and I/O-bound Clang builds improved to be comparable to
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The system-call–intensive SysBench performance improved
significantly to be less than 1.35⇥ slower, as shown in fig-
ure 13. Microbencharks improved dramatically from nearly
100⇥ slow down to less than 7⇥.
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For this case study, all our TESLA declarations are within
a single compilation unit. Although instrumentation spans
two libraries and multiple classes, it is all inserted via inter-
position and so we only need to run the instrumenter on a
single compilation unit. This means that incremental builds
still work, as do parallel builds, and so TESLA has a negli-
gible impact on build times.
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To begin our investigation of the performance overhead for
Objective-C instrumentation, we illustrate the worst-case
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Conclusion 

•  Three years into the five-year project 

•  Mature CHERI hardware platform 

•  CheriBSD operating system 

•  CHERI Clang/LLVM/LLDB/SDK 

•  CHERI application exploration in progress 

•  SOAAP and TESLA tools maturing 

•  Smten, architectural extraction, and formal ISA 
models bearing early verification results 
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(MRC)2 sister project 

•  Heavy use of CTSRD-derived CHERI 

•  Multithreaded and multicore CHERI prototypes 

•  CHERI on NetFPGA 10G 
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Q&A 
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CTSRD at the PI Meeting 
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