CRASH-WORTHY
TRUSTWORTHY
SYSTEMS
RESEARCH AND
DEVELOPMENT

CTSRD Project Briefing

Robert N. M.Watson (Cambridge)
Peter G. Neumann (SRI) Simon W. Moore (Cambridge)

DARPA CRASH Pl Meeting
San Diego, California, USA
|4 January 2014

Approved for public release; distribution is unlimited. This research is sponsored by tl]e Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contract FA8750-10-C-0237.The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

BB UNIVERSITY OF

CTSRD

CTSRD at the Pl Meeting

Dr Robert N. M. Dr Simon W. Dr Jonathan Dr David Dr Nirav Mr Brooks
Neumann Watson Moore Anderson Chisnall Dave Davis

Mr Rance Dr Khilan Dr Theo A. Mr Ed Dr Michael Mr Colm Mr Stacey
DeLong Gudka Markettos Maste Roe Rothwell Son

m!nl UNIVERSITY OF
&P CAMBRIDGE

CTSRD

* Spans security, CPUs, OS, compilers, languages, program
analysis/transformation, HW/SWV formal methods.

* Clean-slate design violates some current conventions, in
exchange for dramatic security improvements.

* Capability-based CPU protection and
compartmentalization features mitigate known and
unknown vulnerability classes.

* Hybrid model facilitates incremental SW adoption.

* Program analysis and transformation techniques improve
software TCB correctness, utilize new CPU features.

* Formal methods link models, hardware, and software.

3 B UNIVERSITY OF

CTSRD project elements

* Capsicum, compartmentalization,and CTSRD
* Capability Hardware Enhanced RISC Instructions (CHERI)

* CHERI ISA and hardware compartmentalization prototype

CHERI platform: tablet, CheriCloud, peripherals, etc.
CHERI software: CheriBSD, CHERI Clang/LLVM, apps

Architectural extraction, verification of Bluespec (Smten)

ISA-level proofs and automated test generation
* Security-Oriented Analysis of Application Programs (SOAAP)
* Temporally Enhanced Security Logic Assertions (TESLA)

g H UNIVERSITY OF
¥ CAMBRIDGE

August 2013 CTSRD/MRC2 meetings,

Cambridge, UK

5 UNIVERSITY OF
» CAMBRIDGE

CTSRD

COMPARTMENTALIZATION
FOUNDATIONS

B UNIVERSITY OF
@Y CAMBRIDGE

CTSRD

Application compartmentalization

| Compartmentalized "gzip" program

sandbox via
T — capabilities

|
|
|
Conventional "gzip" program | | Conventional Capability-mode process | |
i | UNIX process !
| | with ambient [
! | authority L :
norab] ! vulnerable :
vulnerable . : |
~~~~~~~ compression : rlnaln e b C?é?grﬁgs:gn ! Selected rights
!
fetch logic | g2 9 | delegated to
|
|

Kernel Kernel

* Compartmentalization decomposes software into isolated components.
* Each sandbox runs with only the rights required to perform its function.

* This model implements the principle of least privilege.

E 7 UNIVERSITY OF
% CAMBRIDGE




CTSRD

(&

Conventional "gzip" program

main
loop

~

vulnerable

“““““ compression
fetch logic

Kernel

When a conventional application is compromised,
ambient rights are leaked to the attacker, e.g., network

and file system access.

.

___________________________________

Conventional
UNIX process
with ambient

authority

main
loop

———
-

........

Capability-mode process

vulnerable

compression

fetch logic

Selected rights
delegated to

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 | sandbox via

1= _I‘é" capabilities

-~

As vulnerabilities yield fewer rights, attackers must
% exploit many vulnerabilities to meet their goals. -

)
KW\%

Compromising a compartmentalized application
yields only held rights to the attacker.

8

B H UNIVERSITY OF
4P CAMBRIDGE




CTSRD

Capsicum update

Hybrid capability model: OS APIs for
application compartmentalization

Joint Cambridge/Google project

Experimental feature in FreeBSD 9.x;
out-of-the box in 10.0 (RSN)

FreeBSD Foundation, Google

* Funded projects will continue in 2014

*  Growing number of FreeBSD programs
are using Capsicum out-of-the-box:
tcpdump, auditdistd, hastd, etc.

* Casper framework offers services to
sandboxes (e.g., DNS, socket server)

C ODSICum * Google has published a Linux port

prototype and hopes to upstream

B H UNIVERSITY OF
@» CAMBRIDGE




CTSRD

Data-centered compartmentalisation

v
Y

Code-centred compartmentalisation

1. fetch -
main loop

b

2. fetch i

il
e

network
sandbox

FTP
sandbox

5. fetch
main loop

/i
-+
]
’
L/

14

URL-specific sandbox

| URL-specific sandbox

| URL-specific sandbox

7
International

N

Sl

>
3. fetch i 4. fetch i
v FTP HTTP ™ FTP HTTPauth ™ | |HTTPGET /
sandbox sandbox sandbox sandbox sandbox
/ _'i — ==
HTTPS &
sandbox @ SSL @
sandbox
SSL

sandbox

Applications can be compartmentalized in different ways,
trading off security and performance

Finer-grained decompositions mitigate vulnerabilities better:
attacks yield fewer rights, so attackers must exploit more
vulnerabilities to accomplish their goals

|deally, web browsers would use hundreds/thousands of
sandboxes: one for each image, script, etc.

However, CPUs support few simultaneous processes; e.g.,
Google Chrome reuses up to 20 sandboxes, one per tab

As a consequence of CPU design, malware in a webmail
image attachment can access a user’s entire mailbox

10 B UNIVERSITY OF

» CAMBRIDGE




CTSRD

Capability hardware enhanced RISC instructions

CHERI PROCESSOR

5 H UNIVERSITY OF
@» CAMBRIDGE




Capability hardware enhanced RISC

instructions (CHERI)

C e ] e CHERI hybrid capability model:
1 C Control Coprocessor b Fine-grained memOI")' Protection
[ e ( Rgg;zther> e Execute> [ Vo ) (Wr.teback * In-address-space sandboxing
[ Capability Coprocessor d EXtenCIS 64'bit MIPS ISA
"Caone e * Haskell-derived Bluespec System Verilog
t t HDL; synthesizes to Altera and Xilinx
| \ FPGAs

* Fully pipelined; multithreaded and multicore
under development

O BERI Pipeline & L1 26%
D Control Regs & MMU 3%

O capavility ¢ 17% : i
apability Coprocessor * Extensive test suite and tools

M pebug unit 5%

D Level 2 Cache 5% . .

B wuitiply & Divide 3% * ISA and design subject to new formal
[l Tag Controller & Cache 3% anal)’SiS

OFpPu 32%

* Shortly to be released as open source

12 B UNIVERSITY OF
«¥ CAMBRIDGE




CTSRD

CHERI development timeline

November 2012:

October 2011: Deimos December 2012:

N . b
capability-based microkernel July 2012: LLVM z?]nsdor?)ée: eLrJisBeSr[c):?de Nested sandboxes
runs first sandbox generates ’ and sandbox

trojan mitigated

CHERI ISA code exception handling
_ ] January 2014:
June 2_(_J12: CheriBSD : 0 Feburary 2013: CheriBSD now
capability context for CHERI box on uses CHERI Clang/
user threads the Internet LLVM for key
sandboxing
/ components
| | | >

| l
12010 2011 12012 12013 2014

November May 2012:

2011: tPad DE4 tablet April 2013: December 2013: BERI
tablet demo runs FreeBSD CheriCloud online Open Systems CIC
with Deimos for SRI/Cam users created

5 UNIVERSITY OF
&P CAMBRIDGE




CTSRD

CHERI hardware platform

Ol eeri Pipeline & L1

D Control Regs & MMU
D Capability Coprocessor
. Debug Unit

D Level 2 Cache

B Multiply & Divide

. Tag Controller & Cache

O reu

26%
3%
17%
5%
5%
3%
3%
32%

CHERI prototypes

Tablet prototype: CPU,
DRAM, battery, flash,
touchscreen, HDMI,
Ethernet

In-field CPU, OS updates
CheriBSD OS, CHERI SDK
CHERI demonstrations

* E.g,fine-grained
compartmentalization in
CheriPoint presentation
package

g E UNIVERSITY OF
4P CAMBRIDGE




CheriCloud

* Centralized facility supporting
remote CHERI software
development for CTSRD and
MRC2 projects

'. e 7 x DE4 FPGA boards in 4U

B - CHERI CPU + CheriBSD with
Ethernet on each DE4

* Reset and serial console

* SSH into a live CHERI system;

off-the-shelf open-source
applications

* Total end-user transparency!

B8 UNIVERSITY OF
&¥ CAMBRIDGE




CHERI enhancements (CTSRD)

 CHERI ISAv2.] enhancements to object-capability
invocation, software debugging features

* FPU — particularly useful for Olden benchmarks
* Improved hardware ISA-level tracing + CheriVis
* CHERI2 now fully implements ISAv2.|

* Annabella release in July 2013

* Multithreaded CHERI2 boots BSD in simulation
* Multicore CHERI in testing

16 i B UNIVERSITY OF




CHERI enhancements ((MRC)?)

 DARPA MRC sister project
also using and enhancing CHERI

* Multithreading and multicore

e Multi-FPGA interconnect

* AXI bus conversion

* NetFPGA 10G

* CPU Tracing enhancements
* FPU maturity

 BlueSwitch

mln UNIVERSITY OF
&¥» CAMBRIDGE




CHERI formal verification:

ISA model

* Formal model of ISA described in SAL model checker

* Bluespec CHERI and CHERI2 capability units are
automatically tested against the SAL model

* New: we can now automatically translate the SAL
model into PVS

* Using PVS, we can prove “memory safety” for a
CHERI ISA subset

* Future work: prove security properties of full model

* Future work: prove security properties of key
software TCB elements (e.g., CCall, Creturn)

18 B UNIVERSITY OF

«¥ CAMBRIDGE




CHERI formal verification:

Bluespec analysis / Smten

* Smten:Automatic Translation of High-level Symbolic Computations into
SMT Queries

* Motivation: SMT solvers are widely used for model checking, automated
theorem proving and test generation, but translating a model into an SMT
form is tedious

* Solution: Smten is a high-level, purely functional language, with syntax and
features borrowed heavily from Haskell which greatly helps translation of
models into SMT queries

* Initial work published at CAV’ |3

* See Nirav Dave during the poster session for details.

input (i
_
. — shared
output custom solver computational
— core
h

& B UNIVERSITY OF

Verification Tool — Befére SMT
4¥Y CAMBRIDGE




CTSRD

CHERI SOFTWARE

20 B UNIVERSITY OF

&Y CAMBRIDGE




CHERI software model

T T * Fine-grained userspace memory
Java . . .
Script Capability C, protection, in-process sandboxing
Objective C,
Fetch Chromium or OCaml . . . .
£ PR N e * MIPS/CHERI binaries tightly integrated
£ _ application | | - oability C, (e.g., CHERI library in MIPS binary)
-S, zlib C++RT Objective C,
% or OCaml . .
2 | | ocexccutive | | libc executive || lioc executive | | Unikernel * Compiler allows pointers to be replaced
Ry . .
= | |[Network - with tagged, bounds-checked capabilities
apsicum
g stack kgrnel Device
o drivers * In-progress CHERI debugger
©
= Kernel address space executive g;éti;ir:g .
1 ¥ * OS support for model, tracing tools, etc.
Separation kernel
| Separation kernel executive \ ¢ Userspace sandbox model, class libraries,
CHERI components, monitoring tools
Legacy application code compiled for general-purpose registers b CherlBSD on github SO more eas”y
Hybrid code blending general-purpose registers and capabilities accessible to downstream users

High-assurance "pure" capability code

* BERI support + drivers shipping as

FreeBSD 10.0 embedded target in weeks
T UNIVERSITY OF
CAMBRIDGE

Oo0on

Per-address space memory management and capability executive

7N
SRl
International

S

27
SN




CHERI extensions to FreeBSD

* CHERI register file preserved for each user thread
* CCall/CReturn exception handlers: object-capability invocation
* CHERI*“trusted stack” for object-capability return path

* Sandbox fault recovery unwinds trusted stack on MMU fault,
capability fault, or other thread traps

* Kernel accepts system calls only from in-process protection
domains with ambient authority; requires using the system class

* Kernel debugging extensions for CHERI LLDB

* CHERI memory protection via CHERI Clang/LLVM

* libcheri(3) API to create and invoke sandboxes

* Extensions to the procstat(l) tool to track sandbox state

22 B UNIVERSITY OF

«¥ CAMBRIDGE




CTSRD

CHERI Clang/LLVM/LLDB

* CHERI Clang/LLVM

* Clang supports new qualifiers, builtins for capability manipulation

* LLVM CHERI code generation extends MIPS support

* Pointers use MIPS representation and instructions by default

* Pointers tagged as__capability generates CHERI instead of MIPS

* Experimental CCured work automatically converts C code to CHERI ISA
 CHERI SDK

* Complete cross-development environment: toolchain, libraries, headers.
 CHERI LLDB

* LLDB supports CHERI registers in core files; live debugging in-progress

23 B UNIVERSITY OF




Example object-capability/sandbox

invocation: heIIo world”’

main() |
CCall; sandbox_object_cinvoke() ‘:( . L. . .
- A < Application main() invokes sandbox
N invoke() H GReturn +  Sandbox invokes system-object puts()
! puts()
£ | cheri_system_puts() | & <+  System object invokes libc puts()
! [
o CCﬁ','J—i cheri_invoke() I* 3
© Fa o
O | ] | %
‘:\| cheri_enter() |" CReturn
| - b : :
| cheri_system_puts( | System-object puts() invokes libc puts()
| uts . . .
System! pusy i +  libc puts() invokes write() system call
al write() o
e
b sys_write() ' System +  Kernel performs write()
\ 4 call return
24 I UNIVERSITY OF

€% CAMBRIDGE



CTSRD

Call path

Example object-

X

\
. t] Legacy MIPS code can appear
____________________ I nvocalo throughout the stack, but requires
. maing j access functions (i.e., copies) to
CCa,IL%_ sandbox_object_cinvoke() 1\\\ access non_$co data /
‘I invoke() H'éRetUm +  Sandbox invokes system-object puts()
Rl . Rights passed between sandboxes
i cherl_system_puts) | : must be described using capabilities
CCEIIL'H cheri_invoke()
\‘H cheri_enter() H 'C;IReturn T ()
1 °"°"j::tz‘(‘;'“—'°”‘s° System-call interface remains \\
System: largely unmodified: MIPS ISA/ABI
call ] write()
e
" sys_write( “sse |n the future, we will add hybrid

"

CHERI-aware system calls allowed

in sandboxes, but scoped by
capability arguments

!




libcheri: object-capability sandbox API

° C_Ianguage bindings for CH ERI LIBCHERI(3) BSD Library Functions Manual LIBCHERI(3)

L] . L] NAME
libcheri, sandbox_class_new, sandbox_class_method_declare,
0] b] S Ct- ca P a b I I Ity san d b oxes sandbox_class_destroy, sandbox_object_new, -
sandbox_object_getsystemobject, sandbox_object_cinvoke,

sandbox_object_invoke, sandbox_object_destroy -- Library interface for
CHERI sandboxing

 Sandbox class .

library ““libcheri''

SYNOPSIS

* For now, memory image; soon, Finclude <nachine/cher.h>

#include <machine/cheric.h>

ELF binary (or segment) #include <sandbox.h>
int
sandbox_class_new(const char *path, size t sandboxlen,

* new, method_declare, destroy strict sandbox class *7sbpm);

int

sandbox_class_method_declare(struct sandbox class *sbcp, u_int methodnum,
const char *methodname) ;

* Sandbox object

void
sandbox_class_destroy(struct sandbox class *sbcp);

* |nstantiated class with data int

‘sandbox_object_new(struct sandbox class *sbcp,
struct sandbox object **sbopp);

H struct cheri object
* new’ getSYStemOb]eCt’ sandbox_object_getsystemobject(struct sandbox object *sbop);
H #if _ has_feature(capabilities)
cinvoke, destroy

register t
sandbox_object_cinvoke(struct sandbox object *sbop, u int methodnum,
register t al, register t a2, register t a3, register t a4,

register t a5, register t a6, register t a7, _ capability void *c3,
* Small assembly stubs for caller D o2, reEloier L 28, Tebletert 37, —comabiTy votd "ok
capability void *c7, _ capability void *c8, _ capability void *c9,

invoke() and callee enter() —Capablity Voo el

#else

register t
sandbox_object_invoke(struct sandbox object *sbop, u_int methodnum,

@ UNIVERSITY OF
» CAMBRIDGE

26




libc_cheri: sandboxed C library;

libcheri system class
* Subset of key C functions

e Useful functions useable without ambient
authority (e.g., snprintf)

* Bottom-end functions invoke CHERI system-
class object capabilities instead of system calls

* Kernel rejects calls without ambient authority

* Sandboxes must request operations with
ambient effects through CHERI system class

8 UNIVERSITY OF

27 "
4P CAMBRIDGE




CTSRD

procstat(|): sandbox monitoring

$ slogin -i .ssh/id cheri host ctsrd@cheritest.sec.cl.cam.ac.uk
Last login: Sat Nov 16 03:26:50 2013 from ip-64-134-230-112.public.wayport.net
FreeBSD 11.0-CURRENT (CHERI DE4 SDROOT) #8 825c7e7 (master)-dirty: Sat Jan 11 00:35:25 GMT 2014

% procstat -RX 7114

PID COMM CLASS METHOD INVOKE FAULT SMIN SMAX SMEAN SMEDIAN
7114 cheritest cheritest-helper.bin md5 0 10116 158925 47478 10436
7114 cheritest cheritest-helper.bin abort 1 3187 3187 3187 3187
7114 cheritest cheritest-helper.bin helloworld 0 452296 452296 452296 452296
7114 cheritest cheritest-helper.bin puts 0 456118 456118 456118 456118
7114 cheritest cheritest-helper.bin syscall 0 6551 6551 6551 6551
7114 cheritest cheritest-helper.bin divzero 3 2900 3166 3005 2950
7114 cheritest cheritest-helper.bin malloc 0 0 0 0 0

OCWKR R KL R A

* Libcheri exports statistics on sandbox classes, objects, and methods
* libprocstat(3) and procstat(l) can query/print this

* libprocstat(3) rovided data backend for demo Ul

28 5.8 UNIVERSITY OF

{¥ CAMBRIDGE




CTSRD

In progress: open sourcing CHERI

* Complete open-source hardware-software research/teaching stack

* BERI Open Systems CIC (“Community Interest Company”) Dec 2013
* BERI Apache-style license (HWV), BSD license (SW)

* Physical designs for DE4 tablet, interconnect boards

* CHERI and CHERI2 Bluespec designs; debugging components/tools

* CHERI test suite, formal models

* FreeBSD device drivers

* CheriBSD capability support

* CHERI Clang/LLVM/LLDB

* ETA:January/February 2014

29 B UNIVERSITY OF

«¥ CAMBRIDGE




CTSRD

CHERI next steps

* CheriBSD kernel features (e.g., debugging, lazy switching)
e “Pure” CHERI ISA support for Clang/LLVM

* CHERI LLDB full feature support

* CCured-like automated use of memory protection

* Further CHERI ISA refinements: e.g., explicit CNULL
 Shift stack, heap access to CHERI ISA

* CCall/CReturn hardware optimizations

* Linker support for capabilities

e CHERI multithreading/multicore

* Additional languages: Object C, Ocaml

30 B UNIVERSITY OF

«¥ CAMBRIDGE




CTSRD

Compartmentalized packet capture and processing

CHERI DEMO

31 & B UNIVERSITY OF

€% CAMBRIDGE




November 2012 - CheriPoint

v" Bespoke compartmentalized
CHERI presentation
package

CTSRD

® SRl International and the University of Cambridge

v" Sandboxing mitigates trojan

¢ Collaboration spans historically siloed research areas I n Se rted I n P N G I I b ra. I")’
®  Security, CPU architecture, operating systems,
compilers, programming languages, formal methods
®  Clean slate design violates conventions in exchange for X La- rge Iy M I PS ISA COd e
dramatic security improvemants d f C
¢  Capability-based compartmentalization mitigates ge n e rate ro m

known and unknown classes of vulnerabilities

®  Hybrid capability model facibtates incremental adoption

x A small amount of utility
code written in CHERI
assembly

o ‘ CT IR o
g_!‘ OF CAMBRIDGE

x Static sandboxing policy

32 B UNIVERSITY OF

¥ CAMBRIDGE




CTSRD

CHERI tcpdump demonstration

® 00 £ brooks — nc — 80x46 "

* Memory protection + compartmentalization

08:19:22.254991 [sandbox]
08:19:23.262518 [sandbox]
* OS support for CHERI thread contexts 10125 263038 Teomdbuns

08:19:24.255013 [sandbox]

° Compl|er‘ _capab:_l:_ty POinteI"S 08:19:24.255390 [sandbox]

08:19:25.259223 [sandbox]
» Userspace libcheri sandboxing model 09:19:25. 250536 [sandbox)
08:19:27.435610 [sandbox]

08:19:42.874340 [sandbox]

* Compartmentalized packet printing

08:19:42.874745 [sandbox]

08:19:55.059711 [sandbox]

* Key results:

08:19:57.454239 [sandbox]
* Applicability of hybrid capability model 29:19:57. 410304 Lxendbon)
08:19:57.819676 [sandbox]
*  Tight C-language/capability integration S——

08:20:02.179228 [sandbox]

* Tradeoffs policy/performance/mitigation BI562, req 0, Lameth 64
08:20:14.834395 [sandbox]
s Compartmentalization scalability 08:20:14.834798 [sandbox]

08:20:27.469241 [sandbox]

* Variable granularity I

33 BB UNIVERSITY OF

€% CAMBRIDGE




CTSRD

Software analysis and transformation

SOAAP ANDTESLA

34 BB UNIVERSITY OF

¥ CAMBRIDGE




Security-oriented analysis of
application programs (SOAAP)

Repeated SOAAP iteration as program and hypotheses are refined

SOAAP toolchain
SOAAP inputs / ete \ [ dmemen
Callgraph
.| Application and library Clang | | el I
j==>-| | annotation taint, vuln.,
A \ source code processing callgraph Perform. SOAAP outputs
aul?\%r analysis simulation
Application
Past change
Compartmentalisation vulnerabili
7 “9- hypotheses as source =¥ o Sisty Information = and
ecuf:fv\ code annotations Y flow i
de eloper ] I refinement
Call graph xa ysns recommendations
( anaIyS|s
| Sandbox > Performance
f characterisation analysis
0S vendor |

CTSRD

 Static and dynamic analysis tools to assist programmers when

compartmentalizing applications

* Come see demo at poster session!
35

BB UNIVERSITY OF



CTSRD

TESLA

* Pragmatic validation of run-time security
properties

* LTL-like assertions embedded in code
* Compiler-generated instrumentation

* Significant outreach to potential open-source and
corporate consumers

* Come see demo at poster session!

36 B UNIVERSITY OF

¥ CAMBRIDGE




TESLA since last time

S 1 — * Applied TESLA to
= 1( W OpenSSL, FreeBSD,
Tgu 0-5 DDSysBench OLTP | ObleCtlve-C
3 U0 Clang build
e e * Found subtle bugs that
T @ e eluded traditional debu
o P e ot 5
W ? tools
wol = Dopre o 8. T0OLTP-pre |
_ JoPast | = ] JOOLTP-post * Build cost: rebuilds less
s 00| | g af| MClneest incremental
[ D g 5 |
ot U2 B |2 |if H H‘u * Significant runtime cost
W S W e optimizations
(a) Microbenchmark (b) Macrobenchmark

B UNIVERSITY OF

37
¥ CAMBRIDGE




CTSRD

Conclusion

* Three years into the five-year project

* Mature CHERI hardware platform

* CheriBSD operating system

* CHERI Clang/LLVM/LLDB/SDK

* CHERI application exploration in progress

* SOAAP and TESLA tools maturing

* Smten, architectural extraction, and formal ISA
models bearing early verification results

38 B UNIVERSITY OF
¢¥ CAMBRIDGE




CTSRD

(MRC)? sister project

Modular Research-based Composably tr

Mission-oriented Resilient Clouds

SDNsim: S Vi fr NetFPGAIOG and CHERL-NetFPGA
3 ke toibet foe (MRC) rwinching 0 FPGAICG

o dilatice

UNIVERSITY OF
MBRIDGE

* Heavy use of CTSRD-derived CHERI
e Multithreaded and multicore CHERI prototypes
* CHERI on NetFPGA 10G

39 UNIVERSITY OF

CAMBRIDGE




CTSRD

Q&A

40

B UNIVERSITY OF
4P CAMBRIDGE



CTSRD

CTSRD at the Pl Meeting

Dr Robert N. M. Dr Simon W. Dr Jonathan Dr David Dr Nirav Mr Brooks
Neumann Watson Moore Anderson Chisnall Dave Davis

Mr Rance Dr Khilan Dr Theo A. Mr Ed Dr Michael Mr Colm Mr Stacey
DeLong Gudka Markettos Maste Roe Rothwell Son

41 mlm UNIVERSITY OF

1P CAMBRIDGE




