
Smten: Automatic Translation of
High-level Symbolic Computations

into SMT Queries

Richard Uhler (MIT-CSAIL) and Nirav Dave (SRI International)

CAV 2013
Saint Petersburg, Russia

This work was sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237 and supported by National Science Foundation

under Grant No. CCF-1217498.

The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as
representing the official views of policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
Department of Defense.

input

output
orchestration custom solver

Verification Tool – Before SMT

Motivation: SMT-Based Tools

Satisfiability Modulo Theories (SMT) solvers are well suited
for computer aided verification tasks

Uses include:
• model checking

• program synthesis

• automated theorem proving

• automatic test generation

• software verification

Verification Tool – With SMT

input

output
orchestration SMT

Translate

Translate

problem
domain

SMT
domain

Motivation: SMT-Based Tools

Satisfiability Modulo Theories (SMT) solvers are well suited
for computer aided verification tasks

Uses include:
• model checking

• program synthesis

• automated theorem proving

• automatic test generation

• software verification

shared
computational

core

input

output
orchestration SMT

Translate

Translate

problem
domain

SMT
domain

Verification Tool – With SMT

Translate

Translate

Efficient Translation with Smten

• Implementing efficient translation is tedious
and time consuming

• Smten automates the task of translation

4

SMT
domain

input

output
orchestration Smten

problem
domain

Verification Tool – With Smten

Efficient Translation with Smten

• Implementing efficient translation is tedious
and time consuming

• Smten automates the task of translation

5

Tool developer works entirely
in the problem domain

SMT
domain

Case Study: Hampi String Solver

var v : 14 .. 16;

cfg SqlSmall := “SELECT “ (Letter)+ “ FROM “ (Letter)+ “ WHERE “ Cond;

cfg Cond := Val “=“ Val | Cond “ OR “ Cond;

cfg Val := (Letter)+ | “‟” (Ascii)* “‟” | (Digit)+;

cfg Digit := [„0‟-‟9‟];

cfg Letter := [„a‟-‟z‟] | [„A‟-‟Z‟];

cfg Ascii := Letter | Digit | “ “ | “‟”;

val q := concat(“SELECT msg FROM messages WHERE topicid=„”, v, “‟”);

assert v contains “OR „1‟=„1‟”;

assert q in SqlSmall;

Solve for a bounded length variable string which satisfies constraints:
• string contains the given substring
• string belongs to a given regular language

bounded length variable string

regular language specification

“contains” constraint

“membership” constraint

Hampi output: {VAR(v)=80‟ OR „1‟=„1‟}

Hampi input:

6[Kiezun, et. all ISSTA ‘09]

Challenges in Translation

7

Application-level design decisions effect the translation:
• Choice of SMT solver and background theories

– Determines the target API of translation

• Representation of application-level data structures in SMT domain
– Represent Hampi symbolic characters using Integers? Bit-vectors?

Booleans?

• Decomposition of problem into SMT queries
– Use single SMT query for an entire Hampi problem?
– Use a different query for each possible string length?

Making these decisions empirically is tedious and time consuming:
• Translation must be re-implemented for each choice

Implementing efficient translation is a non-trivial amount of work

Optimization in Translation

Even if you know the right design decisions to
make, the translation must be optimized

• Hampi example:
assert “zb?????d” in /a(b*cd)*/

– This assertion obviously doesn’t hold

– Direct translation to SMT would construct a full-sized
SMT query for the assertion

– Even if the solver can solve this quickly, there is still a
non-trivial translation cost

• Another example: preservation of sharing

8

=> Implementing efficient translation is hard

Smten will do these low-level optimizations for you

The Smten Language

High-level, purely functional language, with syntax and
features borrowed heavily from Haskell:

• User defined algebraic data types, pattern matching

• User defined functions: higher-order and recursive

• Polymorphism: parametric and ad-hoc (type classes)

• General purpose input/output

Provides an API (based on monads) for orchestrating
symbolic computations

No distinction between concrete and symbolic functions

9

The Hampi Membership Constraint in Smten

data RegEx = Epsilon | Empty | Atom Char | Range Char Char

| Star RegEx | Concat RegEx RegEx | Or RegEx RegEx

match :: RegEx -> [SChar] -> Bool

match Epsilon s = null s

match Empty _ = False

match (Atom x) [c] = toSChar x == c

match (Range l h) [c] = toSChar l <= c && c <= toSChar h

match r@(Star x) [] = True

match r@(Star x) s = any (match2 x r) (splits [1..length s] s)

match (Concat a b) s = any (match2 a b) (splits [0..length s] s)

match (Or a b) s = match a s || match b s

match _ s = False

match2 a b (sa, sb) = match a sa && match b sb

splits ns x = map (\n -> splitAt n x) ns

10

No knowledge of SChar
implementation needed

No mention of SMT
solver or theories

No mention of what
is concrete and what symbolicCan memoize using memo library

SHampi: Hampi Implemented with Smten

11

• SHampi’s automatic translation performs just as well as
Hampi’s manually implemented translation
• Smten allowed to easily explore different SMT solvers
and character representations in SHampi

SHampi Development Effort

12

Implemented in just 3 weeks
• Including time to understand Hampi problem
• Including time spent in maturing Smten tool

Component Lines of Source

SHampi Parser 325

CFG Fix Sizing 100

RegEx Match 56

Query 89

SChar 54

Conclusion: The Promise of Smten

Smten enables SMT-based tools to share efficient translation

• lowers the barrier to entry in the development of SMT-based
tools

Future work:

• Many more optimizations in translation possible:
– exploit theory of functions

– implied value concretization

• Supporting infinite symbolic computations

• Libraries of techniques for SMT-based tools

• Generalize portfolio approach of SMT solvers to include
background theories

13

Come see us at the poster session

Richard Uhler

ruhler@csail.mit.edu

Nirav Dave

ndave@csl.sri.com

14

mailto:ruhler@csail.mit.edu
mailto:ndave@csl.sri.com

