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Verification Tool – Before SMT

Motivation: SMT-Based Tools

Satisfiability Modulo Theories (SMT) solvers are well suited 
for computer aided verification tasks

Uses include:
• model checking

• program synthesis

• automated theorem proving

• automatic test generation 

• software verification
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Satisfiability Modulo Theories (SMT) solvers are well suited 
for computer aided verification tasks

Uses include:
• model checking

• program synthesis

• automated theorem proving
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Efficient Translation with Smten

• Implementing efficient translation is tedious 
and time consuming

• Smten automates the task of translation
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Efficient Translation with Smten

• Implementing efficient translation is tedious 
and time consuming

• Smten automates the task of translation
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Tool developer works entirely
in the problem domain

SMT
domain



Case Study: Hampi String Solver

var v : 14 .. 16;

cfg SqlSmall := “SELECT “ (Letter)+ “ FROM “ (Letter)+ “ WHERE “ Cond;

cfg Cond := Val “=“ Val | Cond “ OR “ Cond;

cfg Val := (Letter)+ | “‟” (Ascii)* “‟” | (Digit)+;

cfg Digit := [„0‟-‟9‟];

cfg Letter := [„a‟-‟z‟] | [„A‟-‟Z‟];

cfg Ascii := Letter | Digit | “ “ | “‟”;

val q := concat(“SELECT msg FROM messages WHERE topicid=„”, v, “‟”);

assert v contains “OR „1‟=„1‟”;

assert q in SqlSmall;

Solve for a bounded length variable string which satisfies constraints:
• string contains the given substring
• string belongs to a given regular language

bounded length variable string

regular language specification

“contains” constraint

“membership” constraint

Hampi output: {VAR(v)=80‟ OR „1‟=„1‟}

Hampi input:

6[Kiezun, et. all ISSTA ‘09]



Challenges in Translation
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Application-level design decisions effect the translation:
• Choice of SMT solver and background theories

– Determines the target API of translation

• Representation of application-level data structures in SMT domain
– Represent Hampi symbolic characters using Integers? Bit-vectors? 

Booleans?

• Decomposition of problem into SMT queries
– Use single SMT query for an entire Hampi problem?
– Use a different query for each possible string length?

Making these decisions empirically is tedious and time consuming:
• Translation must be re-implemented for each choice

Implementing efficient translation is a non-trivial amount of work



Optimization in Translation

Even if you know the right design decisions to 
make, the translation must be optimized

• Hampi example:
assert “zb?????d” in /a(b*cd)*/

– This assertion obviously doesn’t hold

– Direct translation to SMT would construct a full-sized 
SMT query for the assertion

– Even if the solver can solve this quickly, there is still a 
non-trivial translation cost

• Another example: preservation of sharing
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=> Implementing efficient translation is hard

Smten will do these low-level optimizations for you



The Smten Language

High-level, purely functional language, with syntax and 
features borrowed heavily from Haskell:

• User defined algebraic data types, pattern matching

• User defined functions: higher-order and recursive

• Polymorphism: parametric and ad-hoc (type classes)

• General purpose input/output

Provides an API (based on monads) for orchestrating 
symbolic computations

No distinction between concrete and symbolic functions
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The Hampi Membership Constraint in Smten

data RegEx = Epsilon | Empty | Atom Char | Range Char Char

| Star RegEx | Concat RegEx RegEx | Or RegEx RegEx

match :: RegEx -> [SChar] -> Bool

match Epsilon s       = null s

match Empty _         = False

match (Atom x) [c]    = toSChar x == c

match (Range l h) [c] = toSChar l <= c && c <= toSChar h

match r@(Star x) []   = True

match r@(Star x) s    = any (match2 x r) (splits [1..length s] s)

match (Concat a b) s  = any (match2 a b) (splits [0..length s] s)

match (Or a b) s      = match a s || match b s

match _        s      = False

match2 a b (sa, sb)   = match a sa && match b sb

splits ns x           = map (\n -> splitAt n x) ns
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No knowledge of SChar
implementation needed

No mention of SMT
solver or theories

No mention of what
is concrete and what symbolicCan memoize using memo library



SHampi: Hampi Implemented with Smten
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• SHampi’s automatic translation performs just as well as 
Hampi’s manually implemented translation
• Smten allowed to easily explore different SMT solvers 
and character representations in SHampi



SHampi Development Effort
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Implemented in just 3 weeks
• Including time to understand Hampi problem
• Including time spent in maturing Smten tool

Component Lines of Source

SHampi Parser 325

CFG Fix Sizing 100

RegEx Match 56

Query 89

SChar 54



Conclusion: The Promise of Smten

Smten enables SMT-based tools to share efficient translation

• lowers the barrier to entry in the development of SMT-based 
tools

Future work:

• Many more optimizations in translation possible:
– exploit theory of functions

– implied value concretization

• Supporting infinite symbolic computations

• Libraries of techniques for SMT-based tools

• Generalize portfolio approach of SMT solvers to include 
background theories 
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Come see us at the poster session

Richard Uhler

ruhler@csail.mit.edu

Nirav Dave

ndave@csl.sri.com
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