
CTSRDCTSRD Crash-worthy
 Trusted
Systems

 Research and
 Development

Peter G Neumann, Robert N M Watson, Ross Anderson, Jonathan Anderson, Nirav Dave, Steven M Hand, Wojciech Koszek, Ben Laurie, Patrick Lincoln, Anil Madhavapeddy,
 Ilias Marinos, Andrew W Moore, Simon W Moore, William M Morland, Steven J Murdoch, Robert Norton, Philip Paeps, Michael Roe, John Rushby, Hassen Saidi, Jonathan Woodruff

Dr Peter G
Neumann

Mr Ben
Laurie

Dr Robert
N M Watson

Mr Jonathan
Anderson

Dr Michael
Roe

Dr Nirav
Dave

Dr Hassen
Saidi

Mr Rance
DeLong

Dr Steven
Murdoch

Mr Jonathan
Woodruff

Dr Patrick
 Lincoln

Joe Stoy (Bluespec), Jonathan Woodruff (Cambridge), Ben Laurie (Google), Ross Anderson (Cambridge), Virgil Gligor (CMU),
 Philip Paeps (Cambridge), Li Gong (Mozilla), Peter Neumann (SRI)

Simon Cooper, Michael Roe (Cambridge), Robert Watson (Cambridge), Howie Shrobe (DARPA), Steven Murdoch (Cambridge), Sam Weber (NSF),
 Jonathan Anderson (Cambridge), Simon Moore (Cambridge)

Anil Madhavapeddy (Cambridge), Dan Adams (DARPA), Rance DeLong (LynuxWorks), Jeremy Epstein (SRI), Hassen Saidi (SRI)

With External Oversight Group, May 2011

Dr Simon
Moore

CTSRD is a principled, formally-supported, robust, programmer-friendly, high-
performance and incrementally adoptable hardware/software platform designed
for efficient software implementation of the principle of least privilege.

Software security structures and design principles are reinforced by Capability
 Hardware Enhanced RISC Instructions (CHERI) and Temporally Enforced Security
Logic Assertions (TESLA).

CTSRD adopts a hybrid approach, able to run existing operating systems and
 applications while supporting gradual adoption of advanced security features
 beginning with critical Trusted Computing Bases (TCBs) and high-risk software
 components.

CTSRD allows programmers to wipe the slate clean, one piece at a time.

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laborato-
ry (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not
be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

The Capability Hardware Enhanced RISC Instructions (CHERI) CPU
architecture is motivated by the compartmentalisation problem: current
instruction set architectures (ISAs) are unable to easily or efficiently
represent decomposed software designs implementing the principle of
least privilege. This problem results from conceptual mismatch with
Memory Management Unit (MMU)-based virtual address separation:
Translation Look-aside Buffer (TLB)-related performance costs scale
disproportionately to increase in compartmentalisation granularity. Virtual
addressing also makes it harder to develop and debug compartmentalised
software. As a result, software developers are deterred from decomposing
applications to mitigate security vulnerabilities or map distributed system
security policies into local enforcement primitives.

CHERI addresses these problems through efficient and compiler-friendly
hardware primitives to support the object-capability security model. In
CHERI, manipulation of protection properties is as natural and lightweight
as code and data manipulation is in commodity CPUs today.

Capability registers supplement
 general-purpose registers,
allowing protection to be managed
directly by the compiler. CHERI’s
 capability features allow a large
 number of simultaneous and
 frequently switching security
domains to co-exist efficiently,
utilising more scalable data and
code caches in the CPU rather than the TLB. Tagged memory allows
capabilities, code, and data to co-exist in system memory.

CHERI takes a reduced instruction set computer (RISC) approach to
 capabilities, providing tools for compiler and operating system writers

while minimising hardware complexity. CHERI’s primitives allow
simultaneous implementation of different security models, reflecting
diverse OSes, programming languages, and application requirements.

CHERI targets low-level software TCBs: OS kernels, language runtimes
and web browsers, as well as high-risk data processing such as video
decoding. CHERI’s hybrid capability architecture allows capabilities to be
adopted one software component at a time. CHERI sandboxes unmodified
RISC code by indirecting instruction fetches, loads and stores via reserved
capability registers. CHERI’s composition of capabilities and the MMU
places capability environments “above” the virtual address space: each
UNIX process, as well as the kernel, can have its own capability model.
Subdivision within kernel and application address spaces using capabilities
allows software to play by single address space rules, avoiding distributed
system programming problems.

Within an address space, a thread’s security context is entirely captured
by its capability register set: thread context switches are security context
switches. CHERI is a multithreaded processor supporting low-latency
message passing of general-purpose and capability registers. This translates
into efficient protected subsystem invocation, potentially orders of
magnitude faster than can be supported in MMU-based hardware designs.

CHERI is founded on the Bluespec Extensible RISC Instructions (BERI)
processor, a generalizable platform for future research on the hardware/
software interface. The BERI hardware/software stack draws on existing
Apache- or BSD-licensed software to provide a complete research
platform, from the processor up to consumer applications and servers
such as Chromium and Apache. CHERI is the first project to use BERI as a
research platform.

CHERI runs in cycle-accurate software
simulation, as provided by the Bluespec compiler,
and in Altera Stratix® IV GX FPGAs on the
Terasic DE4 development board, pictured to the
right, at 100 MHz.

CHERI’s 64-bit MIPS-derived CPU prototype, like the BERI prototyping
platform it is built on, is written in the Bluespec hardware description
 language (HDL), which facilitates rapid prototyping and design space
exploration. The starting point for our hybrid software
stack is Cambridge’s FreeBSD-derived Capsicum hybrid
 capability operating system. We are adapting the clang
and LLVM compiler suite to directly support protection
features in a modified IR. This software foundation will
allow us to experiment with new ISA security features while
running with a complete software stack from day one.

Recent work on CHERI has produced Deimos, a demonstration
microkernel operating system which uses capabilities, rather than virtual
memory, to isolate sandboxed processes. Processes running under Deimos
can draw on portions of a touch screen, constrained by capabilities so that
they cannot interfere with each other or with the system’s trusted path.
This all occurs within a single virtual address space: protection and virtual
memory have finally been de-conflated.

We are investigating a mapping from Bluespec into SRI’s Evidentiary Tool
Bus (ETB), including PVS, SAL, and the Yices SMT solver, offering the
promise of a formal grounding from hardware up — a technique we also
hope to extend to verifying hardware and software in composition.

CHERI is incrementally adoptable with immediate security benefits,
while still offering a long-term capability system vision motivated by the
principle of least privilege. System developers will be able to wipe the slate
clean—one piece at a time.

TESLA is a system for writing and checking assertions about the past and
future behaviour of software. It allows the authors of Trusted Computing
Bases (TCBs), such as operating system kernels and language runtimes, to
ensure that their software is performing as expected, according to protocols
such as “reads and writes must be preceded by access control checks”.

Like traditional, instantaneous
assertions, TESLA assertions are
written in the language of the source
code itself, allowing the programmer
to name functions, variables and
values according to normal C scoping
rules. Such assertions form a high-
level specification of expected
program behaviour, against which
actual system behaviour can be
dynamically checked at runtime.

Unlike traditional assertions, TESLA assertions can refer to events in the
past or future, making them ideal for checking temporal properties such as:

•	 check before use (!accessed(c, v) UNTIL checked(c, v))

•	 eventual audit (accessed(v) → FINALLY audited(v))

•	 software and protocol state machines

•	 security meta-data life cycles and memory safety

TESLA’s simple assertion language adds the temporal quantifiers previously
and eventually to the C assertion syntax; assertions refer to past and future
events, scoped to a timeline and programmer-selected ordering (per-
thread or global). We will add to TESLA’s current syntax in order to express
properties such as the statistical distribution of function outputs, so that

programmers can write assertions
about temporal properties such
as the entropy of random number
generators or the reuse of TCP
ports.

Assertions can also be expressed
as explicit automata using the
TESLA Assertion Language
(TEAL). An example automata,
representing the FreeBSD TCP
implementation, is shown to
the left. The TEAL automaton at

the far left, which describes the expected lifecycle of a TCP connection in
the FreeBSD network stack, is converted to the state machine at the near
left, which can be continuously validated at runtime on a machine with a
saturated 10Gb Ethernet connection with no measurable slowdown.

TESLA is implemented using a clang-based C instrumentation framework
and the libtesla run-time library. Assertions are converted into C, and
the clang plug-in instruments function prologues, epilogues, assignment
through types, and other language-visible events. libtesla provides
synchronisation and state management for in-flight automata. Fired
assertions can trigger a kernel panic, stack trace, or DTrace probes that can
themselves perform programmer-, administrator-, or user-scripted actions.

The instrumentation framework operates on top of the Abstract Syntax
Tree (AST) layer, injecting instrumentation functions by modifying the
AST. In the future, we will explore alternative ways of splitting analysis and
instrumentation tasks between clang and LLVM.

The diagram above shows how instrumentation functions are invoked for
function entry, assignment and function return events. In order to drive
the state machines, which analyse the temporal behaviour of the system,
instrumentation functions dispatch events to all automata interested
in the specific event. When an unexpected event triggers an invalid
state transition, the automaton is violated and a callback action is fired
(configured in the runtime libtesla library).

We have used TESLA to check TCP state transitions in the FreeBSD kernel
and rekeying behaviour in the OpenSSH client. We have checked security
properties such as check-before-use in the FreeBSD Mandatory Access
Control (MAC) framework, and plan to explore API conformance testing in
OpenSSL and Cambridge’s Xen hypervisor.

Apache

FreeBSD

Hypervisor
Xen/MIPS?

BERI

clang/LLVM, BSD ELF tools

Reference applications

Reference compiler/toolchain

Reference operating system

Reference hypervisor

Hardware research stack

X.org ChromiumPostgres

C simulation FPGA synthesis
tPad / DE4 / NetFPGA10G

Hardware simulation/
implementation substrates ...

...

!"#$$#"#
!%#
!&#
'#
'#
'#

!(%#

)*+*,-.#/0,123*#
!*4536*,3#

/7#

7-1-85.569#!*4536*,3#

1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#
1*,:3# 2691*# 8-3*# .*+46;#

'#
'#
'#

1*,:3# 2691*# 8-3*# .*+46;#

1*,:3# 2691*# 8-3*# .*+46;#7/7#

7!"#<4*+*,-.#10,123*#=-1-85.569>#
7!%#
7!&#

7!(%#

#define tassert_syscall(exp) \
 tesla_assert(\
 TESLA_THREAD, /* per-thread events */ \
 syscallenter(), /* start event */ \
 syscallret(), /* stop event */ \
 (exp)) /* assertion to test */

int
vn_rdwr(enum uio_rw rw, struct vnode *vp, ...,
 struct ucred *active_cred, struct ucred *file_cred,
 ...)
{
 if (rw == UIO_WRITE) {
 tassert_syscall(previously(mac_vnode_check_write(
 active_cred, file_cred, vp) == 0));
 tassert_syscall(eventually(audit_submit()));
 }
 ...
}

Hybrid code blending general-purpose registers and capabilities

Legacy application code compiled for general-purpose registers

Per-address space memory management and capability executive

High-assurance capability-only code; stand-alone or "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web

browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application
+ kernel

stack
libc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Capsicum
kernel

Kernel VM and allocator

Network
stack

Xen hypervisor

libc malloc

Commodity CPU

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s
su

pp
or

te
d

by
 p

ag
ed

 V
M

Classic
UNIX

application

zlib

Chromium
web

browser

Java
Script

C++ RT
OCaml runtime

OCaml
application

stack

libc malloc libc malloc

Device
drivers

24

16

{CLOSED}

14

{Func_prologue_tcp_free}

29

(established == 1)(established == 0)

21

22

{CLOSE_WAIT}

{LAST_ACK}

{LAST_ACK}

17

1

active_close=1

8

{FIN_WAIT_1}

5

{FIN_WAIT_1}

11

2

{Func_prologue_tcp_free}

(active_close == 1)

(active_close == 0)

9

{FIN_WAIT_2}

4

{TIME_WAIT}

6

{CLOSING}

{CLOSED}

{TIME_WAIT}

34

35

{CLOSED}

{Func_prologue_tcp_free}

28

58

{CLOSED}

32

{CLOSED}

39

{CLOSED}

54

{CLOSED}

43

{CLOSED}

{Func_prologue_tcp_free}

{LISTEN}

{LISTEN}

{SYN_SENT}{SYN_SENT}

56

established=0

50

{SYN_RECEIVED}

46

{SYN_RECEIVED}

active_close=0

48

established=1

{ESTAB}{ESTAB} {ESTAB}{ESTAB}

tcpc.spl Page 1

 1 #include <netinet/tcp_fsm.h>
 2
 3 automaton tcp_connect()
 4 {
 5 void active_close(struct tcpcb *tp) {
 6 tp−>t_state = TCPS_FIN_WAIT_1;
 7 either {
 8 tp−>t_state = TCPS_CLOSING;
 9 tp−>t_state = TCPS_TIME_WAIT;
 10 } or {
 11 tp−>t_state = TCPS_FIN_WAIT_2;
 12 tp−>t_state = TCPS_TIME_WAIT;
 13 }
 14 tp−>t_state = TCPS_CLOSED;
 15 tcp_free(tp); exit;
 16 };
 17
 18 void established(struct tcpcb *tp) {
 19 tp−>t_state = TCPS_ESTABLISHED;
 20 either {
 21 active_close(tp−>t_state);
 22 } or {
 23 tp−>t_state = TCPS_CLOSE_WAIT;
 24 tp−>t_state = TCPS_LAST_ACK;
 25 optional { tp−>t_state = TCPS_CLOSED; }
 26 }
 27 tcp_free(tp); exit;
 28 };
 29
 30 void main(struct tcpcb *tp) {
 31 tp−>t_state = TCPS_CLOSED;
 32 either {
 33 tp−>t_state = TCPS_LISTEN;
 34 optional { tp−>t_state = TCPS_CLOSED; }
 35 tcp_free(tp);
 36 } or {
 37 optional { tp−>t_state = TCPS_SYN_SENT; }
 38 either {
 39 tp−>t_state = TCPS_SYN_RECEIVED;
 40 either {
 41 established (tp−>t_state);
 42 } or {
 43 active_close(tp−>t_state);
 44 }
 45 } or {
 46 established (tp−>t_state);
 47 }
 48 } or {
 49 tcp_free(tp); exit;
 50 }
 51 }
 52 }

C Analysis

Spec
instrumentation.cTEAL

Compiler

Codegen
object
files

Parsing

Clang

Analysis

TESLA

Instrumentation

assertions

void *__tesla_data;
__tesla_event_function_prologue_helper(&__tesla_data, user, filename);
int i = 41;
int __tesla_tmp_retval;
__tesla_tmp_retval = ++i;
__tesla_event_function_return_helper(&__tesla_data, __tesla_tmp_retval);
return __tesla_tmp_retval;

int i = 41;
return ++i;

TESLA instrumentation plugin

Deimos v1.0 - CHERI demonstration capability microkernel
Developed by SRI International and the University of Cambridge
Capability support enabled
Kernel started
CP0 read Capability Exception! Offset=3000000040001a64
sandbox1 started
sandbox2 started
CP0 Capability Exception! Offset=00000000000068b00
CP0 Capability Exception! Offset=00000000000068b08
CP0 Capability Exception! Offset=00000000000068b10
CP0 Capability Exception! Offset=00000000000068b18
CP0 Capability Exception! Offset=00000000000068b20
CP0 Capability Exception! Offset=00000000000068b28
CP0 Capability Exception! Offset=00000000000068b30
CP0 Capability Exception! Offset=00000000000068b38

Deimos

TESLACHERI Capability Hardware Enhanced RISC Instructions Temporally-enhanced Security Logic Assertions

